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Vitamin D deficiency and insufficiency (VDD) are widely recognized as risk factors

for respiratory tract infections. Vitamin D influences expression of many genes

with well-established relevance to airway infections and relevant to immune system

function. Recently, VDD has been shown to be a risk factor for acquisition

and severity of COVID-19. Thus, treating VDD presents a safe and inexpensive

opportunity for modulating the severity of the disease. VDD is common in those

over 60 years of age, many with co-morbid conditions and in people with skin

pigmentation sufficient to reduce synthesis of vitamin D. Exposure to fine particulate

air pollution is also associated with worse outcomes from COVID19. Vitamin D

stimulates transcription of cathelicidin which is cleaved to generate LL37. LL37 is

an innate antimicrobial with demonstrated activity against a wide range of microbes

including envelope viruses. LL37 also modulates cytokine signaling at the site of

infections. Fine particles in air pollution can interfere with LL37 destruction of

viruses and may reduce effective immune signaling modulation by LL37. While

vitamin D influences transcription of many immune related genes, the weakened

antimicrobial response of those with VDD against SARS-CoV-2 may be in part due to

reduced LL37.

Conclusion: Vitamin D plays an important role reducing the impact of viral lung

disease processes. VDD is an acknowledged public health threat that warrants

population-wide action to reduce COVID-19 morbidity and mortality. While vitamin D

influences transcription of many immune related genes, the weakened antimicrobial

response of those with VDD against SARS-CoV-2 may be in part due to reduced

LL37. Action is needed to address COVID-19 associated risks of air pollution

from industry, transportation, domestic sources and from primary and second hand

tobacco smoke.
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INTRODUCTION

Innate Immune Responses in the Context
of COVID-19
Mammals have complex immune systems that integrate and
coordinate adaptive and innate responses to microbial threats.
Innate immune protection is the first line of defense, and is
the entire defense against a novel pathogen before the slower
adaptive immune system has an opportunity to respond.
Humans have multiple layers of innate protection including
barrier protection, cellular surveillance and communications
between cells found at mucosal surfaces with other parts
of the immune system. As part of this system of defense,
virtually all metazoan animals, including humans, release
antimicrobial peptides (AMPs) that both kill invading
microbes and act as immune signaling mediators. AMPs
are key element in successfully maintaining boundaries
between the mammalian host and the ubiquitous microbial
flora to which all life forms are exposed. An example of
antimicrobial innate protection is cathelicidin (hCAP18), a
broad-spectrum antimicrobial AMP known for its role in
protecting againstMycobacterium tuberculosis, the organism that
causes tuberculosis.

A cationic peptide LL-37, derived from cleavage of the
cathelicidin peptide, binds to target microbes, creating a pore in
vulnerable bacteria or destroying the envelope of envelope viruses
such as those of the Corona virus family (1). Vitamin D (VD)
activates the vitamin D receptor which is a transcription factor
that influences transcription of hundreds of genes including
promoting transcription of the hCAP18 gene that encodes
cathelicidin. Some VD regulated genes are key to balanced
responses of the immune system against many bacterial and viral
infections. Recent publications (2, 3) link Vitamin D deficiency to
severity of COVID-19. We postulate that with sufficient VD, that
LL37 helps to clear the SARS-CoV-2 virus and helps to regulate
the immune system responses. Other reports show that carbon
and other nanoparticles (4) in air pollution cause citrullination of
LL37 (5), which blocks its ability to destroy or disable viruses such
as SARS-CoV-2.

COVID-19 Susceptibility
A key question about COVID-19 illness is what differentiates
those individuals who became seriously ill with long term health
impact or death, from those who also test positive for carrying
SARS-CoV-2 or having been exposed, remain symptom free
or with relatively mild disease. While there are a vast array
of correlations including, age, sex, ethnicity, and health status
at the time of infection, most of these variables cannot be
therapeutically manipulated. It makes clinical sense to identify
and remediate issues that can be therapeutically adjusted, such
as vitamin D sufficiency.

Appreciation of the importance of Vitamin D in the COVID-
19 pandemic, requires an understanding of its role as a
transcription factor for hundreds of genes, many of which are
associated with immune protection (6, 7). Additionally it requires
recognition that life style, geography, economics and social
customs have influenced the risk of vitamin D insufficiency and

deficiency (VDD) that exists in much of the world’s population.
We note here that vitamin D deficiency, and reduced AMPs
associated with it, can be further impacted by exposure to carbon
and other forms of nanoparticle-associated air pollution. Air
pollution exposure is another risk factor for severe illness from
COVID-19 (8).

Vitamin D
Vitamin D is normally made by humans through exposure to
adequate levels of sunlight. Broadly thismeans daily sun exposure
to the skin for approximately 10min. For the sun to provide
adequate UVB to activate vitamin D production, the sun must be
more than 45 degrees above the horizon.While the conditions for
adequate UVB availability occur daily in equatorial regions of the
Earth, they are only seasonally available at mid and high latitude
locations. The process of acquiring Vitamin D from sunlight
involves UVB converting 7-dehydrocholesterol in the skin to
previtamin D3, and subsequently to vitamin D3. Vitamin D can
also be obtained through some foods, generally from those that
are fortified, and through supplementation (9).

Vitamin D insufficiency and deficiency are defined as
follows: Vitamin D deficiency exists when 25-hydroxyvitamin
D (25(OH)D) is measured at below 20 ng/ml (50 nmol/liter).
Vitamin D insufficiency is defined as 25(OH)D being measured
at between 21–29 ng/ml (52.5–72.5 nmol/liter) (10). VDD is
found widely in industrialized societies world wide, but more
so in mid and higher latitude locations as well as in older
adults and in populations of color (9, 11). Relevant to the
COVID-19 pandemic, extrapolating from data found at the
Johns Hopkins University Corona Virus Resource Center maps
showing locations and size of COVID-19 cases worldwide, to
date, the greatest density of disease is occurring above 30 degrees
latitude (12). Most of Europe, Asia and North America lie within
this zone.

Recent news and academic reports chronicle a
disproportionate percentage of people of color in the US
who are hospitalized and die of COVID-19 (13–16). Extensive
evidence exists that African Americans as a group, historically
have significantly lower serum Vitamin D levels than Americans
of European descent. This risk factor is shared, to a lesser extent
by others with greater skin pigmentation and who lack adequate
daily UVB sunlight exposure (17–19). VDD is shared by those
whose lifestyle choices, occupation or geographic location,
limit their regular exposure to sun. VDD is also widely seen in
populations where religion or social custom involves wearing
clothing that fully covers the body.

Cathelicidin and LL37
Human innate immune molecule LL37, the cationic active
fragment of cathelicidin (hCAP18) displays antimicrobial
activity against a wide range of microbes including viral,
bacterial, parasitic, and fungal microorganisms (20). The
hCAP18 gene, encoding cathelicidin the precursor to LL37,
is transcriptionally regulated in part by vitamin D steroid
hormone metabolite, 1α,25-dihydroxyvitamin D (1,25(OH)2D)
(21). Following cleavage of the cathelicidin peptide, LL37 is
active against bacteria and viruses. Additionally, LL37 acts to
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modulate immune responses and functions in concert with toll-
like receptors and other signaling mechanisms to communicate
the nature of threat to the immune system (22–25). This nuanced
modulation of the immune system serves to limit over and under
responses to microbial challenges.

LL37 is reported to have attenuated the replication of a
number of viruses including several classified as Class IV single
stranded (SS) enveloped RNA viruses similar to the Severe Acute
Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) that causes
COVID-19 illness. LL37 has demonstrated anti-viral activity
against diverse viruses include Respiratory Syncytial Virus (RSV)
(24, 26) Influenza A (27), hepatitis C (HCV) (28), Dengue virus
(DENV) (29), HIV-1 (30) Vaccinia Virus (31), and others.

In vitro studies of cyclic mechanical stretch of human
bronchial epithelial cells, show a down regulation of hCAP18
and the induction of a proinflammatory response (32). Reduction
of hCAP18 means reduction of LL37. This report could have
implications in terms of the decision to mechanically ventilate
patients with disease symptoms similar to those found in
COVID-19. Additional related studies are warranted.

Fine Particles in Air Pollution May Interfere
With Vitamin D Protection
Correlation has also been observed between exposure to higher
levels of air pollution and increased levels of COVID-19 illness
and deaths (8, 13).

While exposure to air pollution certainly reduces lung
function in multiple ways, one possibility is the impact of carbon
and other types of nanoparticles (NP) found in air pollution to
inactivate LL-37. NP have been shown to interfere with Vitamin
D-associated innate immune protection by at least three known
mechanisms, interference with antiviral activities and signaling
and changes in lung tissue remodeling. See Figure 1.

Carbon NP are reported to interfere with the anti-viral
actions of LL37 (33). Studies simulating cell culture exposure
to industrial and transportation-associated air pollution showed
that when LL37 binds to carbon NP, it is structurally altered
leading to reduction of antibacterial and antiviral activities (33).
Additionally, LL37 normally modulates the immune response
to lipopolysaccharide (LPS) that is part of the surface of gram-
negative bacteria. LL37 neutralization of the effects of LPS, as
measured by decreases in TNF-alpha concentrations, is impacted
by carbon NP.

The effects of fine particles in air pollution have more far
reaching effects. Recent research demonstrates that LL37 can
be altered by enzymatic activity of peptidyl arginine deiminases
(PAD) (5). The process, called citrullination, involves changing
the positively charged arginine in LL37 to citrulline and thus
changing its charge from positive to neutral. This effectively
removes the mechanism by which LL37 is able to destroy viruses
and bacteria (5, 33). Additionally, neutralization of charge by
citrullination is responsible for disabling its ability to dampen
inflammatory responses to viral infections.

Air pollution from transportation and industry are high in
many of the most significant COVID-19 hot spots globally
(8, 13). Fine particles in air pollution that have been linked to

FIGURE 1 | LL37 Inactivation of envelope viruses is stimulated by Vitamin D

and blocked by air pollution. Humans obtain Vitamin D from sunlight, and from

supplements and food. The active form of Vitamin D, 1,25(OH)2D binds to the

Vitamin D receptor, which stimulates transcription of Cathelicidin. Cathelicidin

is cleaved to generate the cationic antimicrobial peptide LL37. LL37 binds to

and disables envelope viruses. Air pollution inactivates LL37 by removing the

charge, leaving viruses to replicate unimpeded.

citrullination of proteins include a variety of materials used in
industry such as nickel nanoparticles (4) and carbon nanotubules
(34). Exposure to primary and second hand tobacco smoke is
also associated with protein citrullination (35). In addition to
industrial and transportation associated air pollution, carbon
nanoparticles are also generated by wood or other domestic types
of fires. This may be of particular importance in areas where fires
are used for cooking or heating homes.

Vitamin D in Tissue Remodeling
Another mechanism of vitamin D protection against lung disease
involves its role in balanced breakdown and repair of lung
and other mucosal tissues. Primary mediators of breakdown of
extracellular matrix are the matrix metalloproteinase (MMP)
family of proteases, some of whose members are secreted from
cells and support tissue repair and remodeling. The actions of
MMPs are balanced by a family of inhibitors, tissue inhibitors
of metalloproteinases (TIMP). Vitamin D has demonstrated
regulatory effects on MMPs and their TIMP inhibitors (36).
Possibly relevant to fine particles in air pollution, in studies of
VDD mice exposed to second hand tobacco smoke, the balance
between breakdown and repair is lost. This does not occur with
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tobacco smoke exposure or VDD alone. Under conditions of
both smoke and VDD, the process is dominated by increased
MMP-9 relative to its specific inhibitor, TIMP1, contributing to
the breakdown of lung tissues (37).

Bioavailability of Vitamin D
Studies involving vitamin D intervention or passive monitoring
of VDD associate diseases, reportedly a positive correlation
exists between either circulating levels of 25-hydroxyvitamin D
(38) or a dose dependent effect of Vitamin D administration
and beneficial outcomes. However, vitamin D metabolism
has a variety of complex steps that modulate generation of
the active 1,25-dihydroxyvitamin D (1,25(OH)2D) (6, 39).
Complicating bioavailability, and potentially relevant to the
COVID-19 pandemic, is that there are differences in Vitamin-
D-binding protein in humans that are specific to populations
of European vs. African ancestry (39). This is a complex topic
that warrants additional attention, to understand its implications,
especially with the racial differential in morbidity and mortality
from COVID-19 illness.

Another issue that impacts bioavailability is dosing,
specifically the benefits of daily intake of Vitamin D vs.
bolus dosing. While bolus dosing studies show rapid correction
of VDD, the increase in 25(OH) Vitamin D was of short duration
(40–42). In contrast, daily dosing has been shown to produce
sustained serum levels of 25(OH)Vitamin D (43). Measurement
of Vitamin D is readily available and supplementation is
inexpensive and safe if done properly. As to the role of daily vs.
bolus dosing strategies, how, one, the other or a combination of
approaches would impact VDD in COVID19 is unclear.

DISCUSSION

COVID-19 is an immediate society-altering public health crisis
and understanding why severity varies from life threatening
to asymptomatic is crucial to resolve this pandemic. We have
postulated that vitamin D plays a pivotal role in modulating
severity of COVID-19 illness; that LL37 plays a role in the
clearance of the SARS-CoV-2 virus and in modulating the

immune system responses; and that fine particles in air pollution
may interfere with protections afforded by vitamin D and LL37.
Minimally discussed to date, is strong established evidence of the
importance of Vitamin D sufficiency in reducing the impact of
viral lung disease processes that have implications for mitigating
COVID-19. Given the relative benefits of protection afforded
by attaining and maintaining Vitamin D sufficiency, it raises
the potential beneficial impact of immediate attention by public
health and medical providers to perform in depth studies of the
relationship of Vitamin D to COVID-19 illness. Additionally,
protocols for prevention, treatment and reduction of symptoms
warrant immediate attention. Further, attention must be focused
on the risks and long-termmitigation of exposure to fine particles
from industrial and transportation associated air pollution as well
as from primary and second hand tobacco smoke and from other
domestic sources.
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