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Abstract: In situ sensors that collect high-frequency data are used increasingly to monitor aquatic
environments. These sensors are prone to technical errors, resulting in unrecorded observations
and/or anomalous values that are subsequently removed and create gaps in time series data. We
present a framework based on generalized additive and auto-regressive models to recover these
missing data. To mimic sporadically missing (i) single observations and (ii) periods of contiguous
observations, we randomly removed (i) point data and (ii) day- and week-long sequences of data
from a two-year time series of nitrate concentration data collected from Arikaree River, USA, where
synoptically collected water temperature, turbidity, conductance, elevation, and dissolved oxygen
data were available. In 72% of cases with missing point data, predicted values were within the
sensor precision interval of the original value, although predictive ability declined when sequences of
missing data occurred. Precision also depended on the availability of other water quality covariates.
When covariates were available, even a sudden, event-based peak in nitrate concentration was
reconstructed well. By providing a promising method for accurate prediction of missing data, the
utility and confidence in summary statistics and statistical trends will increase, thereby assisting the
effective monitoring and management of fresh waters and other at-risk ecosystems.

Keywords: anomaly correction; generalised additive model (GAM); missing data reconstruction;
remote sensing; water quality

1. Introduction

Water quality sampling and analysis commonly relies on manual approaches, such
as grab sampling and laboratory analyses, often conducted at monthly or longer intervals
for variables such as sediment and nutrient concentration [1]. As such, the ability to cap-
ture water quality events or determine patterns and trends at fine spatial and temporal
resolution are often limited [2]. Advances in the development of in situ, high-frequency
environmental sensors have led to their expanded use in environmental monitoring, in-
cluding for fresh waters [3]. As the cost-effectiveness and telecommunications capability
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of these sensors increases, their ability to provide high-frequency data in near real time
likewise increases, allowing managers and decision makers to act in a timelier and more
spatially specific fashion. The large datasets generated by high-frequency in situ sensors
also present new opportunities for scientists when analysing, modelling, and reporting
water quality data [4,5]. Consequently, high-frequency datasets collected from in situ
sensors can provide a more thorough understanding of water quality dynamics at multiple
time scales and help to improve data quality assurance and quality control [6].

In situ sensors, despite their benefits, are prone to technical errors due to biofouling,
power failures, and other issues. These errors can lead to technical anomalies in water
quality data and potentially confound the assessment or identification of true changes
in water chemistry [7]. Given that the high frequency and large size of these datasets
precludes the use of manual anomaly detection methods (one part of the entire data
quality assurance and quality control process), various automated approaches have been
proposed. For example, Shi et al. (2018) [8] integrated a wavelet artificial neural network
with surrogate measurements for rapid warning of water quality anomalies, Liu et al.
(2020) [9] integrated a Bayesian autoregressive model with an Isolation Forest algorithm
for combined prediction and detection, while Rodriguez-Perez et al. (2020) [10] developed
a semi-supervised Bayesian artificial neural network approach. To assist both developers
and end users, Leigh et al. (2019) [7] developed a ten-step anomaly detection framework
to systematically implement and compare suites of anomaly detection methods based on
end-user needs.

Regardless of the method used to detect water quality anomalies from in situ sensors,
observations that get labelled as anomalous are often subsequently removed from the
time series, rendering them missing. Furthermore, given the variety of types of technical
anomalies, such as sudden spikes, unrealistic values, drift, or periods of anomalously high
or low variability [7], the resultant time series may contain missing point observations
and/or sequences of contiguously missing observations after the data are passed through
an anomaly detection algorithm. Failure to replace anomalies with corrected data may
occur because methods to confidently reconstruct (accurately predict) the true values of
the missing water quality observations are not available. Missing data then create data
quality issues [11] and can lead to biased estimates of parameters, increased standard errors,
decreased statistical power, and lost information [12], which may hinder the calculation
of summary statistics [13] and affect statistical trend detection [14]. Slater et al., 2017 [15],
for example, demonstrated via simulation that the loss in trend detection tends to increase
with an increasing size of missing data ‘gaps’ and decreasing length of time series.

Many of the commonly used methods used to reconstruct missing water quality
data were developed before the proliferation of high-frequency sensors, such as infilling
based on surrounding data [16,17], regression analysis [18,19], state—space models with
an estimation maximization algorithm [20], or artificial neural networks [21-23], and,
therefore, were targeted at data with lower-frequency time steps, such as daily data. More
recently, but also based on daily data, various infilling techniques, such as regression,
scaling, and equi-percentile approaches [24], along with dynamic regression models [25],
have been used to reconstruct missing streamflow data. Methods developed in other
domains, such as computer science, have reconstructed missing sensor data based on
temporal or spatial correlation, interpolation, and sparse theory [26]. In sensor networks,
linear and non-linear regression methods have been developed that use the non-missing
data adjacent to the missing data [27], along with algorithms based on combining K-
means algorithms and neural networks with particle swarm optimization [28]. Similar
methods have been developed in other domains, such as those used for power systems
within computer science [29], while in the engineering domain, bidirectional recurrent
neural networks have been developed to reconstruct sensor data used to monitor bridge
construction [30]. As can be seen, these various methods of data reconstruction have been
developed fit for purpose and as solutions for domain-specific problems. Hence, we aimed
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to develop a suitable method to reconstruct high-frequency nutrient data collected from in
situ sensors in rivers, a problem, to our knowledge, that is yet to be addressed.

In the environmental domain, and specifically river management, nutrient monitoring,
and specifically that of nitrate concentration, is particularly important. In its bio-available
form, nitrate is assimilated for growth and metabolism by riverine biota (e.g., algae, macro-
phytes, and some bacteria) that form the basal components of aquatic food webs [31].
However, an excess of nitrate can lead to problems like eutrophication, leading to a de-
crease in light infiltration and dissolved oxygen concentration [32,33], which, in turn,
can negatively affect the health of aquatic biota such as fishes and invertebrates [34-36],
as well as increasing costs for water treatment and complicating management of river
ecosystems spanning catchment headwaters to receiving waters downstream, including
oceans [37]. Furthermore, nitrate concentration can vary substantially in space and time in
river ecosystems due to instream processes and external inputs [38,39]. This high spatial
and temporal variation has increased the interest in and use of high-frequency, in situ
nitrate sensors in river monitoring programs and, thus, the need to develop appropriate
methods to reconstruct missing nitrate concentration data from the resulting time series.

While it is important to develop a sound method to confidently reconstruct missing
nitrate data for use in environmental management, the use of nitrate data can also serve as
a case study to demonstrate the potential for the method to be applied more broadly. As
such, the objective of this study was to develop and test a data reconstruction method using
both a real time series of high-frequency nitrate concentrations and a simulation study.

2. Materials and Methods
2.1. Reconstruction Method

Let Y be the response (i.e., dependent) variable of interest and Y; the value taken by Y
at time t. For covariates X € m (i.e., m explanatory variables or predictors) we denoted Xj;,
the kth covariates observed at time t. We then identified two possible cases: (i) all Xj; are
available at the same time step as the variable of interest Y, and (ii) at least one covariate is
not available at time ¢. For the first case, when all Xj; were available, we used a generalised
additive model to predict Y at each time ¢ that was missing, following the equation:

Yi=Bo+ Y sk(Xut) + e 1)
P

where X}, are covariates measured at the tth sample. Here, fj is an intercept and ¢; is an
error term, following the usual i.i.d assumptions that we make about regression errors,
e ~ N(0, 0?). The associated smooth function si(-) of each water quality variable Xj
was defined using thin plate spline regression [40]. A forwards and backwards stepwise
variable selection procedure was implemented and the ‘best” GAM model (in terms of
variables selected and penalisation of smooth splines) was identified based on the Akaike
Information Criterion (AIC) [41].

For the case when at least one covariate was not available at time ¢, such that Y; could
not been predicted with the GAM model, we used an autoregressive integrated moving
average model (ARIMA, Figure 1) [42]. For each missing Y; that could not be predicted
with a GAM, we used the 500 previous Y observations (Y¢—s509, Y¢—499, ..., Yi—2, Y¢—1) and
selected the best ARIMA model by AIC comparisons. Prediction intervals (95%) associated
with the reconstructed values were then calculated according to the model used.
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Figure 1. Reconstruction method. Flow chart of the method to predict the values of missing
observations in high-frequency sensor data.

2.2. Arikaree River Case Study: Applying the Reconstruction Method

We applied the missing-data reconstruction method to time series of water-quality data
collected from Arikaree River, a small wadeable stream in the semi-arid eastern Colorado
plains of the United States of America. The Arikaree River site has a catchment of 2632 km?,
comprising mainly grasslands and irrigated agricultural land, and is part of the National
Ecological Observatory Network (NEON). NEON collects and provides open data from
aquatic and terrestrial sites across the United States of America (USA), including data from
high-frequency, in situ sensors. NEON conducts standardised configuration, calibration,
and preventive maintenance procedures on all their sensors [43,44] and follows in situ
measurement and sample analysis protocols as outlined in [45]. As such, the Arikaree
River site provided us with a suitable time series of water quality data for the purposes of
this study.

Several water quality variables are available from each NEON aquatic site (Table 1).
Nitrate concentration [46] is measured in pmol/L using a 10 mm path length SUNA V2
UV light spectrum sensor. The SUNA V2 collects data reported as a mean value from
20 measurements made during a sampling burst every 15 min. The published nitrate
resolution is 0.1 pmol/L and the manufacturer’s stated sensor accuracy is approximately
2 umol/L or 10% of the reading above 20 pmol/L. We, therefore, report units of mea-
surement for nitrate in umol/L (1 pmol nitrate/L = 0.062 mg nitrate/L). Other co-located
sensors report specific conductance (1S/cm), dissolved oxygen (mg/L), water temperature
(°C), and turbidity (Formazin Nephelometric Units, FNU) data as one-minute instanta-
neous measurements [47,48]. Water elevation data (i.e., water level as meters above sea
level) are published as five-minute averaged measurements from data sampled at 1 min
intervals [49].

For this study, we used a two-year period of nitrate concentration data from one of
two sites (the downstream site) on the Arikaree River, from October 2018 to October 2020
(n = 73,056 nitrate concentration observations), in which there were already missing point
data and missing periods of data (14,283 missing observations of nitrate concentration
= 20% of the nitrate data in total) (Figure 2). These data had all been removed from the
time series as part of the NEON data quality assurance and quality control process. For
example, there was a technical issue with the nitrate sensor during winter 2019 so no nitrate
concentration measurements were available for the first three months of 2019. Missing
data were also present in the time series of the covariates as a result of quality control and
assurance processing: 29% of the temperature time series, 35% of the specific conductance
time series, 14% of the dissolved oxygen time series, 47% of the turbidity time series, and
11% of the elevation time series.
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Figure 2. Arikaree River nitrate data. Black points represent the original nitrate observations, grey shading represents the
precision interval of the sensor.

We considered nitrate concentration as our Y and the other water quality variables
(specific conductance, dissolved oxygen, water temperature, turbidity, and water elevation)
as the covariates X that could be related to Y [50]. Visual examination of the distributions of
the response and covariates indicated that turbidity had a strongly right-skewed distribu-
tion and was, therefore, log-transformed (i.e., log (turbidity + 1)) prior to analysis [51]. We
also included two additional covariates to account for temporal autocorrelation in the time
series, as determined by the AIC. The first additional covariate was nitrate concentration at
one time step before time ¢ (i.e., Y;—1) and the second was nitrate concentration at two time
steps before time ¢ (i.e., Y;—_p).

2.3. Simulation Study: Performance Evaluation

To evaluate the performance of our reconstruction method, we then repeatedly and
randomly removed different combinations of data (both point observations and sequences
of contiguous observations) from the two-year time series of nitrate concentration from
Arikaree River. For the missing point data, we randomly removed 20%, 30%, and 40%
of the observations from the nitrate concentration time series and repeated this process
100 times each (Simulations 1, 2, and 3). For the missing sequences of data, we randomly
removed ten individual days (10 x 24 h worth) of observations, repeating the process
100 times (Simulation 4), as well as ten individual weeks of observations, again repeating
the process 100 times (Simulation 5).

For each simulation, we then calculated the root-mean-square error (RMSE) and the
proportion of reconstructed data within the precision interval of the nitrate sensor (PWPI),
i.e., £10% for readings > 20 umol/L and £2 umol/L for readings < 20 pmol/L.

2.4. Implementation

Simulation and imputation were performed with the base packages within the R
statistical software [52]. Modelling was undertaken using the car [53], gam [54], mgcv [39],
and forecast [55] packages. The R script used to implement the analyses is provided in
the GitHub repository available online at https:/ /github.com/Claire-K/nitrate_time_serie
_reconstruction (accessed on 4 December 2021) and the Arikaree data are available from
NEON [46-49] (see Table 1 for data product numbers).
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3. Results
3.1. Arikaree River Case Study

Model performance varied according to the characteristics of the missing data. For
demonstration purposes, we focus here on four different cases: (a) a 12-day sequence in
which data were sporadically missing, (b) a one-day peak flow event containing sporadi-
cally missing data, (c) a full day of missing data, and (d) a three-month sequence of missing
data (Figure 3). Our method performed well at predicting values of nitrate concentration
where point observations were sporadically missing from the time series. In other words,
the predicted values followed the pattern of the surrounding data closely and prediction
intervals were narrow compared to the sensor precision interval (e.g., Figure 3a,b).

20-
% 15' .ﬂ“
£ . ™
= 10- o
g 5- ~-
E

o- NI

Novi7 Novi® Nov2i  Now2: Jul 21'00:00 Jul 21 06:00 Jul 21 12:00 Jul 21 18:00

(a) (b)

Nitrate (umol/L)

Sep 12 Sep 13 Sep 14 Jan Feb Mar

(c) (d)

Figure 3. Reconstruction of Arikaree nitrate data. Green points represent the nitrate concentration values predicted by
the reconstruction method, along with intervals of prediction, for (a) a 12-day sequence of sporadically missing data, (b)
a one-day peak flow event containing sporadically missing data, (c) a full day of contiguously missing data, and (d) a
three-month sequence of contiguously missing data. Black points represent the original nitrate observations, grey shading
represents the precision interval of the sensor. Prediction intervals may not be visible when they are narrow relative to the
precision interval of the sensor.

However, the method performed less well when periods of contiguously missing
observations were reconstructed. For the single day of missing data, the daily pattern
in nitrate concentration present in the surrounding data was not reconstructed, and the
prediction interval of the reconstructed nitrate values increased with the number of missing
observations (Figure 3c). This was also the case for the reconstruction of the three-month
period of missing data (Figure 3d). However, some extremely high nitrate concentrations
(~80 pmol/L) were predicted to occur during this period, based on the values of the covari-
ates at the time, which had not been detected as anomalous by the data quality assurance
and control process [56]. This demonstrated that the quality of the reconstructed data can
depend heavily on the covariates, when available, and therefore, reliable performance of
any anomaly detection method implemented prior to reconstruction is crucial.

We also found that reconstructed values of nitrate had much larger prediction intervals
when ARIMA, rather than GAM, was used due to the presence of missing data in the
covariate(s), which simply by chance would more often occur during contiguous sequences
of missing nitrate data than during periods of similar length with sporadically missing
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RMSE (umol/L)

nitrate data. Overall, the prediction interval for the 14,283 missing values in the nitrate
time series ranged from 0.01 to 56.03 pmol /L, with a median of 1.34 umol/L.

3.2. Simulation Study: Performance Evaluation
3.2.1. Simulations 1, 2, and 3: Missing Point Data

In terms of the reconstruction performance of our method, the RMSE values from
simulations 1, 2, and 3 (20%, 30% and 40% of randomly missing point data in the nitrate
time series, respectively) were all similar and rarely >0.2 umol/L, even with 40% of the
data having been removed (Figure 4a). Furthermore, the method predicted more than 95%
of the missing nitrate values with an RMSE of 0.2 pmol/L. Nevertheless, as the proportion
of missing data increased, so did the maximum RMSE. Overall, 72% of the reconstructed
nitrate values were within the precision interval of the sensors (Figure 4b).

0.75-
0.4- .
[ T D t ?4 g
:
1 g .
0.3- 1 0. 973
E [ |
o
! - |
1 . 0.72- —‘
(2
I— I 0.71-
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Percentage of data removed (%) Percentage of data removed (%)

(@ (b)

Figure 4. Performance evaluation: reconstructing missing point data. Boxplots of (a) root-mean-square error (RMSE) and
(b) the proportion of reconstructed data within the precision interval (PWPI) for different amounts of randomly removed
point observations, simulated 100 times.

The performance of our method in reconstructing missing point data can also be
demonstrated by looking more closely at different periods of the simulated Arikaree River
time series, including typical baseflow and storm event behaviours of nitrate concentra-
tion. In all cases, the predicted data followed the pattern of nitrate concentration closely,
including a peak event that occurred over a period of less than 24 h (Figure 5).
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Figure 5. Performance evaluation: missing point data examples. Examples for different periods of randomly removed point

observations, simulated 100 times: (a) one week, (b) one month, and (c) a nitrate event in which concentrations rose rapidly

in less than 24 h. Dark points represent the real nitrate concentration value and the grey shading around those points

represents the precision interval of the sensor. Green points and shading are the predicted values along with the prediction

interval. Prediction intervals may not be visible when they are narrow relative to the precision interval of the sensor.

3.2.2. Simulations 4 and 5: Missing Sequences of Data

When reconstructing missing sequences of data in the simulated time series, per-
formance declined as sequence duration increased (i.e., the RMSE increased and PWPI
decreased (Figure 6). The median and third quartile of RMSE for simulations where 10
day-long sequences of data were randomly removed were 0.25 umol/L and 0.44 umol/L,
respectively, compared with 0.75 pmol/L and 1.16 umol/L, respectively, for simulations
where 10 week-long sequences were randomly removed. For the median and third quar-
tile PWPI, the one-day vs. one-week comparisons were 0.70 and 0.74 vs. 0.66 and 0.70,
respectively.

We also observed that performance depended on whether GAM and ARIMA, GAM
alone, or ARIMA alone was used for the reconstruction. When ARIMA was used, the
amount of missing data present in the preceding period also impacted performance. For
example, both GAM and ARIMA were required for a week-long reconstruction in early
March 2019 (Figure 7a), but this week occurred just after a three-month period of missing
data, such that the ARIMA (based on the previous 500 observations) was unable to perform
well. The ARIMA always predicted a nitrate concentration of 4.5 pumol/L for missing data in
the week-long sequence, whereas the GAM predictions followed the actual concentrations
closely. This was also the case when GAM was used alone due to all covariates being
available throughout the week-long sequence (Figure 7c).
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Figure 6. Performance evaluation: reconstructing sequences of missing data. Boxplots of (a) root-mean-square error
(RMSE) and (b) the proportion of reconstructed data within the precision interval (PWPI) for different amounts of randomly
removed point observations, simulated 100 times. Note that the y-axis on plot (a) has been truncated at 4 umol/L (one
extreme RMSE value of 45.23 umol /L for the one-week simulations not shown).
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Figure 7. Performance evaluation: missing sequential data examples. Examples for different periods of randomly removed
one-week sequences of observations, simulated 100 times, where data were reconstructed using (a) GAM and ARIMA, (b)
ARIMA only, and (c¢) GAM only. Dark points represent the real nitrate concentration value and the shaded area around those
points is the precision interval of the sensor. Green points and shading are the predicted values along with the prediction
interval. Prediction intervals may not be visible when they are narrow relative to the precision interval of the sensor.
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In the case where ARIMA was used after a period with little to no missing values
(Figure 7b), almost all real values of nitrate concentration were within the prediction
intervals of the reconstructed data. However, the nitrate prediction interval increased as
the number of timestamps into the future increased.

4. Discussion

Data from low-cost, in situ water quality sensors provide unprecedented opportunities
to better understand spatial and temporal water quality dynamics. However, in situ sensors
are prone to technical issues, which presents a challenge for the processing and analysis
of environmental data. The study presented here demonstrates that it is possible to
predict these missing data for reconstruction of high-frequency environmental time series
using appropriate statistical methods. To our knowledge, our study is among the first to
reconstruct missing nitrate data from high-frequency data collected by in situ sensors. This
may be in part due to the relatively recent, standard use of such sensors for measuring
nitrate concentrations in river networks and makes comparison of our findings with other
studies and methods difficult. Reconstruction of high-frequency runoff data showed that
a new machine learning method, “nu-support vector machines,” outperformed other
machine learning methods [57]. Performance of the new method was evaluated in terms of
the correlation (R?) between observed and simulated data, with their method achieving
values between 0.75 and 0.95. Applying the same R? coefficient to our simulations, we
achieved R? values between 0.976 and 0.997 when 40% of the dataset was removed and
between 0.119 and 0.994 (first quartile = 0.84) when sequences of 10 days were removed,
indicating that our method attains a comparatively good performance, particularly for point
and short periods of missing data. Blending ARIMA forecasts and backcasts has also shown
promise for reconstruction of sensor-based water quality data, including temperature, pH,
specific conductance, and dissolved oxygen [58]. However, we are unable to compare our
results with this work given that performance of the correction method was assessed by
comparing the ARIMA-based results with corrections done manually by technicians.

Our method was able to predict all missing values present in a real-time series of
nitrate concentration data. Although the prediction intervals for some predicted values
were relatively wide, the median prediction interval was very low (1.34 umol/L nitrate),
indicating that many missing data had a 95% prediction interval lower than the sensor
accuracy (i.e., at least 2 pymol/L) and, therefore, were precise enough for the intended
use of the data. We also showed via simulation that even when 40% of the initial dataset
(point observations) was missing, our method was able to accurately recover approximately
70% of the data. When day-long sequences of contiguously missing data were simulated,
mimicking, for example, a persistent sensor outage or prolonged periods of quality-flagged
data, performance of the method was similarly efficient. However, for week-long periods
of missing data, the percentage of accurately recovered data decreased, indicating that
data reconstruction is more impacted by long sequences of missing data in a row than by
multiple but sporadically missing data.

Consideration of different periods of the nitrate concentration time series provided
insight into the overall utility of the method and why the method may not accurately
reconstruct all missing data. For example, excessive nitrate can create eutrophication
issues in aquatic systems and, therefore, for the purposes of environmental management,
it is important to know (i) whether the presence of high nitrate concentrations is real or
anomalous, and (ii) that accurate reconstruction of the real concentrations can be achieved
in a timely fashion, particularly during floods. This appears possible with the method
we have developed, given that missing values during periods of sudden rises and falls
in nitrate concentration were predicted accurately (Figures 3b and 5c). However, when
environmental covariates from co-located sensors were not available, then reconstruction
relied on ARIMA, for which prediction performance was inferior to that of GAM. This
finding indicates the importance of having high-frequency sensors that can collect other
environmental and water quality data besides nitrate concentration at collection sites
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and is in accordance with results from a study of daily streamflow data [25] that found
increased accuracy in the reconstruction of missing data when multiple input variables
were included.

The method presented here was developed with the objective of being able to recon-
struct data that are missing, for example, due to their removal after being determined as
technical anomalies from environmental data collected by high-frequency in situ sensors,
using nitrate concentration data from Arikaree River. The method has currently only been
applied in a binary fashion depending on the existence of covariates (other environmental
data that can be used as predictors). For any one missing nitrate observation, GAM was
used to predict the observation when data for all covariates were available, and ARIMA
was used when data for at least one of the covariates were missing. Several avenues of
study are envisaged from this work. First, future work could aim to develop a method
whereby one or more environmental variables could be used as the covariate(s) according
to their availability, such that ARIMA is only used when no covariate data are available.
A second avenue would be to use different types of models in the framework, bearing
in mind that the characteristics of time series data can influence the forecasting method
that should be run. Other methods that may be suitable for the particular characteristics
of water quality time series include seasonal autoregressive integrated moving average
(SARIMA) for seasonal data or deep learning methods such as long short-term memory
(LSTM) networks. Finally, future research could seek to confirm the applicability of our
method to other sites and environmental data in order to generalize the framework.

5. Conclusions

Measurement errors or missing observations are recurrent and, in some cases, may
reduce user perception of data quality, thereby preventing data from underpinning man-
agement actions. Here, we developed a method to successfully reconstruct missing nitrate
concentration data from high-frequency in situ sensors in fresh waters, thereby adding
value to the literature on anomaly detection and fulfilling a critical management need in the
environmental domain. To mimic sporadically missing observations, both point data and
sequences of data were removed from a two-year time series of nitrate concentration data.
In 72% of cases with missing point data, predicted values were within the sensor precision
interval of the original value, although the predictive ability declined when sequences of
missing data occurred. The models also had stronger predictive ability when other water
variables (covariates) were available. This suggests there may be advantages to deploying
co-located sensors to measure covariates, even when there is a single constituent of con-
cern, such as nitrate, by enabling a more reliable reconstruction of the nitrate time series.
Our study is an important first step towards environmental data reconstruction in the
information age and sets a benchmark against which future datasets and methodological
developments can be compared. While we believe the general methodology presented
here is generalizable to rivers in other ecosystems [59], the relationships between other
water quality variables of interest may differ. Thus, future research should also focus on
understanding these relationships so that co-located sensors can be optimally deployed.
This will ensure that near real-time water quality data produced by low-cost in situ sensors
are trustworthy and reliable enough to underpin data-enabled management decisions.
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Appendix A

Table 1. NEON data. Details on sensors, variables collected, units of measurement, associated data collection intervals, and
the NEON data product number for data used in this study.

Published Data Published

Water-Quality
Resolution Interval (min)

Variable Unit

Sensor Product Number

SUNA V2 Nitrate pumol/L 0.1 15 DP1.20033.001

YSI EXO Optical Dissolved
Oxygen

Level TROLL 500 Water elevation masl 0.01
YSI EXO Turbidity Turbidity FNU 0.01
YSI EXO Conductivity and
Temperature

DP1.20288.001

DP1.20016.001
DP1.20288.001

DP1.20288.001

Dissolved oxygen mg/L 0.01

—_ =gl e

Specific conductance uS/cm 0.01

Platinum Resistance Water temperature °C 0.01 1 DP1.20053.001
Thermometer
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