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During the acute febrile phase of dengue virus (DENV) infection, viremia can cause severe systemic immune responses
accompanied by hematologic disorders. This study investigated the potential induction and mechanism of the cytopathic effects
of DENV on peripheral blood cells ex vivo. At one day postinfection, there was viral nonstructural protein NS1 but no further
virus replication measured in the whole blood culture. Notably, DENV exposure caused significant vacuolization in monocytic
phagocytes. With a minor change in the complete blood cell count, except for a minor increase in neutrophils and a significant
decrease in monocytes, the immune profiling assay identified several changes, particularly a significant reduction in CD14-
positive monocytes as well as CD11c-positive dendritic cells. Abnormal production of TNF-α was highly associated with the
induction of vacuolization. Manipulating TNF-α expression resulted in cytopathogenic effects. These results demonstrate the
potential hematological damage caused by ex vivo DENV-induced TNF-α.

1. Introduction

Dengue virus (DENV) infection is one of the most critical
global health problems, especially in subtropical regions.
Unfortunately, DENV causes disease in 50–100 million indi-
viduals per year [1]. Dengue-infected patients have different
manifestations ranging from mild acute febrile illness, den-
gue fever, and dengue hemorrhagic fever to severe dengue

shock syndrome, leading to plasma leakage hypovolemic
shock, causing death [2]. In addition to hematologic disor-
ders, patients with severe dengue infection may display vari-
ous diseases, including multiple organ dysfunction and
neurological complications [3]. According to clinicopatho-
logical studies, hematologic changes, such as leukopenia
and thrombocytopenia, are possibly involved in the coagu-
lopathy and vasculopathy of dengue-infected patients
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following the acute febrile phase of infection [4]. In dengue-
related hematological pathogenesis initiation, a direct viral
attack and indirect host effects are generally involved [5–8].

The complex interaction between the host and viral fac-
tors makes it challenging to explain the pathogenesis of
DENV infection. However, it is believed that the main factors
causing disease severity are typically due to numerous host
factors. Several hypotheses have been formulated to explain
severe dengue causes, including genetic involvement, under-
lying disorders, viral load, viral virulence, and immune
responses [9–12]. Antibody-dependent enhancement is
assumed to be pathogenic, mainly in the secondary infection
of DENV, when patients are infected with a different serotype
from the previous one [13]. Also, the imbalance of cytokines
in some patients, namely, the cytokine storm, was related to
dengue disease severity [14, 15]. Clinical studies have shown
that tumor necrosis factor-α (TNF-α) is associated with
increased severity and progression of DENV infection due
to exacerbated proinflammatory cytokine production leading
to instability in vascular endothelial cell function [16–18].
The impact of serum TNF-α on immune cells remains
undefined.

Innate immune cells, such as neutrophils and monocytes,
are believed to have an essential role in dengue pathogenesis
[19, 20]. There is increased neutrophil degranulation in
patients with DENV infection, as indicated by an increase
in the levels of interleukin-8 (IL-8), elastase, and lactoferrin
[21]. Following degranulation, in the acute febrile phase of
DENV infection, there is a significant reduction in neutrophil
counts, namely, neutropenia, in most patients with dengue
disease [22]. Moreover, DENV infection triggers neutrophil
activation and degranulation during the febrile phase, associ-
ated with increased plasma levels of proinflammatory medi-
ators, such as IL-8 and TNF-α. Upon hematological
immunity, activated neutrophils and monocytes can destroy
microbes by releasing various toxic components, such as
reactive oxygen species and granular enzymes [20, 21, 23].
The establishment of vacuolization is caused by the fusion
process of endosomes, autophagosomes, and secretory vesi-
cles [24]. In this study, we investigated the induction of cellu-
lar vacuolization and its possible regulation by TNF-α in an
ex vivo whole blood (WB) model of DENV infection.

2. Materials and Methods

2.1. Antibodies and Reagents. The reagents and antibodies
(Abs) used were as follows: recombinant human TNF-α
(hTNF-α, PeproTech, Rocky Hill, NJ); crystal violet (Sigma-
Aldrich Co., St. Louis, MO, USA); neutralizing antibodies
against TNF-α (Abcam, Cambridge, MA); PerCP-
conjugated anti-CD4 (Catalog# MA119775); PE-Cyanine 7-
conjugated anti-CD8 (Catalog# 25-0086-42); PE-conjugated
anti-CD11c (Catalog# 12-0116-42); APC-conjugated anti-
CD14 (Catalog# 17-0149-42); eFluor 506-conjugated anti-
CD19 (Catalog# 69-0199-42); APC-eFluor 780-conjugated
anti-CD25 (Catalog# 47-0257-42); Super Bright 600-
conjugated anti-CD56 (Catalog# 63-0566-42); Qdot 705-
conjugated anti-HLA-DR (Catalog# Q22159) (Invitrogen,
Thermo Fisher Scientific, Waltham, MA); Alexa Fluor 488-

conjugated anti-CD16 (Catalog# 302019); and Alexa Fluor
700-conjugated anti-CD62L (Catalog# 304820) (BioLegend,
San Diego, CA).

2.2. Cell Culture and Virus Culture. Baby hamster kidney-
(BHK-) 21 cells (ATCC® CCL-10™) and Aedes albopictus
clone C6/36 cells (ATCC® CRL-1660™) were cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM, Invitrogen
Life Technologies) containing 10% heat-inactivated fetal
bovine serum (FBS) (Sigma-Aldrich). The DENV serotype
(DENV2 PL046) was maintained in C6/36 cells. C6/36 cell
monolayers were seeded in a 75 cm2 tissue culture flask with
DENV coculture at a multiplicity of infection (MOI) of 0.01
and incubated at 28°C in 5% CO2 for 5 days. The virus super-
natant was concentrated and filtered with Amicon Ultra cen-
trifugal filters (Millipore, Billerica, MA, USA) and then
stored at −80°C before use.

2.3. Human Blood Collection. The human study was per-
formed according to guidelines established by the Taipei
Medical University- (TMU-) Joint Institutional Review
Board (TMU-JIRB). Informed consent from all participants,
as approved by TMU-JIRB, was obtained. All five partici-
pants were volunteers with confirmed functional health sta-
tus and good physical condition who were free from
medication and had no current infectious disease. All sam-
ples were collected at the same time by sodium heparin BD
vacutainer collection tubes (5ml; Becton Drive Vacutainer,
Franklin Lakes, USA). All blood collection tubes were gently
inverted to mix additives with the blood after collection.

2.4. DENV Ex Vivo Infection.One hundred microliters ofWB
was seeded in a 24-well plate supplemented with 100μl of
Roswell Park Memorial Institute (RPMI) 1640 medium con-
taining DENV (MOI = 1). For infection, the total number of
WB leukocytes was calculated using a hematology analyzer as
described below. The WB was incubated with the calculated
plaque-forming units of DENV at 37°C for 24 h. The culture
supernatants were collected for measuring viral replication
and protein expression.

2.5. DENV and Antigen Detection. For the plaque assay,
BHK-21 cells were plated in a 12-well plate (2 × 105 cells/-
well) and cultured in DMEM at 28°C in 5% CO2. After
adsorption with serially diluted culture supernatants for 1 h,
the solution was replaced with fresh DMEM containing 2%
FBS and 0.5% methylcellulose (Sigma-Aldrich). Five days
postinfection, the medium was removed, and the cells were
fixed and stained with a crystal violet solution containing
1% crystal violet, 0.64% NaCl, and 2% formalin. To calculate
the viral titer, the formation of plaques was counted at each
dilution. For the DENV nonstructural protein NS1 detection,
NS1 Antigen Rapid Test Cassette obtained from AsiaGen
(Tainan, Taiwan) was used according to the manufacturer’s
instructions.

2.6. Wright-Giemsa Staining. Following DENV ex vivo infec-
tion for 24 and 48 h, a drop of WB approximately 3mm in
diameter on each sample was placed at one end of the slide
and then spread across the width of the slide. All smears of
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blood were air-dried and stained with Wright-Giemsa stain
(Tonyar Biotech, Taipei, Taiwan). Cells were photographed
and counted under an optical microscope (Olympus CX23;
Olympus, Tokyo, Japan).

2.7. Complete Blood Counts (CBCs). A complete blood count
(CBC) test was conducted on heparinized peripheral WB fol-
lowing DENV infection for 24h by using a DxH 500 hema-
tology analyzer (Beckman Coulter, Clare, Ireland).

2.8. Immune Profiling. Following DENV (MOI = 1) infection
in 200μl of WB ex vivo for 24 h, representative flow cytomet-
ric analysis was conducted using an Attune NxT Flow Cyt-
ometer (Thermo Fisher Scientific) and performed by no-
wash no-lyse staining for specific cell surface markers
(CD4, CD8, CD11c, CD14, CD16, CD19, CD25, CD56,
CD62L, and HLA-DR) according to the manufacturer’s
instructions (https://www.thermofisher.com/order/catalog/
product/100022776#/100022776).

2.9. Enzyme-Linked Immunosorbent Assay (ELISA). Accord-
ing to the manufacturer’s instructions, the concentration of
human TNF-α in the plasma samples was determined using
DuoSet ELISA Development System kits (R&D Systems,
Minneapolis, MN). In brief, we coated microwells with cap-
ture Abs against TNF-α and then blocked the wells with 1%
bovine serum albumin in phosphate-buffered saline (PBS).
We added the tested serum, added the hTNF-α detection
Abs, and then developed the signal with HRP-conjugated
detection Abs against human IgG. The relative optical den-
sity was determined using a microplate reader set to 450nm.

2.10. Statistical Analysis. Values are expressed as the mean
± standard deviation ðSDÞ. Groups were compared by using
Student’s two-tailed unpaired t-test. These analyses were per-
formed using GraphPad Prism 4 software (GraphPad Soft-
ware, La Jolla, CA). Statistical significance was set at
p < 0:05.

3. Results

3.1. DENV Causes Infection but Not Replication in the Blood
Ex Vivo. To mimic a circulation situation during the acute
febrile phase of DENV infection with viremia as demon-
strated previously [25, 26], we created a novel ex vivo model
of WB infection without peripheral blood mononuclear cell
(PBMC) isolation. DENV was inoculated in the WB culture
ex vivo. At 24 h postinfection of the coculture system, as sum-
marized in the experimental flowchart (Figure 1(a)), in addi-
tion to analyzing the viral infection and antigen expression,
several approaches were conducted to evaluate the induction
of cytopathology, immune cell number and population
changes, and cytokine response. For detecting DENV repli-
cation and release, the supernatant of the WB culture was
harvested, and a plaque assay was then performed in a stan-
dard BHK-21 cell system [27]. Simultaneously, a commercial
NS1-based rapid test cassette was performed to measure viral
protein secretion [28]. Compared with the positive control
(DENV-containing supernatant), DENV (Figure 1(b)) was
not detectable, but viral NS1 (Figure 1(c)) was significantly

detected in all five tests (Cases 1-5). The results showed that
DENV could cause infection but failed to release the virion in
WB culture ex vivo.

3.2. DENV Coculture Causes Mononuclear Phagocytic Cell
Vacuolization in the Blood Ex Vivo. After DENV coculture
caused infection in the WB culture, we evaluated the mor-
phological changes that occurred in leukocytes after viral
incubation. In the DENV-WB coculture ex vivo, the sus-
pected targets of DENV infection are the myeloid lineage’s
immune cells, such as neutrophils and monocytes [20, 29,
30]. Following DENV (MOI = 1) coculture in 100μl of WB
ex vivo for 24 and 48 h, Wright-Giemsa staining showed his-
topathological changes significantly in mononuclear cells in
all five tests (Figure 2(a)). There was an increase in the per-
centage of vacuolated cells after inoculation with DENV at
24 h (DENV, 82:53 ± 4:84%; mock, 24:06 ± 12:07%; p =
0:001) (Figure 2(b)). While DENV was able to cause infec-
tion in WB culture ex vivo, the results showed intracellular
vacuolization in monocytes.

3.3. Complete Blood Count (CBC) Results Display a Decrease
in Monocytes in the Blood Coculture with DENV Ex Vivo.
To determine whether there was a change in the number of
leukocytes, we next examined CBCs after DENV-WB cocul-
ture for 24 h. We found an increase in the number of neutro-
phils in the DENV group (DENV, 56:80 ± 7:37%; mock,
44:52 ± 9:26%) and a decrease in the number of monocytes
in the DENV group (DENV, 0:908 ± 0:30%; mock, 4:37 ±
1:66%) (Figure 3). Monocytes are the most critical blood
mononuclear phagocyte and one of the leading cell targets
of DENV [31, 32]. The results showed a decrease in the num-
ber of monocytes caused by DENV ex vivo.

3.4. Immune Profiling Shows Cell Changes in the Blood
Coculture with DENV Ex Vivo. In response to infection, alter-
ations in blood cells are dependent on the viral load and
duration of the disease [33]. Since the CBC showed a minor
change in leukocytes, we evaluated blood cells by using an
immune profiling approach. Multiparameter flow cytometric
analysis was utilized to assess the subpopulations of immune
cells, including those in the DENV-inoculated group
(Figure 4(a)) and the mock control group (Figure 4(b)). In
this analysis, DENV infection decreased the frequency of
blood monocytes (CD14+) and dendritic cells (CD11c+) but
increased total T (Th+Tc), Th (CD4+CD56-), naïve and
memory Tc (CD4+CD56-), and total NK (CD56+) cells
(Figure 4(c)). The findings indicate that DENV decreases
monocytes and dendritic cells in ex vivo conditions of
infection.

3.5. The Generation of TNF-α Is Correlated with
Vacuolization in Blood Coculture with DENV Ex Vivo. Based
on our findings, the blood monocytes’ change was consistent
with increasing numbers of cytoplasmic vacuoles in blood
cells ex vivo. It is hypothesized that the cause of vacuolization
is proinflammatory cytokines secreted by blood cells [24].
Therefore, we measured TNF-α production by ELISA. We
found abnormal production of TNF-α in the DENV-
inoculated groups at 24 h (DENV, 263:30 ± 180:08pg/ml)
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postincubation (Figure 5(a)). Notably, we found a strong cor-
relation between TNF-α production and the number of vac-
uolated cells (r = 0:738; p = 0:015) (Figure 5(b)). These
results indicate that the occurrence of vacuolization is highly
correlated with DENV-induced TNF-α.

3.6. TNF-αDetermines Vacuolization in Blood Coculture with
DENV Ex Vivo. To explore the mechanisms of induction of
vacuolization by TNF-α, we added human TNF-α (hTNF-α,
100ng/ml) to the WB culture ex vivo. After 24h of treatment,
Wright-Giemsa staining showed histopathological changes in
mononuclear and polymorphonuclear cells in both tests
(Figure 6(a)). After quantification, there was an increase in
the percentage of vacuolated cells after cotreatment with

hTNF-α for 24h (TNF-α, 64:83 ± 13:77%; mock, 7:90 ± 2:83
%; p = 0:01) (Figure 6(b)). To ensure that TNF-α caused
vacuolization, we administered anti-TNF-α to DENV-WB
coculture, and the results showed a large decrease in the num-
ber of vacuolated cells after cotreatment with anti-TNF-α
(DENV, 82:53 ± 4:84%; DENV+ anti-TNF-α, 30:70 ± 15:26
%; and mock, 24:06 ± 12:08%) (Figure 6(c)). These results
demonstrated that the vacuolization is not caused by viral rep-
lication but is caused by DENV-induced TNF-α.

4. Discussion

In the acute febrile phase of dengue-infected patients, the
viral load in circulation is associated with disease severity
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Figure 2: Wright-Giemsa staining images of whole blood (WB) cells 24 h postincubation. Following DENV (MOI = 1) coculture in 100μl of
WB ex vivo for 24 h, Wright-Giemsa staining, shown by an oil immersion field (100x objectives), presented histopathological changes in
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Figure 4: Continued.
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[10]. However, the cytopathogenic effects of DENV in WB
cells have not yet been clearly defined, particularly in well-
known hematological conditions, such as leukopenia and
thrombocytopenia, as found in dengue-infected patients
[34]. In this study, we created an ex vivo model of DENV
infection in WB culture to examine the possible conditions
and effects of viremia during the disease’s acute febrile phase.
Following DENV infection, decreases in monocytes and den-
dritic cells following the induction of intracellular vacuoliza-
tion in monocytic cells were identified in theWB culture with
DENV incubation. Moreover, we demonstrated that DENV-
induced TNF-α determines the cytopathogenic effect.
Although the limited viral load and antiviral serum factors
may affect the infectivity of DENV in our model, the findings
of this study indicate the possible impacts of DENV infection
on causing TNF-α production to induce intracellular vacuo-
lization in phagocytes.

Dengue viremia is defined as the presence of DENV that
can be detected in peripheral blood, including plasma and
blood cells [26, 35]. In contrast to previous works, DENV
could infect isolated human PBMCs in vitro and in vivo [26,
36, 37]. However, in our ex vivo model of infection in the
humanWB culture, no further newly assembled DENV could
be detected, suggesting a limited microenvironment for virion
release, probably due to antiviral immunity induction accom-
panied by a decrease in host factors to support the viral life
cycle. Therefore, direct contact with host cells and its viral
NS1 protein may cause TNF-α production, and then the indi-
rect DENV-induced TNF-α may cause cytopathological
changes in the targeted cells. The ex vivo model could be uti-
lized for investigating the viral effects, including DENV and
NS1, particularly at the acute febrile phase of DENV infection.

Upon the initial disease onset characterized by high fever,
vomiting, and viremia, the hematological examination
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Figure 4: Immune profiling in DENV-treated whole blood cells 24 h postincubation. Following DENV (MOI = 1) coculture in 100 μl of WB
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usually shows increased hemoglobin and hematocrit, lower
white blood cell counts, lower platelet counts, and higher
monocyte counts [2–4, 22]. Inconsistent with the clinical
observation, our ex vivo model showed a decrease in the
monocyte level, as demonstrated by using the CBC assay and
immune profiling analysis, suggesting possible limitations on
hematological manifestation and replacement compared with
blood circulation. However, our ex vivo model identified the
potential effects of DENV-induced TNF-α on cellular vacuoli-
zation in monocytic cells, indicating these cells’ physiopatho-
logical stimulation for hematological manifestations.
Accordingly, further investigations are needed to clarify the
effectors involved in DENV-induced vacuolization, the possi-
ble regulatory effects caused by endocytosis, phagocytosis,
autophagy, and cellular changes on cell survival and death,
which are all involved in dengue pathogenesis.

This study found that DENV induces massive vacuoliza-
tion of human leukocyte cells ex vivo, indicating this process
is associated with DENV infection. However, the cytopathic
effects of the DENV are less well known. Another flavivirus,
ZIKV, also induces massive cytoplasmic vacuolization in
human epithelial cells, primary skin fibroblasts, and astro-
cytes and then causes large-scale endoplasmic reticulum
(ER) rearrangements and unfolded protein response (UPR)
activation, namely, pyroptosis, a form of cell death character-
ized by swelling of the ER and mitochondria as well as cyto-
plasmic vacuolization [38]. When the UPR is inadequate to
maintain the ER in a steady state, autophagy and cell death
programs are activated [39]. Accumulated evidence shows
that autophagy plays a vital role in controlling neutrophil
and monocyte function when fighting off infections, includ-
ing the processes of degranulation, metabolism, and the for-
mation of neutrophil extracellular traps [40]. It is speculated
that DENV may also cause large-scale ER rearrangements

followed by the generation of cytoplasmic vacuoles, which
come from the ER membrane.

The CBC assay results only identified a change in mono-
cyte counts in the ex vivo model of DENV infection. How-
ever, by using an immune profiling approach, this study
also identified a partial increase in total NK (CD56+) cells
and a decrease in monocytes (CD14+) and DCs (CD11c+).
While the approach of immune profiling confirmed the
results of CBC on monocyte expression, changes in the other
identified cell populations are needed to compare with previ-
ous works [41] while NK cells are activated [42] and DCs are
decreased [43] in dengue-infected patients. A decrease in
monocytes may indicate the effects of DENV-induced
TNF-α for cellular activation followed by cytopathological
changes, including cell adhesion and cell death. Regarding
their potential roles in controlling both infections, the
ex vivo model of DENV infection in peripheral blood may
provide a different investigative strategy for verifying the
mechanisms of viral immunity and immunopathogenesis in
response to DENV infection.

Cytokine storms can be present at the acute febrile phase
of DENV infection and are involved in dengue diseases’
immunopathogenesis [14, 15]. Among these immune param-
eters, TNF-α was shown to be positively linked to dengue-
associated hematological changes in thrombocytopenia and
vascular dysfunction [16–18]. Targeting TNF-α has been
used as an immunotherapy strategy for suppressing DENV-
induced peripheral and tissue-specific inflammatory disor-
ders and mortality [44–46]. In this study, we found an
increase in TNF-α in the ex vivo model of DENV infection,
which may contribute to the induction of cellular vacuoliza-
tion in monocytic cells. Because monocytes are innate
immune cells that probably produce antiviral and proinflam-
matory cytokines, it is speculated that vacuolization of
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Figure 5: Abnormal production of TNF-α caused by DENV infection correlates with the cytopathological effects 24 h postincubation. (a)
Following DENV (MOI = 1) coculture in 100 μl of WB ex vivo for 24 h, TNF-α production was measured in the plasma by ELISA. The
quantitative data are depicted as the mean ± SD obtained from five cases. ∗p < 0:05, compared to the mock group. (b) Furthermore,
correlation analysis showed the strength of the relationship between TNF-α production and the induction of vacuolization, which is
expressed numerically based on the r and p values.
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phagocytes is an immunological process that restricts or pro-
motes microbial pathogenesis in infected patients.

Our study has several limitations. First, this study’s
ex vivo model reflects the cytopathological effects of DENV
infection in circulation, particularly at the acute phase of
infection during viremia. However, dissimilar with circula-
tion, the closed system in the ex vivo model of WB culture
may affect different cell populations’ expression patterns.
Notably, the induction of monocyte activation may be
followed by functional changes, while the full expression of
suspended monocyte numbers is significantly decreased.
Monocytes are the primary cells probably targeted by DENV
infection and may adhere to the disk culture. The response
may increase the relative expression of neutrophils and NK
cells in this experimental model system. Immune profiling
in clinical blood samples of dengue patients is needed for val-
idation. Second, in the immune profiling approach, more
markers are needed to analyze the classification of specific
immune cell populations. Finally, to explore the possible
cytopathological effects caused by DENV and dengue NS1

protein, it is essential to investigate the infectivity of DENV
in WB culture and the TNF-α-producing cells, particularly
in circulating immune cell populations.

5. Conclusions

In conclusion, by using an ex vivo model of DENV-WB
coculture, we found that the induction of proinflammatory
TNF-α expression was followed by TNF-α-regulated cellular
vacuolization in monocytic cells. Additionally, we identified
the changes in immune cell subpopulations related to the
immunopathogenesis of DENV infection. Monitoring cyto-
kine response, cellular vacuolization, and immune cell
changes may help the clinical diagnosis of DENV-induced
systemic inflammation. While the pathogenesis of DENV
infection and disease progression is complicated, the ex vivo
model may provide an experimental strategy for further
exploring peripheral blood immunity against DENV
infection.
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Figure 6: Abnormal TNF-α determines the cytopathological effects 24 h postincubation. Without DENV coculture, hTNF-α (100 ng/ml) was
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