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Abstract: The use of next-generation sequencing (NGS) techniques for variant detection has become
increasingly important in clinical research and in clinical practice in oncology. Many cancer patients
are currently being treated in clinical practice or in clinical trials with drugs directed against specific
genomic alterations. In this scenario, the development of reliable and reproducible bioinformatics
tools is essential to derive information on the molecular characteristics of each patient’s tumor from
the NGS data. The development of bioinformatics pipelines based on the use of machine learning and
statistical methods is even more relevant for the determination of complex biomarkers. In this review,
we describe some important technologies, computational algorithms and models that can be applied
to NGS data from Whole Genome to Targeted Sequencing, to address the problem of finding complex
cancer-associated biomarkers. In addition, we explore the future perspectives and challenges faced
by bioinformatics for precision medicine both at a molecular and clinical level, with a focus on an
emerging complex biomarker such as homologous recombination deficiency (HRD).

Keywords: NGS; variant calling; cancer; biological complexity; ML/AI algorithms; network analysis;
homologous recombination deficiency; targeted therapy; big data

1. Introduction

Genomic profiling has assumed an increasing role in the clinical management of cancer
patients, thanks to the approval of numerous drugs showing demonstrated activity in pa-
tients with specific genomic alterations [1–4]. The need to identify an increasing number of
complex genomic biomarkers led to the introduction of next-generation sequencing (NGS)
technologies in clinical practice. The massive amount of data generated by NGS experi-
ments required the development of algorithms based on computationally efficient statistical
methods and artificial intelligence, to improve the processes of genomic variant detection,
visualization, and interpretation in terms of pathogenicity [5–8]. The implementation of
bioinformatics approaches has a clear intention to elaborate and process data in an efficient
and fast way to avoid turnaround times and increase detection accuracy [9–13]. Although
new computational solutions have gradually been proposed, showing incredibly high
levels of accuracy, many issues in clinical practice remain unsolved. The most important of
these challenges is represented by our ability to interpret the potential impact of genomic
alterations on a patient’s health, and how this information can be used to tune personalized
therapies [14,15]. In this review, we will describe some important technologies, computa-
tional algorithms and models that can be applied to NGS data ranging from Whole Genome
to Targeted Sequencing to address the biological complexity of cancer. Finally, we will ex-
plore the future perspectives and challenges faced by bioinformatics for precision medicine
both at a molecular and clinical level, with a special focus on Homologous Recombination
Deficiency (HRD) as an emerging biomarker in clinical practice.
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2. NGS Technologies and Bioinformatics Tools for DNA Sequencing Data
NGS Approaches in Cancer Patients’ Management

Different sequencing approaches have been recently used to analyze the genomic
landscape of tumors [16]. Traditionally, Sanger sequencing based on electrophoresis and
involving the random incorporation of chain-terminated dideoxynucleotides by DNA poly-
merase during in vitro DNA replication requires time-consuming analyses on a single DNA
fragment [17]. On the other hand, NGS can sequence millions of fragments simultaneously
per run during automated cycles of synthesis, scanning and washing, playing a critical role
in reading the mutational landscape of a patient in clinical routine. This process, applied to
hundreds to thousands of loci per subject, generates an enormous amount of sequence data,
with many possible applications in research and diagnostic settings including sequence
variation detection (referred to as “variant calling”), epigenetic and transcriptional regu-
lation, chromatin conformation, its 3D architecture, and how these phenomena influence
each other [18,19]. This review will focus on variant calling and its preprocessing stages.

The primary output of NGS data analysis is the alignment of small DNA or RNA
fragments (known as “reads”) using either a pre-assembled reference genome sequence (or
“assembly”) or concatenating input reads using “de novo” strategies, in which no reference
sequence is used. Diverse approaches are optimized for genomic analysis at different scales:
from a few genes to the whole genome [20–22].

Whole Genome Sequencing (WGS) covers the whole genome, and it is used to in-
vestigate previously undescribed genomic alterations, requiring more time and higher
costs [23,24]. Whole Exome Sequencing (WES) may cover protein-coding genes only, repre-
senting 3% of the whole genome, but with reduced costs and under the assumption that
protein-associated alterations have often a deleterious impact on genome regulation [25–28].
Still, the complexity of data interpretation limits significantly the use of WES in clinical re-
search and practice. Consequently, Targeted Sequencing (TS) was introduced for analyzing
specific mutational hotspots, for a given genome [29–31]. This approach is used to detect
disease-causing genomic alterations with described or suspected pathogenicity [32–36].

The typical NGS workflow is divided into several steps, including sample preprocess-
ing, library preparation, sequencing and bioinformatics analysis. Each step plays a critical
role and might hide sources of error that could propagate to the final output. Currently,
variant detection and annotation are well-standardized procedures, performed through the
following steps [37–39]

A typical variant calling workflow involves the following data preprocessing steps:
(i) quality filtering of the raw FASTQ files; (ii) read alignment through either reference-
based or de novo alignment (BAM or CRAM files); (iii) duplicate reads removal from the
alignment and mapping quality filtering; and (iv) local realignment and/or haplotype
determination (phasing) [40–43].

Modern variant callers usually take BAM files from read aligners as input and perform
only the last preprocessing step. As explained in Section 4, recent deep learning-based
callers also include image-like alignment preprocessing (image pileup) and chromatin
conformation analysis. Although the specific variant detection methods may vary for
different algorithms, variant calling methods can be grouped on the basis of the input
sample origin (germline or somatic), and by variant type: small nucleotide variants (SNVs);
small insertions/deletions (indels); and structural variants, including copy number variants
(CNVs) and large genomic rearrangements (such as insertions, deletions, and transloca-
tions) [44–49]. (Figure 1).
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3. From NGS Data to Variant Discovery
3.1. Variant Types Relevant for Precision Oncology

The type of alterations that must be reported in clinical diagnostics and that might have
a relevant clinical value include Single Nucleotide Variants (SNV), small insertion/deletion
(InDel), Copy Number Variants (CNV) and genomic rearrangements that can lead to gene
fusions. In addition, cancer-related complex biomarkers, such as Tumor Mutational Burden
(TMB) and Microsatellite Instability (MSI) and HRD, are becoming frequently included in
clinical reports for their clinical value.

3.2. Variant Discovery Workflow

The variant detection workflow is a sequence of steps, which include the sequencing
quality control, the preparation of data (pre-processing) and the use of algorithms able to
detect the genomic alterations. To date, the tools used for the variant discovery on tumor
samples include three main steps: preprocessing, calling of variants, and annotation.

3.3. Sequencing Quality Control

A flexible, robust and most used tool in quality control is FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/ accessed on 12 July 2022), developed at
the Babraham Institute to examine sequencing quality, starting from fastq files. It works on
all Operating Systems (OS) and can be used with both GUI interface and command line.

This option is commonly used by bioinformaticians, to add the quality control step
in a custom pipeline. The latest versions of FastQC include Picard (https://github.com/
broadinstitute/picard/ accessed on 12 July 2022), a tool developed by the Broad Institute to
manage SAM, BAM, and VCF files, and to perform the quality control at different steps of
the bioinformatics pipeline. A fast and simple tool to calculate the coverage starting from
BAM files is Mosdepth [50]. It may calculate the coverage depth for both whole genome
and exome sequencing data. It is also able to limit the analysis to a specific genomic
region providing a bed file. This application could be useful also for targeted sequencing,
especially for custom panels.

3.4. Pre Processing

The data preparation is described in the GATK Best Practices [51] and it is a compulsory
step in order to provide the correct input to the variant detection algorithms. Many tools
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are used to provide the alignment, and to ensure the management of the duplicates and
the recalibration phase. The final output is a BAM file ready to be analyzed for the
variant’s identification. The preprocessing step has been consolidated over time thanks to
The GATK Best Practices, developed by Broad Institute, and implemented in the GATK
ToolKit [52]. This procedure allows us to produce the alignment files in the best possible
way to investigate the presence of alterations in the sequenced genome.

3.5. Variant Calling

The variant calling process is the main step for DNA alteration discovery. It includes
different algorithms able to find potentially pathogenic mutations across the human genome.
The College of American Pathologists and the American Medical Informatics defined a
list of 17 recommendations for clinical NGS bioinformatics pipelines [7]. These statements
include, but are not limited to: (i) the involvement of medical personnel, (ii) stage design,
(iii) version control, and (iv) reproducibility.

Quality control of each step of a bioinformatics pipeline is crucial to setting optimal
parameters, achieving the best possible variant calling performance, and passing the
validation step using a representative set of known variants across the samples. Special
attention must be given to software versioning and data integrity, in order to track any
changes/updates and prevent loss of information/data.

The validation procedure involves variants selection, sequencing quality control,
algorithms, filtering and annotation. While the variants selection is a process carried out
by scientists with different skills and training, the analysis performed in the sequencing
data quality control are consolidated. Concerning the variant calling, there are as many
tools as there are alterations to investigate. The main difference is between germline and
somatic variants. Although the available algorithms are quite different, due to the intrinsic
difference between germinal and somatic variants, the Input/Output file formats are the
same: input BAM file(s) and output VCF file(s). The critical point in the variant calling
is the filters applied to prevent false positive and false negative events. This depends
also on the sequencing coverage/depth and the length of sequenced genomic DNA (e.g.,
panels vs. exome).

Although many SNV/indel detection algorithms have now reached high accuracy
in several benchmarking tests [53], combining the results of multiple algorithms may
increase sensitivity, thus reducing the rate of false negatives [54]. Different tools, such
as BCFtools [55], enable the merging of multiple calls into a single VCF file. However,
clinical practice generally requires clear and portable workflows, generating reproducible
results. Furthermore, standard clinical procedures should encompass multiple variant
types (SNVs, indels, and structural variants) and genomic alteration measures, including
LOH and MSI, readily usable for targeted therapy. To this end, a huge effort has been
provided by the nf-core group [56] through the Sarek pipeline [50] for germline and somatic
variant detection. Although these tools often use different methods, they generally achieve
comparable accuracy. The Sarek pipeline uses all the tools shown in Table 1, depending on
the purpose (germline or somatic variant call) and the variant type (small variants or large
genomic rearrangements).

3.6. Variant Discovery Pipelines: Tools and Algorithms

In this scenario, commercial and open-source pipelines are often integrated to provide
efficient and customizable solutions. One of the players in the development of these tools,
offering licensed software, is the Illumina® company. Illumina® adopted the GATK best
practices as a consequence of a partnership with the Broad Institute. This produced a
series of Illumina licensed and Broad open-source tools derived, available on the Broad
Institute repository (https://broadinstitute.github.io/warp/ accessed on 12 July 2022).
Both licensed and open-source solutions are released as “only for research” software and
need to be validated by the institutions adopting them. The advantage of licensed software
consists of its “ready-to-use” design. In fact, it does not need additional software and

https://broadinstitute.github.io/warp/
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database installation procedures, thanks to container technology. On the other hand,
licensed software offers less flexibility during the analysis flow than open-source tools.
This limitation arises when, starting from raw data (usually, bcl or fastq files), they run
almost uninterruptedly through preprocessing, quality control, variant calling, biomarker
analysis (including MSI, TMB), and reporting. The consequence is that the whole analysis
cannot be split for custom pipeline development and integration with other (possibly
newer and more efficient) resources. In addition, combined output reports from licensed
software often include only minimal SNV information, are uneasy to read for clinicians,
and require further annotation and processing of the vcf files. Consequently, Illumina®

offers commercial solutions to produce clinical reports that make use of collaborations with
other companies. Conversely, open-source solutions enable user control over each analysis
step, allowing single analyses to run as independent modules. By definition, open-source
tools need clinical validation to be adopted in diagnostics.

Table 1. Tools included in the nf-core Sarek framework. The table reports the tool name, the
sample type (G: germline, S: somatic), the variant type (SNV: small nucleotide variant, indel: small
insertion/deletion, SV: structural variant, CNV: copy number variant, MSI: microsatellite instability),
a small description of the core method, and the latest literature reference link.

Tool Sample Type Variant Type Method Ref

Manta G, S SV, indels Graph-based breakend analysis [57]
TIDDIT G, S SV Coverage-based genome scan [58]
Cnvkit G, S CNV Coverage-based genome scan [59]

Freebayes G, S SNV, indels Haplotype-based Bayes theorem [60]
Strelka2 G, S SNV, indels Haplotype-based mixture modeling [61]

DeepVariant G SNV, indels Pileup image CNN classification [62]
HaplotypeCaller G SNV, indels Haplotype re-assembly, likelihood [63]

Mpileup G SNV, indels Local re-alignment, likelihood [55]
Mutect2 S SNV, indels GATK + read-to-haplotype alignment [64]

Ascat S CNV Signal intensity and allele frequency [65]
Control-FREEC S CNV LASSO-based genome segmentation [66]
MSIsensor-pro S MSI Multinomial distribution [67]

Note. G: germline, S: Somatic; SV: Structural variant; SNV: small nucleotide variant, indel: small inser-
tion/deletion; CNV: copy number variant, MSI: microsatellite instability.

Recently, the nf-core community aimed at defining standard procedures to be included
within bioinformatics analysis workflows. The goal of nf-core is to adopt the best practices
in bioinformatics pipeline development, through an open-source and peer-reviewed com-
munity, in order to offer a reproducible, portable and robust solution in different fields of
application. In this context, the Sarek pipeline [68] was developed for germline and somatic
variants calling (Figure 2).
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Sarek is designed to analyze data from WGS, WES, and TS. It allows us to perform
the analysis starting from several intermediate steps, such as preprocessing or variant
calling. In addition, the tools included in the pipeline workflow several variant calling
types: germline, somatic, and tumor-only somatic. Consequently, researchers can break
the analysis at any step, and, taking advantage of object-oriented programming, every
result is an object that could be reused for separate analyses. Thanks to this philosophy,
several analyses or quality controls are included and may be added in a continuous process
of integration. As a result of this flexibility, the end user can either run the pipeline in a
default mode, using a single command line or build a complex job, by using different tools
as independent objects in several pipelines. Both nf-core Sarek and GATK are developed
as object-oriented software, where the main difference is that the nf-core community
allows to include other validated and peer-reviewed algorithms, with the advantage of
complete reproducibility.

3.7. Annotation

Variant annotation is the process of assigning information to DNA variants and
evaluating their possible pathogenicity. The annotation step is another crucial point and
it is the bridge between machine and human-readable format. Furthermore, a punctual
annotation of the variants is strongly linked to the query of updated databases. To this end,
different open-source and licensed solutions offering reviewed and updated annotations,
as VEP [69], VarSome [70], ClinVar [71], OncoKB [72], have been developed.

4. Machine Learning Applied to Next-Generation Sequencing and Variant Discovery
4.1. Sequencing Technology Issues and Machine Learning

The widespread of bio-medical machine learning (ML) methods followed the evolu-
tion of high throughput sequencing (such as NGS) technologies. This opened up a new
class of diagnostic tools, drug discovery methods, novel patient stratification approaches,
and personalized therapies. Besides the large amount of publicly accessible NGS data from
consortia [73], the availability of low-cost sequencing platforms caused a worldwide growth
of in-house data, and the consequent increasing demand for computationally-efficient, yet
accurate and reusable, ML-based software. One of the toughest challenges tackled by
ML in clinical genomics is to model what (and possibly how) genomic variants and their
interactions influence cell development and fate, leading to cancer transformation [74].
Although classical inference methods can be highly flexible and interpretable in terms of
causality, they are often constrained by linearity or model-based assumptions, providing
aggregate (e.g., averaged) or partial descriptions of the underlying biological processes (e.g.,
neglecting nonlinear systems properties) due to a strong dependence on current knowledge
or field-expert validation. Traditional methods, such as GATK [75], make extensive use of
different statistical models and heuristics based on calling quality, allele frequency, and
sequencing coverage, to estimate the likelihood of variation at each genomic position.
However, this task is severely hampered by the presence of sequencing artifacts deriving,
for instance, from polymerase chain reaction (PCR) errors, DNA synthesis dephasing and
inefficiency, and low-complexity or repetitive genomic sequences, that are only partially
manageable [76,77]. Moreover, sequencing data is inherently high-dimensional (i.e., the
number of observed variants is way bigger than the number of sequenced genomes), the
same phenotype can be caused by different combinations of variants (heterogeneity), and
often only a few individuals carry the variation associated with the observed disease
(sparseness). In addition, a phenotype rarely arises due to the presence of a single dele-
terious variant, but rather from (hierarchical) interactions among variants with marginal
effects [78].

Collectively, these issues motivated the dissemination of ML algorithms, for several
reasons. Firstly, their ability to learn patterns of interactions directly from data and, sec-
ondly, the capability to model complex hierarchical and nonlinear interactions without
specific statistical modeling assumptions. The main costs for these advantages are the need
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for very large labeled training sets (i.e., supervised learning), with an obvious impact on
the computational demand, and potential vulnerability to the training set compositional
biases, often caused by incomplete or imbalanced knowledge of specific domains [62].

4.2. ML and Deep Neural Networks for Variant Discovery

Given their capability of modeling a very large number of features and parameters,
deep neural networks have been extensively used for variant discovery. The main idea
beneath convolutional neural networks (CNNs) is to convert pileups of aligned reads into
patterns of an image, resulting in groups of interconnected variants that might have a
pathogenic effect [79].

CNN-based algorithms include the general-purpose software DeepVariant [62], the
specialized Clairvoyante [79], NeuSomatic [80], and DeepSV [81], designed for single-
molecule technologies, somatic variants, and structural variants, respectively. In many
cases, improvements in predictive accuracy have been achieved using ensemble methods,
where the learning process takes advantage of different integrated models. For instance,
CNNScoreVariants [82] exploits pre-trained models in GATK to discover SNV and indels
from short-read sequencing data.

The Clair algorithm [79], the successor of Clairvoyante, uses CNNs in combination
with recurrent neural networks (RNNs) and feedforward networks to refine germline
SNV and indel discovery. While these methods generally outperform traditional inference
methods for SNVs and indels, much less effort has been spent on the more complex
structural variants (SVs). To this end, DeepSV [83] uses CNNs to find large (>50 bp)
genomic rearrangements, including insertions, deletions, and inversions.

One main limitation of many deep learning algorithms resides in possible information
biases within their training sets [84]. The goal of variant discovery is to find genomic
loci that are causally associated with the disruption of one or more molecular functions
and pathways. For coding DNA, pathogenic alterations are likely to alter the structure
and function of the encoded protein and therefore are much easier to be associated with a
diseased phenotype. Accordingly, most of the diagnostic procedures in clinical and cancer
genomics are either based on panels of a limited set of exons or WES [85–87]. However,
many of the deleterious traits of disease are caused by noncoding variants that are likely to
be located at regulatory elements [87].

To cope with this possible bias, the DeepSEA [88] and Basset [89] algorithms use CNNs
to predict the chromatin state and chromatin accessibility that may reveal the presence
of regulatory elements. Both DeepSEA and Basset learn the regulatory sequence code
from genomic sequence by training a deep CNN over large chromatin-profiling data from
ENCODE and Roadmap Epigenomics consortia. These data include transcription factor
binding, DNase I sensitivity and histone-mark profiles. Learning from data-driven features
rather than annotations (e.g., exons) allows these algorithms to detect noncoding variants
with a possible regulatory role. In addition, the deep neural network structure allows
us to scale on sequence length, enabling the use of large contextual genomic regions and
further improving noncoding variant function interpretation. An alternate application
of these methods consists in validating and converting ML results in current knowledge,
improving and speeding up current clinical trial protocols, providing tools for efficient (low
attrition) patient stratification strategies, and feature reduction (denoising) [82,85]. More
recently, Hi-C, a sequencing-based technique to detect the three-dimensional architecture
of the nuclear genome, has been shown to effectively detect structural variants in B-
cell acute lymphoblastic leukemia, a form of cancer that is frequently characterized by
translocations [90]. Although promising, this approach is still non-standard in clinical
practice and is currently used for research-only purposes.

4.3. Machine Learning Development Frameworks

The use of NGS technologies in clinical practice introduced the need for variant calling
methods reproducibility and reusability. This favored the development of several dedicated
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open-source ML development libraries, and the diffusion of object-oriented programming
languages in bioinformatics, including Python and R.

Convolutional kernels are the most exploited for variant calling [62,78], often combined
with other architectures in ensemble methods [86]. Less frequently, other paradigms are
used, including support vector machines (SVM) [91] and non-supervised learning [92],
although they are generally restricted to a limited range of applications.

The landscape of ML-based variant discovery methods is dominated by deep neural
networks, mainly due to the large amount of publicly available NGS data that can be used
for training, validation/testing, and benchmarking against several gold standards (i.e.,
manually validated datasets with well-known outcomes), allowing these methodologies
to outperform other competing methods (e.g., support vector machines, naïve Bayes, or
random forests) [62]. This favored the creation of environments to easily develop custom
NGS objects, methods, and tools for ML-based analyses.

TensorFlow [93] is the most used environment for the development of variant discov-
ery AI-based software, followed by PyTorch [94].

Often, these environments make use of tools, such as Keras (url: https://github.com/
fchollet/keras/ accessed on 12 July 2022) and Nucleus (https://blog.tensorflow.org/using-
nucleus-and-tensorflow-for-dna.html accessed on 12 July 2022), offering a user-friendly ex-
perience and dedicated objects for sequencing data analysis. The bioinformatics community
also uses the R environment, with dedicated packages and development tools, including
the R port Torch [95]. However, R libraries are generally used for statistical computing, and
currently could be less performant with respect to Python for ML development, which lists
a much larger number of dedicated ML solutions.

5. Network-Based Approaches Applied to Cancer Research: Graph Theory and
Causality for Analyzing the Biological Complexity
5.1. Graph Theory

Networks can be explored by the graph theory, useful to shed a light on their structure–
function relationships [83]. In fact, graph-based approaches have been applied in extensive
ways in different frameworks such as biology, chemistry, medicine, etc., [96] by providing a
number of characterizations. Specifically, as described by Lecca et al., systems biology con-
ceptualizes the networks of interacting molecules, and graph theory gives the mathematical
tools to analyze them [96].

In particular, network analysis can use quantitative approaches to also model interac-
tions between genes, proteins and other biological elements [97–99]. A general expression
to refer to the investigation and modeling of these interactions is “molecular network”,
which is becoming very important in cancer research as demonstrated in the applications
against different types of neoplasm [100–102]: pancreas, gastric, lung, ovarian cancers and
others are applications of graph theory in this framework.

Moreover, the graph theory allows us to decompose molecular networks in different
subnetworks by directed subgraphs and multigraphs as demonstrated by Huang et al.,
modeling cancer networks, signal transduction networks, and cellular processes [100,101].
Over the years, different software has emerged in order to analyze the biological net-
works by the graph theory. A number of these are included in the R environment (https:
//www.R-project.org/ accessed on 12 July 2022), such as igraph (https://igraph.org/
accessed on 12 July 2022) [102], graph (https://github.com/ accessed on 12 July 2022),
QuACN [103], network [104], Statnet [104] (https://statnet.org/ accessed on 12 July 2022)
and NetBioV [105].

They are free packages that provide many functions to manage network systems, also
by the Bioconductor platform (https://www.bioconductor.org/ accessed on 12 July 2022).
These have many graphical functions, often inherited by the R environment, and the in-
teresting advantage to follow object-oriented programming, that is suitable to use the
elementary elements of a network in an independent and customized way. On the commer-

https://github.com/fchollet/keras/
https://github.com/fchollet/keras/
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cial side, the Dragon [106] software includes thousands of molecular descriptors to be used
to analyze the biological network.

5.2. Causality

In the last decade, several methods have tried to model and quantify the causality in
the biological and molecular networks, especially by considering the relationships among
genes in a framework of perturbation of experiments and in presence of unfavorable fac-
tors. As a matter of fact, many phenomena in biology, medicine and other disciplines
consider relationships among variables in a multivariate causal context. Hence, investiga-
tion and analysis of cause–effect relationships through statistical methods are incrementing,
in order to explain how to test causal hypotheses, especially with a lack of randomized
experiments [107]. Specifically, the methods try to translate the causal network into mathe-
matical equations by generating assumptions on the nature -random or deterministic- of
the variables (nodes of the network), and on the type -unidirectional or bidirectional- of the
relationships (edges).

However, as suggested by Palluzzi et al. [108], a number of algorithms have been
recommended to model and quantify causality in (biological/molecular) networks but
they have low reproducibility and robustness, dependence on user-defined setup, and
poor interpretability. In this framework, the structural equation models (SEM) provide
a favorable methodology able to model and quantify the causality by an inferential ap-
proach, with an immediate and easy interpretation of the results [109]. In the SEM the
relationships are assumed to be linear and the (response) variables supposed random
are assumed to be multivariate normal. In the past few years, the SEM is catching on
in cancer research as demonstrated by articles related to the modeling of the molecular
networks in breast cancer [110], colorectal cancer [109], neuroblastoma [111] and leukemia,
and more in general, in precision medicine [112]. At the same time, different packages
emerged to analyze the causality of biological and molecular networks by the SEM. The
majority is developed in the R environment. Firsts among everything, the lavaan [112] and
SEMgraph [113] packages allow us to convert the causal diagram of the network into linear
equations containing free (to be estimated) and fixed parameters. Of note, SEMgraph is a
lavaan-based package that specifically manages complex biological systems as multivariate
networks ensuring robustness and reproducibility through data-driven evaluation of model
architecture and perturbation; that is readily interpretable in terms of causal effects among
system components [108]. Finally, the other two R packages apply SEM specifically in a
biological/molecular framework, GenomicSEM and GW-SEM [114], useful for modeling
(i) the multivariate genetic structure of correlated traits by using a multivariate GWAS
framework, and (ii) the associations of SNPs with phenotypes or hidden constructs on a
genome-wide scale.

6. Homologous Recombination Deficiency: A New Bioinformatics Challenge

The complexity of biomarkers to be analyzed in clinical research and clinical practice is
progressively increasing. This evolution also creates a new challenge for the bioinformatics
analysis of sequencing data. As an example, in the following paragraphs, we describe the
different strategies for the analysis of HRD, an emerging biomarker in oncology.

6.1. Testing Strategies for HRD Detection Based on Causes and Effects in the Genome

The homologous recombination repair (HRR) pathway is an error-free mechanism
able to repair the DNA double-strand breaks (DSBs) during the S/G2 phases of the cell
cycle [108,115]. In cells with a deficit of the HRR mechanism, the repair of DSBs occurs
through alternative, error-prone methods, resulting in a high degree of genomic instability
and in the accumulation of different alterations, including Single Nucleotide Variations
(SNVs), small insertions and deletions (InDels), Copy number variation (CNV) or large-
scale chromosomal rearrangements. Tumors with HRD are sensitive to poly (ADP-ribose)
polymerase (PARP) inhibitors (PARPi), which suppress a second key DNA repair pathway
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of DNA single-strand breaks (SSBs) and create synthetic lethality in cancer cells with defects
in HRR [116]. In particular, the PARPi Olaparib has been approved by the US Food and
Drug Administration (FDA), in combination with bevacizumab, and by the European
Medicines Agency (EMA), as a single agent, for the treatment of patients with advanced
ovarian cancer associated with HRD-positive status and who are in complete or partial
response to first-line platinum-based chemotherapy. FDA recently approved the PARPi
Niraparib for the treatment of HRD-positive ovarian cancers, who have been treated with
three or more prior chemotherapy regimens and who have progressed more than six months
after responding to the last platinum-based chemotherapy [117–119]. In agreement with the
FDA and EMA indications, the HRD status is defined by either a deleterious or suspected
deleterious mutation in BRCA1 or BRCA2 genes, and/or genomic instability (GIS). To date,
there are two principal strategies to identify tumors with HRD. The first strategy is focused
on the identification of HRD causes using targeted sequencing with multi-gene panels able
to evaluate alterations in the different genes of the HRR [120–122]. However, this approach
has several limitations. Multi-gene panels are able to identify only the fraction of HRD
cases related to genetic alteration of HRR genes. Indeed, the HRD might be caused by
both genetic and epigenetic events. In addition, only some genomic alterations of HRR
genes are associated with HRD [123]. Furthermore, the pathogenic role of many mutations
of HRR genes is not known, due also to their very low frequency [124]. The second
strategy is based on the study of the effects that HRD causes in the genome and looks for
the genomic damage induced, independently from the originating mechanism [125–127].
These approaches vary from the analysis of genomic scars to the assessment of mutational
signatures [128,129]. Genomic scars are the complex genomic alterations caused by HRD
and represent a biomarker to identify patients who may benefit from treatment with
PARPi [130]. Two commercial genomic scar assays have been developed to identify tumors
with HRD, the “Myriad myChoice HRD” (Myriad Genetics; Salt Lake City, UT, USA) and
the “FoundationOne CDx” (Foundation Medicine; Cambridge, MA, USA) tests.

The “myChoice HRD” assay is an NGS-based test able to detect variants in BRCA1
and BRCA2 genes and to determine a GIS score by measurement of three biomarkers:
telomeric allelic imbalance (TAI), loss of heterozygosity (LOH) and large-scale transitions
(LST) [131]. The HRD score is calculated by combining the LOH, TAI, and LST scores:
tumors with a score ≥42 are classified as HRD-positive. This assay is the only one FDA
approved for use in clinical practice [130]. The FoundationOne CDx is able to identify
patients with HRD-positive status combining tumor BRCA1/2 mutational status with the
rate of LOH [132,133]. The HRD score is measured as the percent of LOH in the tumor
genome: genomic LOH ≥16% is classified as HRD-positive [132].

Despite the excellent results within several clinical trials, the HRD test based on
genomic scar still has some technical limitations [134]. In addition, the presence of GIS based
on a genomic scar can only indicate that at the time of testing the tumor had HRD. Indeed,
the HRD scoring method is unable to account for reversion mutations that are predictive
of platinum and PARPi resistance [135]. Conversely, newer approaches to HRD detection,
including the identification of mutational signatures in sequencing data, potentially provide
a dynamic readout of the current HRR status [136–138]. Multiple mutational processes
generate a characteristic pattern of somatic mutations, termed “signatures” [139]. Multiple
studies showed that one of these signatures, namely Signature 3 (Sig3), is associated with a
deficiency in the HRR mechanism [140,141]. This mutational signature is based on SNVs
and might only in part represent the complex genomic alterations associated with HRD.
To further decode this complexity, a method based on the identification of signatures
from copy-number (CN) features was developed. In the study by Macintyre et al., the
CN signature 3, characterized by a distribution of breaks across all chromosomes and
LOH, was significantly enriched in cases that displayed HRD caused by mutations in
BRCA1/2 [142]. Moreover, signature 7 was associated with HRD and mutations in other
HR genes, including BARD1, PALB2 and ATR, and loss of function mutations in PTEN [141].
Although these approaches, based on mutation or CNA signatures, have shown a good
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correlation with HR status, it is likely that a combination of different parameters can more
accurately identify all cases with HRD [142].

6.2. Computational Tools for HRD Assessment

In recent years, machine learning algorithms and new computational tools have also
been developed to perform a more complete and detailed analysis of the genomic alterations
related to HRD, in order to better identify HRD-positive tumors [143–145]. Each algorithm
has its own characteristics and specifications, applied to sequencing data from WGS, WES
and TS. For the complete and detailed study of mutational signatures, it is possible to
adopt different algorithms, such as HRDetect [146], Mutalisk [147], SigMA [148,149]. The
application of each of these tools depends on the origin of the sequencing data, and therefore
the available information.

HRDetect is primarily a mutational signature-based classifier designed to predict
BRCA1 and BRCA2 deficiency based on six mutational signatures. It uses a lasso logis-
tic regression model starting from sequencing data of WGS for HRD detection [146]. In
particular, it allows us to calculate the HRD score recognizing the patterns of substitution
base signatures and structural rearrangements. The HRDetect pipeline works on muta-
tional data, such as: segments.tsv, somatic_indels.vcf, somatic_snvs.vcf, somatic_sv.tsv.
The segments.tsv is used to identify and analyze the CNVs and the LOH score; while so-
matic_indels.vcf and somatic_snvs.vcf are used to study indels and SNVs in detail. Finally,
the somatic_sv.tsv file is used to analyze the structural data of the variants. HRDetect has
already been used on cohorts of patients with ovarian cancer, breast cancer and pancreatic
cancer. The parameters used for HRD assessment include the evaluation of the main muta-
tional signatures (such as Sig3), large deletions (>3 bp) with microhomology at the junction
of the deletion, Rearrangement Signatures 3 and 5, and copy number profiles associated
with widespread LOH [146]. The final output is a probability of BRCA1/2 mutation. The
sensitivity and reliability of the results obtained with HRDetect changes according to the
source of the data. By analyzing WGS data, the HRDetect reaches a sensitivity of 86%,
setting the cut-off at 0.7 and the level of agreement at r = 0.96 as optimal parameters. By
contrast, when HRDetect is applied to data obtained by WES, the sensitivity of detection is
46.8% [146,150].

To improve the results of HRDetect it is possible to use two different tools named
Mutalisk and SigMA. Mutalisk (Mutation AnaLyIs ToolKit: www.mutalisk.org/ accessed
on 12 July 2022) is an online computational framework used to investigate the signatures at
a somatic level. This tool can be applied to genomic data generated by WGS, WES and TS
sequencing using as input data the standard vcf file. There are two versions of Mutalisk,
one is the web server and the other one is the R vs. 4.1.1. This algorithm identifies a
maximum of seven mutational signatures at most from a specific somatic tissue [147]. For
each signature set, a decomposition model can be generated using the maximum likelihood
estimation method, or the multinomial test. It can be applied to HRD analysis for the
identification of mutational signatures and for the classification of molecular processes
mainly involved in the generation of pathogenic or benign mutations [147].

By contrast, SigMA (Signature Multivariate Analysis) algorithm performs a mapping
of the most important mutational signatures from the SNV calls of WGS, WES or TS
data associated with the HRD pathway [151]. This algorithm has a high sensitivity of
74% in identifying Sig3-derived rearrangements in HRD-positive tumors. The novelty of
this algorithm is the application of the likelihood method, which allows us to associate a
mutational spectrum to each patient [152].

Recently, a new tool named Classifier of Homologous Recombination Deficiency
(CHORD) was developed (https://github.com/UMCUGenetics/CHORD/ accessed on
12 July 2022) for the detection of HRD status by BRCA1 and BRCA2 deficiency. CHORD
is a random forest model used as a benchmark developed to detect pan-cancer HRD
based on genome-wide mutational profiles using specific SNV, indels, and structural
variants (SV) [153]. The CHORD algorithm uses deletions with flanking microhomology
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and 1–100 kb structural duplications to distinguish BRCA1-type HRD from BRCA2-type
HRD [154]. The analysis is divided into two steps: the first step is based on the extraction
of mutation contexts required by CHORD to create a matrix with all data. The second step
is based on the prediction of HRD probabilities based on the calculation of an HRD score.
Initially, this approach was used to calculate the HRD score in ovarian and breast cancer
samples. Later, it was also extended to the analysis of other tumors in which BRCA1 and
BRCA2 alterations are involved, such as pancreatic and prostate cancer [155] (Table 2).

Table 2. HRD computational tools.

Tools Applications Variants Type References

HRDetect WGS indels, snv, sv and CNV [146]
Mutalisk WGS, WES and TS Mutational signatures [147]
SigMA WGS, WES and TS SNV [148]

CHORD WGS SNV, indels [153,154]

PathAI WGS, WES and TS Indels, snv https://www.pathai.com
(accessed on 12 July 2022)

GSA WGS, WES and TS CNV [156]
AcornHRD WGS, WES and TS Indels, CNV and snv [157]

Other more sophisticated and robust methods based on artificial intelligence have
been introduced to identify and investigate the mutational signatures associated with HRD
starting from WGS, WES and TS sequencing data. PathAI (https://www.pathai.com/
accessed on 12 July 2022) employs machine learning models that predict the HRD status by
studying how the disease evolves and making dynamic models of it using the mutational
signatures. The GSA (genomic scar analysis) algorithm was developed and vali. dated
to calculate the HRD score and the LOH score [156]. This approach is characterized by
the presence of two submodules: tree recursion (TR) segmentation and filtering, and the
estimation and correction of the tumor purity and ploidy. These elements are important
for a better analysis of the HRD/LOH score. The input data formats of GSA are (i) BAF
data and (ii) LRR data. BAF (B allele frequency) represents the median SNP genotype
frequency of each capture region while LRR (Log R ratio) is the normalized depth ratio of
the tumor and the normal sample (or blood cell control set) in each capture region after
GC-bias correction. Currently, none of the above-described gene signatures have been
widely adopted in clinical practice because they were identified based solely on a single
dataset and did not take into consideration the heterogeneity of patient cohorts [158]. A
recent approach under investigation, called AcornHRD (https://ascopubs.org/ accessed
on 12 July 2022), enables the calculation of an HRD score associated with the efficacy
of PARP inhibition and platinum-based chemotherapy in a variety of cancer types. The
aim of this approach is to extend the range of patients that might benefit from targeted
therapy. A current limitation of the above-described methods is the impossibility to capture
tumor evolution processes, such as a restoration of HRR function in response to therapy-
selective pressure. Therefore, it could be useful to incorporate functional biomarkers
based on dynamic changes in DNA repair that occur throughout tumor evolution for the
identification of HRD-positive tumors [157,159].

7. Discussion

The use of NGS technologies in clinical practice and clinical research is progressively
increasing. The guidelines of the main scientific societies recommend the use of NGS in the
diagnosis of numerous human cancers [160,161]. Furthermore, the availability of clinical
studies for often rare and complex genomic alterations requires the use of large TS panels
to facilitate the enrollment of patients in studies with new drugs. In this complex scenario,
in which the therapeutic decision depends mainly on the genomic landscape of the tumor
of each individual patient, the quality and accuracy of the NGS analysis are essential to
guarantee the appropriateness of the treatments. Therefore, having a robust, reliable and
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validated bioinformatics pipeline available is a necessary requirement to be able to analyze
genomic data and provide useful results for the clinical decision.

The introduction first in research and then in clinical practice of complex genomic
markers, such as MSI, TMB and HRD, has made the analysis of the sequencing data even
more complex. As we have discussed for HRD, it is essential to identify bioinformatics
tools capable of deriving these complex biomarkers also from TS data, in order to favor the
implementation of these new biomarkers in the field of diagnostics and clinical research,
with sustainable costs and times and methods of analysis compatible with clinical needs.

All studies so far have evaluated the correlation between genomic instability and
response to platinum and/or PARPi. However, genomic instability could also represent an
important marker of response to immunotherapy, as suggested by preliminary data [162].
Studies in this direction are certainly needed. It is clear that HRD plays a crucial role
in cancer pathogenesis and progression. Hence, accurate estimation of HRD status is
essential, not only to guide treatment decisions but also for the development of novel
therapeutic strategies, with the ultimate objective of expanding the pool of patients who
may derive clinical benefit from such approaches. Therefore, there is an urgent need
to further develop reliable HRD detection methodologies that are comprehensive, cost-
effective, and minimally invasive with a high predictive value for treatment response and
disease progression [163].

8. Conclusions

In conclusion, the field of genomic biomarkers in oncology is constantly evolving and
we expect that they will become increasingly important for precision oncology. The use
of AI techniques not only for the interpretation of these data but also for their integration
with the clinical and pathological characteristics of the patient represents a future challenge
for cancer research.
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87. Bartha, Á.; Győrffy, B. Comprehensive Outline of Whole Exome Sequencing Data Analysis Tools Available in Clinical Oncology.
Cancers 2019, 11, 1725. [CrossRef] [PubMed]

88. Zhou, J.; Troyanskaya, O.G. Predicting effects of noncoding variants with deep learning–based sequence model. Nat. Methods
2015, 12, 931–934. [CrossRef] [PubMed]

89. Kelley, D.R.; Snoek, J.; Rinn, J.L. Basset: Learning the regulatory code of the accessible genome with deep convolutional neural
networks. Genome Res. 2016, 26, 990–999. [CrossRef]

90. Mallard, C.; Johnston, M.J.; Bobyn, A.; Nikolic, A.; Argiropoulos, B.; Chan, J.A.; Guilcher, G.M.; Gallo, M. Hi-C detects genomic
structural variants in peripheral blood of pediatric leukemia patients. Mol. Case Stud. 2022, 8, a006157. [CrossRef]

91. Shigaki, D.; Adato, O.; Adhikari, A.N.; Dong, S.; Hawkins-Hooker, A.; Inoue, F.; Juven-Gershon, T.; Kenlay, H.; Martin, B.;
Patra, A.; et al. Integration of multiple epigenomic marks improves prediction of variant impact in saturation mutagenesis
reporter assay. Hum. Mutat. 2019, 40, 1280–1291. [CrossRef]

92. Tan, J.; Doing, G.; Lewis, K.A.; Price, C.E.; Chen, K.M.; Cady, K.C.; Perchuk, B.; Laub, M.T.; Hogan, D.A.; Greene, C.S.
Unsupervised Extraction of Stable Expression Signatures from Public Compendia with an Ensemble of Neural Networks. Cell
Syst. 2017, 5, 63–71.e6. [CrossRef]

93. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Ten-sorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv 2004, arXiv:1603.04467.

94. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. 2019. Available online: http://arxiv.org/abs/1912.01703 (accessed
on 12 July 2022).

95. Collobert, R.; Kavukcuoglu, K.; Farabet, C. Torch7: A Matlab-Like Environment for Machine Learning. Available online:
http://numpy.scipy.org (accessed on 12 July 2022).

96. Chartrand, G.; Zhang, P. Introduction to Graphs. In Chromatic Graph Theory; Chapman and Hall/CRC: New York, NY, USA, 2019;
pp. 27–52. [CrossRef]

97. Ghosh, S.; Mukherjee, S.; Sengupta, N.; Roy, A.; Dey, D.; Chakraborty, S.; Chattopadhyay, D.; Banerjee, A.; Basu, A. Network
analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses. Sci. Rep. 2016, 6, 32593. [CrossRef]

98. Huang, C.-H.; Zaenudin, E.; Tsai, J.J.; Kurubanjerdjit, N.; Dessie, E.Y.; Ng, K.-L. Dissecting molecular network structures using a
network subgraph approach. PeerJ 2020, 8, e9556. [CrossRef]

99. Huang, C.-H.; Zaenudin, E.; Tsai, J.J.; Kurubanjerdjit, N.; Ng, K.-L. Network subgraph-based approach for analyzing and
comparing molecular networks. PeerJ 2022, 10, e13137. [CrossRef]

100. Torshizi, A.D.; Petzold, L.R. Graph-based semi-supervised learning with genomic data integration using condition-responsive
genes applied to phenotype classification. J. Am. Med. Inform. Assoc. 2017, 25, 99–108. [CrossRef] [PubMed]

101. Mentzelopoulos, A.; Karanasiou, I.; Papathanasiou, M.; Kelekis, N.; Kouloulias, V.; Matsopoulos, G.K. A Comparative Analysis of
White Matter Structural Networks on SCLC Patients After Chemotherapy. Brain Topogr. 2022, 35, 352–362. [CrossRef] [PubMed]

102. Csardi, G. The Igraph Software Package for Complex Network Research. Available online: https://www.researchgate.net/
publication/221995787 (accessed on 12 July 2022).

103. Mueller, L.A.J.; Kugler, K.G.; Dander, A.; Graber, A.; Dehmer, M. QuACN: An R package for analyzing complex biological
networks quantitatively. Bioinformatics 2010, 27, 140–141. [CrossRef] [PubMed]

104. Handcock, M.S.; Hunter, D.R.; Butts, C.T.; Goodreau, S.M.; Morris, M. Analysis and Simulation of Network Data. Available
online: http://CRAN.R-project.org/ (accessed on 12 July 2022).

105. Tripathi, S.; Dehmer, M.; Emmert-Streib, F. NetBioV: An R package for visualizing large network data in biology and medicine.
Bioinformatics 2014, 30, 2834–2836. [CrossRef]

106. Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. Dragon software: An easy approach to molecular descriptor calculations.
Match 2006, 56, 237–248.

107. Bollen, K.A. Structural Equations with Latent Variables; Wiley: Hoboken, NJ, USA, 1989.
108. Dellino, G.I.; Palluzzi, F.; Chiariello, A.M.; Piccioni, R.; Bianco, S.; Furia, L.; De Conti, G.; Bouwman, B.A.M.; Melloni, G.;

Guido, D.; et al. Release of paused RNA polymerase II at specific loci favors DNA double-strand-break formation and promotes
cancer translocations. Nat. Genet. 2019, 51, 1011–1023. [CrossRef]

109. Saranya, A.; Venkatesan, S. A Model Based Approach on Gene Expression Profiling of Colorectal Cancer and Normal Mucosa
Using Logistic Regression, Artificial Neural Network and Structural Equation Modelling. Turk. J. Comput. Math. Educ. 2021, 12,
2585–2593.

110. Pepe, D.; Do, J.H. Estimation of dysregulated pathway regions in MPP+ treated human neuroblastoma SH-EP cells with structural
equation model. BioChip J. 2015, 9, 131–138. [CrossRef]

111. Mogaka, J.J.O.; Chimbari, M.J. The mediating effects of public genomic knowledge in precision medicine implementation: A
structural equation model approach. PLoS ONE 2020, 15, e0240585. [CrossRef]

112. Rosseel, Y. Journal of Statistical Software lavaan: An R Package for Structural Equation Modeling. 2012. Available online:
http://www.jstatsoft.org/ (accessed on 12 July 2022).

113. Palluzzi, F.; Grassi, M. SEMgraph: An R Package for Causal Network Analysis of High-Throughput Data with Structural Equation
Models. 2021. Available online: http://arxiv.org/abs/2103.08332 (accessed on 12 July 2022).

http://doi.org/10.3390/cancers11111725
http://www.ncbi.nlm.nih.gov/pubmed/31690036
http://doi.org/10.1038/nmeth.3547
http://www.ncbi.nlm.nih.gov/pubmed/26301843
http://doi.org/10.1101/gr.200535.115
http://doi.org/10.1101/mcs.a006157
http://doi.org/10.1002/humu.23797
http://doi.org/10.1016/j.cels.2017.06.003
http://arxiv.org/abs/1912.01703
http://numpy.scipy.org
http://doi.org/10.1201/9780429438868-2
http://doi.org/10.1038/srep32593
http://doi.org/10.7717/peerj.9556
http://doi.org/10.7717/peerj.13137
http://doi.org/10.1093/jamia/ocx032
http://www.ncbi.nlm.nih.gov/pubmed/28505320
http://doi.org/10.1007/s10548-022-00892-2
http://www.ncbi.nlm.nih.gov/pubmed/35212837
https://www.researchgate.net/publication/221995787
https://www.researchgate.net/publication/221995787
http://doi.org/10.1093/bioinformatics/btq606
http://www.ncbi.nlm.nih.gov/pubmed/21075747
http://CRAN.R-project.org/
http://doi.org/10.1093/bioinformatics/btu384
http://doi.org/10.1038/s41588-019-0421-z
http://doi.org/10.1007/s13206-015-9206-3
http://doi.org/10.1371/journal.pone.0240585
http://www.jstatsoft.org/
http://arxiv.org/abs/2103.08332


Biomedicines 2022, 10, 2074 18 of 20

114. Verhulst, B.; Maes, H.H.; Neale, M.C. GW-SEM: A Statistical Package to Conduct Genome-Wide Structural Equation Modeling.
Behav. Genet. 2017, 47, 345–359. [CrossRef]

115. Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer
2011, 12, 68–78. [CrossRef] [PubMed]

116. Zheng, F.; Zhang, Y.; Chen, S.; Weng, X.; Rao, Y.; Fang, H. Mechanism and current progress of Poly ADP-ribose polymerase
(PARP) inhibitors in the treatment of ovarian cancer. Biomed. Pharmacother. 2020, 123, 109661. [CrossRef] [PubMed]

117. Scott, L.J. Niraparib: First Global Approval. Drugs 2017, 77, 1029–1034. [CrossRef] [PubMed]
118. Ethier, J.-L.; Lheureux, S.; Oza, A.M. The role of niraparib for the treatment of ovarian cancer. Future Oncol. 2018, 14, 2565–2577.

[CrossRef]
119. Ison, G.; Howie, L.J.; Amiri-Kordestani, L.; Zhang, L.; Tang, S.; Sridhara, R.; Pierre, V.; Charlab, R.; Ramamoorthy, A.; Song, P.; et al.

FDA Approval Summary: Niraparib for the Maintenance Treatment of Patients with Recurrent Ovarian Cancer in Response to
Platinum-Based Chemotherapy. Clin. Cancer Res. 2018, 24, 4066–4071. [CrossRef]

120. Kumagai, A.; Lee, J.; Yoo, H.Y.; Dunphy, W.G. TopBP1 Activates the ATR-ATRIP Complex. Cell 2006, 124, 943–955. [CrossRef]
121. Hoppe, M.M.; Sundar, R.; Tan, D.S.P.; Jeyasekharan, A.D. Biomarkers for Homologous Recombination Deficiency in Cancer. JNCI

J. Natl. Cancer Inst. 2018, 110, 704–713. [CrossRef]
122. Kang, H.G.; Hwangbo, H.; Kim, M.J.; Kim, S.; Lee, E.J.; Park, M.J.; Kim, J.-W.; Kim, B.-G.; Cho, E.-H.; Chang, S.; et al. Aberrant

Transcript Usage Is Associated with Homologous Recombination Deficiency and Predicts Therapeutic Response. Cancer Res.
2022, 82, 142–154. [CrossRef]

123. Takaya, H.; Nakai, H.; Takamatsu, S.; Mandai, M.; Matsumura, N. Homologous recombination deficiency status-based classifica-
tion of high-grade serous ovarian carcinoma. Sci. Rep. 2020, 10, 2757. [CrossRef]

124. Foote, J.R.; Lopez-Acevedo, M.; Buchanan, A.H.; Secord, A.A.; Lee, P.S.; Fountain, C.; Myers, E.R.; Cohn, D.E.; Reed, S.D.;
Havrilesky, L.J. Cost Comparison of Genetic Testing Strategies in Women with Epithelial Ovarian Cancer. J. Oncol. Pract. 2017, 13,
e120–e129. [CrossRef]

125. McLaughlin, L.J.; Stojanovic, L.; Kogan, A.A.; Rutherford, J.L.; Choi, E.Y.; Yen, R.-W.C.; Xia, L.; Zou, Y.; Lapidus, R.G.;
Baylin, S.B.; et al. Pharmacologic induction of innate immune signaling directly drives homologous recombination deficiency.
Proc. Natl. Acad. Sci. USA 2020, 117, 17785–17795. [CrossRef] [PubMed]

126. Wagener-Ryczek, S.; Merkelbach-Bruse, S.; Siemanowski, J. Biomarkers for Homologous Recombination Deficiency in Cancer. J.
Pers. Med. 2021, 11, 612. [CrossRef] [PubMed]

127. Shirts, B.H.; Casadei, S.; Jacobson, A.L.; Lee, M.K.; Gulsuner, S.; Bennett, R.L.; Miller, M.; Hall, S.A.; Hampel, H.;
Hisama, F.M.; et al. Improving performance of multigene panels for genomic analysis of cancer predisposition. Genet.
Med. 2016, 18, 974–981. [CrossRef] [PubMed]

128. Walsh, C.S. Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer
therapy. Gynecol. Oncol. 2015, 137, 343–350. [CrossRef]

129. Kurian, A.W.; Kingham, K.E.; Ford, J.M. Next-generation sequencing for hereditary breast and gynecologic cancer risk assessment.
Curr. Opin. Obstet. Gynecol. 2015, 27, 23–33. [CrossRef]

130. Telli, M.L.; Stover, D.G.; Loi, S.; Aparicio, S.; Carey, L.A.; Domchek, S.M.; Newman, L.; Sledge, G.W.; Winer, E.P. Homologous
recombination deficiency and host anti-tumor immunity in triple-negative breast cancer. Breast Cancer Res. Treat. 2018, 171, 21–31.
[CrossRef]

131. Abkevich, V.; Timms, K.M.; Hennessy, B.T.; Potter, J.; Carey, M.S.; Meyer, L.A.; Smith-McCune, K.; Broaddus, R.; Lu, K.H.;
Chen, J.; et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian
cancer. Br. J. Cancer 2012, 107, 1776–1782. [CrossRef]

132. Swisher, E.M.; Lin, K.K.; Oza, A.M.; Scott, C.L.; Giordano, H.; Sun, J.; Konecny, G.E.; Coleman, R.L.; Tinker, A.V.;
O’Malley, D.M.; et al. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): An in-
ternational, multicentre, open-label, phase 2 trial. Lancet Oncol. 2017, 18, 75–87. [CrossRef]

133. Marquard, A.M.; Eklund, A.C.; Joshi, T.; Krzystanek, M.; Favero, F.; Wang, Z.C.; Richardson, A.L.; Silver, D.P.; Szallasi, Z.;
Birkbak, N.J. Pan-cancer analysis of genomic scar signatures associated with homologous recombination deficiency suggests
novel indications for existing cancer drugs. Biomark. Res. 2015, 3, 9. [CrossRef]

134. De Luca, X.M.; Newell, F.; Kazakoff, S.H.; Hartel, G.; Reed, A.E.M.; Holmes, O.; Xu, Q.; Wood, S.; Leonard, C.; Pearson, J.V.; et al.
Using whole-genome sequencing data to derive the homologous recombination deficiency scores. NPJ Breast Cancer 2020, 6, 33.
[CrossRef]

135. Weigelt, B.; Comino-Méndez, I.; de Bruijn, I.; Tian, L.; Meisel, J.L.; García-Murillas, I.; Fribbens, C.; Cutts, R.; Martelotto, L.G.;
Ng, C.K.; et al. Diverse BRCA1 and BRCA2 Reversion Mutations in Circulating Cell-Free DNA of Therapy-Resistant Breast or
Ovarian Cancer. Clin. Cancer Res. 2017, 23, 6708–6720. [CrossRef] [PubMed]

136. Cruz, C.; Castroviejo-Bermejo, M.; Gutiérrez-Enríquez, S.; Llop-Guevara, A.; Ibrahim, Y.; Gris-Oliver, A.; Bonache, S.;
Morancho, B.; Bruna, A.; Rueda, O.; et al. RAD51 foci as a functional biomarker of homologous recombination repair and PARP
inhibitor resistance in germline BRCA-mutated breast cancer. Ann. Oncol. 2018, 29, 1203–1210. [CrossRef] [PubMed]

137. Tumiati, M.; Hietanen, S.; Hynninen, J.; Pietilä, E.; Färkkilä, A.; Kaipio, K.; Roering, P.; Huhtinen, K.; Alkodsi, A.; Li, Y.; et al. A
Functional Homologous Recombination Assay Predicts Primary Chemotherapy Response and Long-Term Survival in Ovarian
Cancer Patients. Clin. Cancer Res. 2018, 24, 4482–4493. [CrossRef] [PubMed]

http://doi.org/10.1007/s10519-017-9842-6
http://doi.org/10.1038/nrc3181
http://www.ncbi.nlm.nih.gov/pubmed/22193408
http://doi.org/10.1016/j.biopha.2019.109661
http://www.ncbi.nlm.nih.gov/pubmed/31931287
http://doi.org/10.1007/s40265-017-0752-y
http://www.ncbi.nlm.nih.gov/pubmed/28474297
http://doi.org/10.2217/fon-2018-0101
http://doi.org/10.1158/1078-0432.CCR-18-0042
http://doi.org/10.1016/j.cell.2005.12.041
http://doi.org/10.1093/jnci/djy085
http://doi.org/10.1158/0008-5472.CAN-21-2023
http://doi.org/10.1038/s41598-020-59671-3
http://doi.org/10.1200/JOP.2016.011866
http://doi.org/10.1073/pnas.2003499117
http://www.ncbi.nlm.nih.gov/pubmed/32651270
http://doi.org/10.3390/jpm11070612
http://www.ncbi.nlm.nih.gov/pubmed/34203281
http://doi.org/10.1038/gim.2015.212
http://www.ncbi.nlm.nih.gov/pubmed/26845104
http://doi.org/10.1016/j.ygyno.2015.02.017
http://doi.org/10.1097/GCO.0000000000000141
http://doi.org/10.1007/s10549-018-4807-x
http://doi.org/10.1038/bjc.2012.451
http://doi.org/10.1016/S1470-2045(16)30559-9
http://doi.org/10.1186/s40364-015-0033-4
http://doi.org/10.1038/s41523-020-0172-0
http://doi.org/10.1158/1078-0432.CCR-17-0544
http://www.ncbi.nlm.nih.gov/pubmed/28765325
http://doi.org/10.1093/annonc/mdy099
http://www.ncbi.nlm.nih.gov/pubmed/29635390
http://doi.org/10.1158/1078-0432.CCR-17-3770
http://www.ncbi.nlm.nih.gov/pubmed/29858219


Biomedicines 2022, 10, 2074 19 of 20

138. Balmus, G.; Pilger, D.; Coates, J.; Demir, M.; Sczaniecka-Clift, M.; Barros, A.C.; Woods, M.; Fu, B.; Yang, F.; Chen, E.; et al. ATM
orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks. Nat. Commun.
2019, 10, 87. [CrossRef]

139. Alexandrov, L.B.; Stratton, M.R. Mutational signatures: The patterns of somatic mutations hidden in cancer genomes. Curr. Opin.
Genet. Dev. 2014, 24, 52–60. [CrossRef]

140. Nik-Zainal, S.; Davies, H.; Staaf, J.; Ramakrishna, M.; Glodzik, D.; Zou, X.; Martincorena, I.; Alexandrov, L.B.; Martin, S.;
Wedge, D.C.; et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 2016, 534, 47–54.
[CrossRef]

141. Polak, P.; Kim, J.; Braunstein, L.Z.; Karlic, R.; Haradhavala, N.J.; Tiao, G.; Rosebrock, D.; Livitz, D.; Kübler, K.; Mouw, K.W.; et al.
A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet.
2017, 49, 1476–1486. [CrossRef]

142. MacIntyre, G.; Goranova, T.E.; De Silva, D.; Ennis, D.; Piskorz, A.M.; Eldridge, M.; Sie, D.; Lewsley, L.-A.; Hanif, A.;
Wilson, C.; et al. Copy-number signatures and mutational processes in ovarian carcinoma. Nat. Genet. 2018, 50, 1262–1270.
[CrossRef]

143. Staaf, J.; Glodzik, D.; Bosch, A.; Vallon-Christersson, J.; Reuterswärd, C.; Häkkinen, J.; Degasperi, A.; Amarante, T.D.; Saal, L.H.;
Hegardt, C.; et al. Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat. Med.
2019, 25, 1526–1533. [CrossRef]

144. Sztupinszki, Z.; Diossy, M.; Borcsok, J.; Prosz, A.; Cornelius, N.; Kjeldsen, M.K.; Mirza, M.R.; Szallasi, Z. Comparative Assessment
of Diagnostic Homologous Recombination Deficiency–Associated Mutational Signatures in Ovarian Cancer. Clin. Cancer Res.
2021, 27, 5681–5687. [CrossRef]

145. Golan, T.; O’Kane, G.M.; Denroche, R.E.; Raitses-Gurevich, M.; Grant, R.C.; Holter, S.; Wang, Y.; Zhang, A.; Jang, G.H.;
Stossel, C.; et al. Genomic Features and Classification of Homologous Recombination Deficient Pancreatic Ductal Adenocarci-
noma. Gastroenterology 2021, 160, 2119–2132.e9. [CrossRef] [PubMed]

146. Davies, H.; Glodzik, D.; Morganella, S.; Yates, L.R.; Staaf, J.; Zou, X.; Ramakrishna, M.; Martin, S.; Boyault, S.; Sieuwerts, A.M.; et al.
HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 2017, 23, 517–525. [CrossRef]
[PubMed]

147. Lee, J.; Lee, A.J.; Lee, J.-K.; Park, J.; Kwon, Y.; Park, S.; Chun, H.; Ju, Y.S.; Hong, D. Mutalisk: A web-based somatic MUTation
AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures. Nucleic Acids Res. 2018, 46, W102–W108. [CrossRef]
[PubMed]

148. Ledermann, J.A.; Drew, Y.; Kristeleit, R.S. Homologous recombination deficiency and ovarian cancer. Eur. J. Cancer 2016, 60,
49–58. [CrossRef] [PubMed]

149. Valerie, K.; Povirk, L.F. Regulation and mechanisms of mammalian double-strand break repair. Oncogene 2003, 22, 5792–5812.
[CrossRef]

150. Chopra, N.; Tovey, H.; Pearson, A.; Cutts, R.; Toms, C.; Proszek, P.; Hubank, M.; Dowsett, M.; Dodson, A.; Daley, F.; et al.
Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer. Nat.
Commun. 2020, 11, 2662. [CrossRef]

151. Gulhan, D.C.; Lee, J.J.-K.; Melloni, G.E.M.; Cortés-Ciriano, I.; Park, P.J. Detecting the mutational signature of homologous
recombination deficiency in clinical samples. Nat. Genet. 2019, 51, 912–919. [CrossRef]

152. Matondo, A.; Jo, Y.H.; Shahid, M.; Choi, T.G.; Nguyen, M.N.; Nguyen, N.N.Y.; Akter, S.; Kang, I.; Ha, J.; Maeng, C.H.; et al. The
Prognostic 97 Chemoresponse Gene Signature in Ovarian Cancer. Sci. Rep. 2017, 7, 9689. [CrossRef]

153. Leibowitz, B.D.; Dougherty, B.V.; Bell, J.S.K.; Kapilivsky, J.; Michuda, J.; Sedgewick, A.J.; Munson, W.A.; Chandra, T.A.; Dry, J.R.;
Beaubier, N.; et al. Validation of genomic and transcriptomic models of homologous recombination deficiency in a real-world
pan-cancer cohort. BMC Cancer 2022, 22, 587. [CrossRef]

154. Nguyen, L.; Martens, J.W.M.; Van Hoeck, A.; Cuppen, E. Pan-cancer landscape of homologous recombination deficiency. Nat.
Commun. 2020, 11, 5584. [CrossRef]

155. Li, Y.; Zhao, Z.; Ai, L.; Wang, Y.; Liu, K.; Chen, B.; Chen, T.; Zhuang, S.; Xu, H.; Zou, M.; et al. Discovering a qualitative
transcriptional signature of homologous recombination defectiveness for prostate cancer. iScience 2021, 24, 103135. [CrossRef]
[PubMed]

156. Chen, D.; Shao, M.; Meng, P.; Wang, C.; Li, Q.; Cai, Y.; Song, C.; Wang, X.; Shi, T. GSA: An independent development algorithm for
calling copy number and detecting homologous recombination deficiency (HRD) from target capture sequencing. BMC Bioinform.
2021, 22, 562. [CrossRef] [PubMed]

157. Gonzalez Bosquet, J.; Newtson, A.M.; Chung, R.K.; Thiel, K.W.; Ginader, T.; Goodheart, M.J.; Leslie, K.K.; Smith, B.J. Prediction of
chemo-response in serous ovarian cancer. Mol. Cancer 2016, 15, 66. [CrossRef] [PubMed]

158. Chao, A.; Lai, C.-H.; Wang, T.-H.; Jung, S.-M.; Lee, Y.-S.; Chang, W.-Y.; Yang, L.-Y.; Ku, F.-C.; Huang, H.-J.; Chao, A.-S.; et al.
Genomic scar signatures associated with homologous recombination deficiency predict adverse clinical outcomes in patients with
ovarian clear cell carcinoma. Klin. Wochenschr. 2018, 96, 527–536. [CrossRef]

159. Peng, G.; Lin, C.C.-J.; Mo, W.; Dai, H.; Park, Y.-Y.; Kim, S.M.; Peng, Y.; Mo, Q.; Siwko, S.; Hu, R.; et al. Genome-wide transcriptome
profiling of homologous recombination DNA repair. Nat. Commun. 2014, 5, 3361. [CrossRef]

http://doi.org/10.1038/s41467-018-07729-2
http://doi.org/10.1016/j.gde.2013.11.014
http://doi.org/10.1038/nature17676
http://doi.org/10.1038/ng.3934
http://doi.org/10.1038/s41588-018-0179-8
http://doi.org/10.1038/s41591-019-0582-4
http://doi.org/10.1158/1078-0432.CCR-21-0981
http://doi.org/10.1053/j.gastro.2021.01.220
http://www.ncbi.nlm.nih.gov/pubmed/33524400
http://doi.org/10.1038/nm.4292
http://www.ncbi.nlm.nih.gov/pubmed/28288110
http://doi.org/10.1093/nar/gky406
http://www.ncbi.nlm.nih.gov/pubmed/29790943
http://doi.org/10.1016/j.ejca.2016.03.005
http://www.ncbi.nlm.nih.gov/pubmed/27065456
http://doi.org/10.1038/sj.onc.1206679
http://doi.org/10.1038/s41467-020-16142-7
http://doi.org/10.1038/s41588-019-0390-2
http://doi.org/10.1038/s41598-017-08766-5
http://doi.org/10.1186/s12885-022-09669-z
http://doi.org/10.1038/s41467-020-19406-4
http://doi.org/10.1016/j.isci.2021.103135
http://www.ncbi.nlm.nih.gov/pubmed/34622176
http://doi.org/10.1186/s12859-021-04487-9
http://www.ncbi.nlm.nih.gov/pubmed/34814825
http://doi.org/10.1186/s12943-016-0548-9
http://www.ncbi.nlm.nih.gov/pubmed/27756408
http://doi.org/10.1007/s00109-018-1643-8
http://doi.org/10.1038/ncomms4361


Biomedicines 2022, 10, 2074 20 of 20

160. Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.; Barlesi, F.; Lolkema, M.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-
Bernstam, F.; et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: A
report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. [CrossRef]

161. Chakravarty, D.; Johnson, A.; Sklar, J.; Lindeman, N.I.; Moore, K.; Ganesan, S.; Lovly, C.M.; Perlmutter, J.; Gray, S.W.;
Hwang, J.; et al. Somatic Genomic Testing in Patients with Metastatic or Advanced Cancer: ASCO Provisional Clinical Opinion. J.
Clin. Oncol. 2022, 40, 1231–1258. [CrossRef]

162. Miller, R.; Leary, A.; Scott, C.; Serra, V.; Lord, C.; Bowtell, D.; Chang, D.; Garsed, D.; Jonkers, J.; Ledermann, J.; et al. ESMO
recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in
ovarian cancer. Ann. Oncol. 2020, 31, 1606–1622. [CrossRef]

163. Liu, Y.L.; Selenica, P.; Zhou, Q.; Iasonos, A.; Callahan, M.; Feit, N.Z.; Boland, J.; Vazquez-Garcia, I.; Mandelker, D.; Zehir, A.; et al.
BRCA Mutations, Homologous DNA Repair Deficiency, Tumor Mutational Burden, and Response to Immune Checkpoint
Inhibition in Recurrent Ovarian Cancer. JCO Precis. Oncol. 2020, 4, 665–679. [CrossRef]

http://doi.org/10.1016/j.annonc.2020.07.014
http://doi.org/10.1200/JCO.21.02767
http://doi.org/10.1016/j.annonc.2020.08.2102
http://doi.org/10.1200/PO.20.00069

	Introduction 
	NGS Technologies and Bioinformatics Tools for DNA Sequencing Data 
	From NGS Data to Variant Discovery 
	Variant Types Relevant for Precision Oncology 
	Variant Discovery Workflow 
	Sequencing Quality Control 
	Pre Processing 
	Variant Calling 
	Variant Discovery Pipelines: Tools and Algorithms 
	Annotation 

	Machine Learning Applied to Next-Generation Sequencing and Variant Discovery 
	Sequencing Technology Issues and Machine Learning 
	ML and Deep Neural Networks for Variant Discovery 
	Machine Learning Development Frameworks 

	Network-Based Approaches Applied to Cancer Research: Graph Theory and Causality for Analyzing the Biological Complexity 
	Graph Theory 
	Causality 

	Homologous Recombination Deficiency: A New Bioinformatics Challenge 
	Testing Strategies for HRD Detection Based on Causes and Effects in the Genome 
	Computational Tools for HRD Assessment 

	Discussion 
	Conclusions 
	References

