
sensors

Article

Developing Relative Humidity and Temperature Corrections
for Low-Cost Sensors Using Machine Learning

Ivan Vajs 1,2,*, Dejan Drajic 1,2,3 , Nenad Gligoric 3,4 , Ilija Radovanovic 1,2 and Ivan Popovic 2

����������
�������

Citation: Vajs, I.; Drajic, D.; Gligoric,

N.; Radovanovic, I.; Popovic, I.

Developing Relative Humidity and

Temperature Corrections for

Low-Cost Sensors Using Machine

Learning. Sensors 2021, 21, 3338.

https://doi.org/10.3390/s21103338

Academic Editor: Klaus Schäfer

Received: 17 March 2021

Accepted: 7 May 2021

Published: 11 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Innovation Center, School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73,
11120 Belgrade, Serbia; ddrajic@etf.bg.ac.rs (D.D.); ilija.radovanovic@ic.etf.bg.ac.rs (I.R.)

2 School of Electrical Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11120 Belgrade, Serbia;
popovici@etf.bg.ac.rs

3 DunavNET, DNET Labs, Trg Oslobodjenja 127, 21000 Novi Sad, Serbia; nenad.gligoric@dunavnet.eu
4 Faculty of Information Technology, Alfa BK University, Palmira Toljatija 3, 11070 Novi Beograd, Serbia
* Correspondence: ivan.vajs@ic.etf.bg.ac.rs; Tel.: +381-11-3218-455

Abstract: Existing government air quality monitoring networks consist of static measurement stations,
which are highly reliable and accurately measure a wide range of air pollutants, but they are very
large, expensive and require significant amounts of maintenance. As a promising solution, low-cost
sensors are being introduced as complementary, air quality monitoring stations. These sensors are,
however, not reliable due to the lower accuracy, short life cycle and corresponding calibration issues.
Recent studies have shown that low-cost sensors are affected by relative humidity and temperature.
In this paper, we explore methods to additionally improve the calibration algorithms with the
aim to increase the measurement accuracy considering the impact of temperature and humidity
on the readings, by using machine learning. A detailed comparative analysis of linear regression,
artificial neural network and random forest algorithms are presented, analyzing their performance
on the measurements of CO, NO2 and PM10 particles, with promising results and an achieved R2

of 0.93–0.97, 0.82–0.94 and 0.73–0.89 dependent on the observed period of the year, respectively, for
each pollutant. A comprehensive analysis and recommendations on how low-cost sensors could be
used as complementary monitoring stations to the reference ones, to increase spatial and temporal
measurement resolution, is provided.

Keywords: air pollution measurements; low-cost sensors; calibration; machine learning; artificial
neural network; temperature and relative humidity

1. Introduction

Most of the population is currently living in urban areas and a decade ago it was
estimated that, at that time, the number was already higher than fifty percent [1], and the
newest predictions published by WHO (World Health Organization) estimate that this
number will increase up to seventy percent by the year 2050 [2]. Although the increase in
population is not directly linked to the increase in pollution, a large number of people does
give rise to a various number of pollution emitters. This is consequently accompanied by
the increasing number of areas where the air pollution level is high above the defined ranges
and could seriously affect the citizens’ health [3], which is associated with a series of acute
and chronic diseases and is considered as one of the major health challenges at the moment
(the limits for very high air pollutions: 50 mg

m3 for CO, 400 µg
m3 for NO2 and 180 µg

m3 for PM10).
In [4], it is reported that in the year 2016, in low and middle-income countries, the citizens’
mortality was heavily influenced by air pollution, and air pollution was linked to more than
4.2 million deaths per year (which represents 11.6% of all deaths). To combat that problem,
the WHO issued the Air Quality Guidelines [5] about the recommendation regarding the
activities concerning the pollution problem. There are also EU Directives defined on the
ambient air quality [6,7] and many countries developed and implemented appropriate
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legislation. The most recognized air pollutants are CO, NO2, SO2, O3 and particulate matter
(PM2.5, PM10). The EU Directive on reference methods, data validation and location of
sampling points for the assessment of ambient air quality [7], contains detailed instructions
and recommendations concerning the used reference methods, obtained data validation
and selection of the location of sampling points for adequate air quality monitoring.

So far, in urban areas, the usual approach of the measurement of the air quality is the
deployment of national networks of public monitoring stations, which are quite reliable,
but, on the other hand, they are located at fixed positions, quite large and heavy [8].
Furthermore, they have a high price and annual recalibration costs, while due to the fixed
and sparse positions, they provide the information only about the regional air quality while
lacking the spatial resolution to provide local measurements, thus making the citizens’
exposure to the pollutants untrackable.

Contemporary, new generation, low-cost, off-the-shelf sensors look like a promising
solution that could be used for complementary measurements for the areas that are not, and
could not be, covered by public monitoring stations. Due to their high availability, low-cost
sensors have great potential to be integrated into the portable low-cost Micro Sensing Units
(MSUs) that can be used for air quality measurements. MSUs are mobile, have a wireless
communication module and their maintenance costs are low. By applying the Internet of
Things (IoT) concept, the data are remotely and periodically in real-time sent to a server
in a cloud via the appropriate communication type (2G, 3G, 4G, WiFi, LoRa, etc.) where
appropriate data storage, processing and visualization are performed [9]. They could be
installed across the cities utilizing the existing public infrastructure (installed on public
transport vehicles, public buildings, mounted on lamp posts, etc.). Additionally, it could
be carried around by individuals, i.e., pedestrians and cyclists, thus allowing crowdsourc-
ing [10], or even attached to drones. On the other hand, their main drawbacks are a short
life cycle, low accuracy and most importantly, various influential calibration factors. The
collected data might not always be accurate enough (due to the nature of electrochemical
processes in the sensors and the influence of relative humidity, temperature and dust on
the measurements) and in-field or laboratory calibration and periodical recalibrations are
necessary, while the wireless transmission, in its nature, may introduce transmission errors
and in the case of a wireless network failure, could be out of use. Furthermore, every sensor
should be additionally calibrated, and the measurement accuracy of every single sensor
highly depends on the sensor’s chemical and physical characteristics.

In the authors’ previous work [11], a methodology for the calibration of off-the-shelf
air quality sensors is proposed and evaluated. The calibration process is based on the use
of statistical algorithms and offset values obtained from the public measurement stations.
The sensors were evaluated during a nine-month campaign in order to understand the
seasonal influence on their behavior and a Common Air Quality Index (CAQI) [12] was
calculated and compared with the public monitoring station. Obtained results were in
a high level of agreement between the compared systems. The comparison between the
results has shown that low-cost sensors could be used with a relatively high reliability as
a complementary network to public monitoring stations, but it was also concluded that
every sensor has its own sensitivity to temperature and relative humidity that influence
the measurement accuracy.

Observed CO and NO2 sensors are electrochemical, and their performances are af-
fected by temperature and relative humidity due to the nature of electrochemical processes
ongoing during the measurements. Additionally, during the usage, the NO2 sensor has
a higher loss of sensitivity than CO, and the NO2 gasis, by its nature, unstable at low
concentrations. On the other hand, the influence of relative humidity and temperature on
the PM10 sensor, which is optical, is caused by particle growth due to water absorption.
The sensor sensitivity to temperature and relative humidity poses a great challenge, as
it can hardly be modeled with a simple function. The linear regression (LR) model and
the multi linear regression model (MLR), are the most widely used techniques to calibrate
low-cost sensor data against a reference measurement. However, when modeling different
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dependencies is concerned, the scientific field of Artificial intelligence, more precisely
machine learning (ML), has shown great promise. This field relies on different methods
that have a basis in mathematical theory, and as such, have found many uses in both
modern research and industry. Using the powerful tools of ML, it is possible to model
a sensor’s dependencies on temperature and relative humidity and thus provide a more
precise and reliable, yet low-cost measurement. In recent years, different types of Artifi-
cial Neural Networks (ANN) have been used for the calibration of low-cost air quality
monitoring sensors in the laboratory or field conditions. Additionally, in order to achieve
better results, for some low-cost air quality sensor types, it is recommended to examine the
non-linear dependencies (exponential, logarithmic, quadratics) between the influencing
variables, such as Random Forest (RF) [13,14], Support Vector Machines (SVR) [14,15] and
the Gradient Boosting Regression Tree (GBRT) model [16]. The aim of this paper is to
compare linear, different ANN and ML algorithms for in-field calibration of a low-cost
sensor platform based on the collocation method.

Related Work

The problem of field calibration methods for low-cost sensors was investigated in
detail in [17,18]. The authors used the following calibration methods: LR, ANN and MLR.
They have concluded that the most suitable calibration method was ANN using raw or
scaled sensor inputs (higher correlation coefficient), while LR and MLR have been shown
to produce lower performances, since these methods do not take into consideration all
interfering factors with their weighted effect (relative humidity and temperature). For ob-
served CO, CO2 and NO sensors, they concluded that ambient parameters such as relative
humidity and temperature are necessary as algorithm inputs for appropriate calibration.

In [19], the authors stressed that the sensors’ performances are very sensitive to the
environmental operating conditions, i.e., relative humidity and temperature due to the
gas-sensing process that involves fairly complex reactions depending on the environment
conditions, and that corresponding chemical reactions also vary from daytime to night-time
in the urban atmosphere, which additionally degrades the performance of the sensors. They
did not provide measurement principles, but rather discussed in detail the sensors and
measurement devices issues with the focus on calibration issues. In general, manufacturers
provide some correction factors for temperature and relative humidity, but for outdoor
conditions, where relative humidity and temperature could change significantly on diurnal
and seasonal bases, more sophisticated corrections are required.

In the scope of the CITY-SENSE project [20], authors tried to find the optimal calibra-
tion method for low-cost gas sensors for ambient air pollutants; the LR, MLR and ANN
methods were compared and it was concluded that the ANN showed the best results for
CO sensors.

In [21], data were collected from devices monitoring NO2, installed in traffic and
the urban environment. A two-step calibration method was proposed; firstly, MLR was
used, where the output is the value that contains the information about the error, which
was then used as the input to more sophisticated algorithms: ANN, SVM and RF. The
proposed method has shown that at high concentrations, NO2 sensors could closely meet
the Air Quality Directive’s standards of accuracy, but they have also concluded that each
individual sensor behaves differently. A very detailed analysis of the possibilities to
correct the ambient PM measurement under high relative humidity (RH) conditions is
presented in [22]. It was shown that by exploiting the measured particle size distribution,
an adequate correction algorithm could be derived (using κ-Köhler theory) that highly
improves measurement performance.

The authors [23] consider the problems concerning low-cost sensors calibration, having
in mind the possible set of tens of thousands, or even millions, of air quality sensors
deployed. They expect to use data storage and processing capability at the edge of the
network [24]. For calibration, they propose the usage of a deep learning model consisting
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of convolution layers, fully connected neural network layers and long short-term memory
(LSTM) layers that model temporal dependencies.

In [25], the authors investigated the performance for CO, NO2 and O3 sensors, first
by using laboratory calibration, and then by conducting field experiments. They have
performed the integration of ANNs with fuzzy logic, which leads to the creation of an
adaptive neuro-fuzzy inference system (ANFIS) [26], thus making a single framework that
uses the advantages of both techniques. The result evaluation shows that the ANFIS has
high correlation coefficients in comparison to the reference system.

In [27], the authors explored the influence of relative humidity and the effect of
atmospheric fog on the performance of a low-cost air particle mass PM sensor, in the
laboratory and field conditions. The results have shown that there was no clear effect until
relative humidity exceeded about 75%, while above this value, due to particle growth,
the sensor started to show a steady increase in the measurements. The reason for this is
that when the relative humidity is higher, it results in particle growth and fog that are
detected by the particle monitoring equipment, that does not contain drying facilities at
the sample inlets (which is the case with low-cost particle sensors). Observing this, it was
concluded that this effect must be taken into account when using low-cost particle sensors
in such environments.

The authors of [28] investigated the effect of relative humidity and air temperature
on CO, NO, NO2 and O3. Tests were conducted for six relative humidity levels from 10%
to 85% and four temperature levels of 10–45 ◦C in the laboratory. After the development
of the correction algorithm, field measurements were performed (November 2019). A
performance analysis showed that the developed algorithm improved the data quality
of the sensors in most of the cases, as CO, NO, and NO2 sensors showed a satisfactory
improvement, while the O3 sensor had the least improvement. When sensors were exposed
to high temperatures, NO2 and O3 sensors mostly behaved poorly.

In [29], the authors used sensors from different manufacturers and performed a
calibration by using different methods. They have concluded that for CO and NO sensors,
the MLR methods were the best solution for calibration, although ANN shows the same
performances as MLR for NO. For NO2 and O3 sensors, supervised learning models, such
as SVR, RF and ANN, proved to be the best methods for calibration. For PM2.5, the
best performances were obtained by using linear models, when the relative humidity
measurements were less than 75%. For higher relative humidity values, the calibration
using the Köhler theory is the most promising method.

In [30], an evaluation of the Aeroqual Ltd. Series 500 semiconducting metal oxide
O3 and an electrochemical NO2 sensor was performed by comparison with UK national
network reference analyzers for more than 2 months in central Edinburgh. The obtained
O3 sensor measurements were in high correlation with the reference system, while the
NO2 sensor suffered from co-sensitivity to O3, and the measurement error correction was
developed by using LR.

A developed mobile PM2.5 sensing system was presented in [31], where eight sens-
ing nodes were mounted on different city bus lines. Sensors were calibrated by using
an ANN where the inputs, relative humidity and temperature were taken into account.
A Gaussian Process regression algorithm was developed and implemented, so that by
using measurements obtained from multiple sensors, PM2.5 values of locations within the
observed region of interest, without direct measurements, could be interpolated.

In [32], an in-field measurement was conducted for CO, NO, NO2, O3, PM2.5, PM10
and SO2, and compared to the reference data. The calibration methods used were LR, ANN
and RF. For the case of LR calibration, only the variable that was being calibrated was
used as the input. For ANN and RF methods, all the measurements from each unit were
used. In the case of CO, NO and NO2 sensors, satisfactory performances with LR were
shown, but the additional improvement was obtained after the ANN and RF calibration.
For the case of O3, ANN and especially RF calibration have shown better performances
than LR. Finally, for the PM2.5, PM10 and SO2 sensors, both the ANN and the RF improve



Sensors 2021, 21, 3338 5 of 22

the results in comparison to the LR, and again, as in the previous case with O3, RF showed
better performances than the ANN algorithm.

In [33], NO, NO2 and O3 were observed and the authors explored the performance of
dynamic neural networks in comparison to the static feed-forward ANN, where relative hu-
midity and temperature were taken into account. For all considered sensors, it was shown
that the dynamic neural network architectures were superior to the classical feed-forward
ANN, since its architecture considers several consecutive measurements, as opposed to the
static ANN that considers only one. The design, implementation and evaluation of a novel
client–cloud system are presented in [34], and two types of internet-connected particulate
matter (PM2.5) monitors were created. Sensor calibration consisted of two algorithms that
were combined, ANN and Gaussian Process regression. The main difference between the
two algorithms was that the ANN was used for calibrating a single sensor, while the Gaus-
sian Process regression was used to combine the data from multiple sensors with different
confidence levels, which was proven in this paper to provide a significant improvement
after the applied ANN calibration.

In [35], PM2.5 and PM10 were observed and three different algorithms were used for
sensor calibration: LR, ANN and SVM. The algorithms were first implemented with two
variants. Firstly, by using the PM concentration values, relative humidity and temperature
as the inputs and the reference PM data as outputs. Secondly, the algorithms were imple-
mented using the mentioned inputs with the addition of wind direction and wind speed.
For each algorithm and particle type, the models performed better than in the first variant
where wind direction and wind speed were not considered. With both input sets, the ANN
was the superior algorithm.

In paper [36], authors performed a detailed study for the seasonal behavior of PM2.5,
and applied different ML algorithms to perform sensor calibration, including temperature
and humidity changes as factors that influence the accuracy of the sensors.

In Table 1, an overview of references used calibration methods, and commonly used
metrics (correlation coefficient R and corresponding R2 value, RMSE (Root Mean Squared
Error) and NRMSE (Normalized Root Mean Squared Error) [29]) for evaluation are provided.

Table 1. Types of calibration models used in the literature.

Pollutant Calibration Model References Metrics

CO LR Drajic [11], Spinelle [17], Spinelle [18], Topalovic [20], Samad [28],
Karagulian [29], Lin [30], Borrego [32]

R, R2, RMSE,
NRMSE

CO ANN Spinelle [17], Spinelle [18], Topalovic [20], Motlagh [23], Alhasa [25],
Karagulian [29], Borrego [32]

R, R2, RMSE,
NRMSE

CO RF Karagulian [29], Borrego [32] R2, RMSE

NO2 LR Drajic [11], Spinelle [17], Spinelle [18], Cordero [21], Karagulian [29],
Borrego [32] R2, RMSE

NO2 ANN Spinelle [17], Spinelle [18]. Motlagh [23], Alhasa [25], Samad [28],
Karagulian [29], Borrego [32], Espositi [33] R2, RMSE

NO2 RF Cordero [21], Karagulian [29], Borrego [32] R2, RMSE
PM10 LR Drajic [11], Jayaratne [27], Karagulian [29], Borrego [32] R2, RMSE
PM10 ANN Motlagh [23], Karagulian [29], Borrego [32] R2, RMSE
PM10 RF Karagulian [29], Borrego [32] R2, RMSE
PM2.5 LR Di Antonio [22], Chen [35] R2, RMSE
PM2.5 ANN Gao [31], Chang [34], Chen [35] R2, RMSE
PM2.5 RF Wang [36] R2, RMSE

It should be noted that the authors used sensors from different manufacturers, device
units from different manufacturers, different measurement sampling and averaging periods,
different measurement campaign periods (total period of measurements and season) and
different methodology (co-location method, laboratory method in controlled environment,
mobile laboratory), so it is not possible to conduct a “fair” comparison of the metrics results.
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The idea of the development and deployment of a low-cost sensor network for air
quality monitoring is present in modern research. In [37] authors proposed a hybrid sensor
network architecture with both stationary and mobile devices. They have developed a
model for predicting the pollutant level, algorithms for hybrid network deployment and
deployed a sensor network in a building. In [38] the capability of a network with low-cost
PM sensors to capture PM spatial and temporal variations is explored. Six devices are
mounted on fences/walls in the city of Southampton. The locations were chosen to be set
around a school, while one of them was placed close to the road. Promising results were
obtained, and in the next step, the authors plan to improve the spatial–temporal resolution
by deploying 40 air quality monitoring devices in the area of 50 km2 around the city. The
authors of [39], deployed 24 air quality devices across the city of Oslo on the kindergarten
premises. The focus was on measuring the NO2 (as one of the primary pollutants caused
by traffic) to observe the proposed data fusion methodology for creating urban air quality
maps. They showed that it was possible to obtain and extract valuable information from
the deployed sensor network and develop urban air quality maps with high resolution by
using the data fusion methodology. In [40], authors observed a network with 10 devices
deployed in the city of Bari (schools, streets, port, buildings) on the fixed locations and one
mobile device that was mounted on top of the public bus (CO, CO2, NO2, O3, SO2, PM1,
PM2.5, PM10, T and RH). It was quite a long campaign (June 2015–December 2017) and
after a detailed result analysis, it was concluded that the usage of low-cost sensor devices
showed promising results that could address the data quality objective of the indicative
measurements [6]. The authors of [41] developed a rapid deployment method for low-cost
sensors deployment. The method has three phases: preparation, implementation and
modification. In the first phase, the model is fed by basic input data (objectives, spatial
data preparation, elimination rules), then the implementation phase includes information
about the desired deployment density, unnecessary area elimination and algorithm settings.
The proposed algorithm takes into account the geographic environment, available power
supply, transmission networks, etc. The obtained result is the recommended number of
sensor and deployment locations. In [42], the authors deployed 40 sensor devices (NO,
NO2, CO, CO2) at the London Heathrow Airport and defined an analytical approach in
order to distinguish long transport emissions from the airport emissions. The study was
conducted during a five–week period (October–November 2012) and the implemented
approach has managed to calculate ratios of the airport activities in different locations of
the airport. They claim that their sensor network approach could be applied to a wide
range of environmental pollution studies. A survey on existing state-of-the-art showed that
the influence of RH and T on pollutant measurements is undisputable. It was also shown
that different types of ML algorithms can successfully model these dependencies and
improve the accuracy of various low-cost sensors. However, to the best of our knowledge,
no paper has performed a comparative analysis of the calibration for low-cost sensors
for CO, NO2 and PM10, taking into account RH and T influence, while comparing the
results obtained with and without the RH and T as input features to the algorithm, thus
quantifying the improvements RH and T can contribute to. Furthermore, no research paper
has performed the calibration of low-cost CO, NO2 and PM10 sensors on data gathered
from four different seasons, and tested the calibration of low-cost sensors using data from
two consecutive years.

In this paper, the approach (LR calibration is used as a benchmark) from our earlier
work [11] is taken further to additionally improve the calibration algorithms with the
aim of increasing the measurement accuracy, taking into account the impact of the air
RH and T on the readings by developing appropriate RH and T corrections by using
ML. A detailed comparative analysis of the sensors’ behavior during a long observation
time is performed (2 consecutive years). The selected observed months are from four
different seasons (February, April, August, October), to ensure that the analysis of the
applied ML algorithms performance is conducted on various weather conditions, thus



Sensors 2021, 21, 3338 7 of 22

taking into account different values of relative humidity and temperature depending on
the observed season.

Even though the influence of RH and T on the low-cost sensors is “well-known”, and
there is existing research that proves the correlation, there is no research that has quantified
the differences in the performance of ML algorithms on calibration, including these two
parameters (i.e., weather conditions). The calibration of a sensor was also conducted using
a small sample of data from the observed month in combination with the data gathered
from a preceding year.

The main contributions of the paper are the method and approach for the calibration
of the low-cost sensors (CO, NO2 and PM10) using corrective measures (impact of RH
and T), evaluated on different ML algorithms for the measurements taken during four
different seasons over the period of two years. It was shown that all analyzed sensors are
highly operable in the observed period (in accordance with their warranty period), with
acceptable performances that are significantly improved by using proposed calibration
algorithms and procedures, so that they can be used reliably in MSUs to provide a better
spatial resolution within air quality measurement networks.

In addition to this, the discussion section contains a detailed analysis and recom-
mendations on how low-cost sensors could be used for complementary measurements
in order to increase spatial and temporal measurement resolution in combination with
existing public monitoring networks. The deployment expenses are considered; the details
about one possible low-cost monitoring station are provided from a practical point of view
(device weight, dimensions, data transmission technology selection, etc.). Recommenda-
tions about the selection of location and mounting of a device are given. Finally, a hybrid
sensor network approach is elaborated, which consists of reference monitoring stations
supported by multiple low-cost devices. In this approach, low-cost sensors are virtually
co-located with the reference monitoring station, thus making the recalibration process
much easier. On the other hand, reference monitoring stations are supported and are
implicitly expanded with spatially distributed complementary measurements.

The paper is organized as follows: In Section 2, the calibration procedure is explained,
and the used ML methods are described. In Section 3, obtained results and the evaluation
of performances are presented. In Section 4, a discussion about the results and paper
contribution is elaborated. Finally, Section 5 provides conclusions and directions for
future work.

2. Materials and Methods
2.1. Sensors and Data Collection

The collection of the data was performed by using a single low-cost sensor station and
a single public air quality Automatic Monitoring Station run by the Serbian Environmental
Protection Agency as a reference. The data from the public air quality monitoring station
in Belgrade (Serbia) was collected during the period February–October during 2019 and
in the same period (February–October) during 2020. The low-cost sensor station sensors
are used from an air quality DunavNET ekoNET device AQ10x [9] for outdoor air quality
measurements. This device is equipped with CO, NO2, SO2, O3 (Alphasense), temperature,
air pressure, relative humidity sensors (Bosch BME 280), PM1, PM2.5 and PM10 (Plantower).
The data from the device are then statistically correlated to the values captured from the
official monitoring station for the exact same time intervals.

Having in mind that CO, NO2 and PM10 are not previously evaluated in this manner
and that these are the most commonly used sensors, we have selected them for further
evaluation. The reference measurement stations that were used in this paper provide
pollutant measurements that are averaged on an hourly basis. On the other hand, the
low-cost sensors that are used provide measurements every minute are then averaged for
each hour to match the reference ones. Technical specifications of sensors are given in
Table 2.
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Table 2. Sensor’s characteristics.

Pollutant Manufacturer Model Range Unit

CO Alphasense CO-B4 0–50 ppm ppm or mg/m3

NO2 Alphasense NO2-B43F 0–20 ppm ppb or µg/m3

PM10 Plantower PMS7003 0~1000 µg/m3 µg/m3

2.2. Calibration Methods

The performance of sensor devices (MSUs) is usually assessed using the mean error
and/or correlation coefficients with respect to a reference laboratory or public monitor-
ing stations’ equipment data. However, the behavior of the low-cost sensors calibrated
in a laboratory can change from the laboratory to the field environment due to certain
interferences (different gases, higher range of T and RH) that were not evaluated in the
laboratory. In the field collocation of devices, with reference public monitoring stations or
professional measuring instruments, measurements helped to compare and calibrate the
low-cost sensors according to the data obtained, and in this case, the advantage is that the
low-cost sensors were exposed directly to the desired environment in which they are to
be deployed. Different approaches are used to increase the accuracy of the measurement
and to develop correction algorithms. Although the low-cost sensors are to be tested under
several established conditions and compared to reference instruments, there is a lack of
uniform guidelines, protocols or standards for the application of this new technology for
regulatory purposes [29].

For calibration purposes, one of the most common methods, (suitable also because of
its implementation simplicity) the Least Squares Method (LSM) [43], was used. It performs
line fitting based on the minimization of the sum of the squares of deviations from a
straight line S = ∑n

i=1(yi − a − bxi)
2 and calculates the line coefficients a and b. Let n be

the number of experimental points, i.e., number of conducted measurements. Denoting by
yi the reference values (from the public monitoring station) and by xi the measured values
(from AQ10x device). After “calibration”, i.e., calculation of parameters a and b by LSM,
the next step is to calculate the correlation of the obtained “calibrated” results with the
results from the public monitoring station.

In Table 3, the mean, median and standard deviation values for T and RH for observed
months and years are presented:

Table 3. Averaged/Median/Standard deviation (Std) values for T and RH.

Parameter February April August October

Average T [◦C] 2019
Average T [◦C] 2020

6.8
7.7

9.2
11.7

25.1
23.7

16.3
18.6

Median T [◦C] 2019
Median T [◦C] 2020

8.1
5.9

11.1
9.7

23.2
24.9

17.9
16.1

Std T [◦C] 2019
Std T [◦C] 2020

5.5
3.9

4.9
5.7

4.6
4.5

4.5
3.9

Average RH [%] 2019
Average RH [%] 2020

74.1
71.3

54.3
48.9

59.2
60.1

64.9
62.1

Median RH [%] 2019
Median RH [%] 2020

70.9
72.7

51.1
52.1

61.3
59.5

61.8
64.1

Std RH [%] 2019
Std RH [%] 2020

16.5
17.4

16.1
17.1

19.3
15.1

16.4
15.8

As a benchmark for a detailed study performed in this paper, in Table 4, corresponding
R2 coefficients are given for observed gases collected during four different parts of the year
2019 (February, April, August, October). LR calibration method is applied. For all four
observed periods of interest, the sample size was a 15-day period, and the reference values
are obtained once per hour (averaged measurement values per one hour), yielding the
sample size of 15 × 24 = 360 per month.
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Table 4. Coefficients obtained for observed periods of 2019.

Pollutant
R2

February April August October

CO 0.933 0.949 0.861 0.946
NO2 0.784 0.846 0.671 0.828
PM10 0.716 0.849 0.664 0.786

From Table 4, it can be concluded that T and RH (stated in Table 1) considerably
influence the behavior of low-cost sensors, which is visible for the period of February and
August when low and high T influence measurements (the lowest R2 was in August when
temperatures were extremely high on average and in February when the temperatures
were low). RH also had an influence, especially in the period when these values were high.
Extreme values of T (low and high) and RH (high values) could cause a “peak” in the
measurements from one side, and from the other, T (low and high) shifts the sensitivity
of measurements to the lower levels, which correspondingly produces results with lower
accuracy (it is visible in February and August).

2.3. Machine Learning Algorithms

As the first step of calibration performance evaluation, several ML algorithms are
selected that showed good performance in previous studies, and performed initial evalua-
tion in order to obtain the most promising algorithms for further detailed evaluation. In
this paper, a comparison between different ML algorithms using 10-fold cross-validation
was performed with a 70/30 train–test split (for the data grouped together from all four
observed periods). The evaluated algorithms were LR, two architectures of ANNs, RF,
SVM and AdaBoost. The evaluation was performed for each measured pollutant separately,
with the input for each algorithm being RH, T and the raw low-cost sensor data, and the
output is the data from the reference sensor for the respective pollutant (Figure 1).

Figure 1. Measurement correction.

Each algorithm was evaluated using the metrics R2, RMSE and NRMSE.
The results of the cross-validation are shown in Table 5.

Table 5. Averaged metrics calculated on the test sets during cross-validation 2019.

Algorithm
CO NO2 PM10

R2 RMSE R2 RMSE R2 RMSE

Linear regression 0.935 0.066 0.737 13.412 0.837 12.551
Neural network 1 (2 HL 1) 0.941 0.065 0.869 9.450 0.839 12.583
Neural network 2 (3 HL) 0.943 0.063 0.872 9.344 0.850 12.124

AdaBoost 0.924 0.074 0.843 10.360 0.846 14.560
Random forest 0.945 0.060 0.894 8.540 0.872 11.123

SVM 0.933 0.070 NC 2 NC 0.835 12.748
1 HL, hidden layer; 2 NC, non-convergent.
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The two algorithms that have achieved the best performance (highest R2 and the
lowest RMSE) regarding all three measured pollutants are ANN [44] (with 3 HL) and
RF [45]. These two algorithms were used for further calibration testing.

During the initial cross-validation, two ANN architectures were tested, one with two
hidden layers, and one with three hidden layers. Each of the hidden layers had 20 neurons,
and the activation function of the hidden layers was the hyperbolic tangent. The ANN
with three hidden layers had achieved better results for all pollutants, so this particular
architecture was used for further calibration testing in this paper. The ANN overfitting was
regulated by keeping the number of neurons per layer relatively low while tracking the
loss function on the validation set (25% of the training set). The RF contained 100 decision
trees and each decision tree had all three features (low-cost sensor measurement, RH and
T) as the input since selecting anything less than three features would make some trees
lack the low-cost sensor measurement as an input, which would make them unable to
create valid predictions. Both the mentioned algorithms were implemented in the Python
programming language. The RF was implemented using the scikit-learn library, while the
ANN was implemented in TensorFlow.

3. Results and Performance Evaluation

In this section, obtained calibration results for the selected methods (LR, ANN and RF)
are presented and the performance evaluation is conducted. Firstly, we observed the be-
havior of the selected algorithms when data from all four months in 2019 are concatenated.
In Table 6. the averaged results of the cross-validation using data from all the months
are presented. In the case of LR, there is no train (calibration)/test period, rather the
algorithm is applied to the whole data set. For the RF and ANN algorithms, the results on
the calibration set are expected to be better than the ones on the test set, but the test results
correspond to the results that the algorithm could obtain in practice. Having this in mind,
the ML algorithms will be compared based on the test set results, with the benchmark
results being the ones obtained by the LR performed on the entire dataset.

Table 6. All months 2019, CO, NO2, PM10, LR, ANN, RF, calibration and test set.

Pollutant, Algorithm (Input Features)
R2 RMSE NRMSE

Calibration Test Calibration Test Test

CO, LR (raw) 0.931 0.068 0.264
CO, ANN (raw) 0.927 0.927 0.070 0.070

CO, ANN (raw, RH, T) 0.945 0.943 0.061 0.063 0.244
CO, RF (raw) 0.988 0.915 0.028 0.075

CO, RF (raw, RH, T) 0.994 0.945 0.022 0.060 0.233
NO2, LR (raw) 0.793 11.980 0.455

NO2, ANN (raw) 0.809 0.797 11.610 11.913
NO2, ANN (raw, RH, T) 0.908 0.872 8.040 9.340 0.348

NO2, RF (raw) 0.967 0.762 4.817 12.860
NO2, RF (raw, RH, T) 0.986 0.894 3.162 8.543 0.325

PM10, LR (raw) 0.794 14.112 0.453
PM10, ANN (raw) 0.782 0.774 14.687 14.969

PM10, ANN (raw, RH, T) 0.910 0.850 9.482 12.121 0.389
PM10, RF (raw) 0.959 0.709 6.374 17.198

PM10, RF (raw, RH, T) 0.982 0.872 4.140 11.124 0.357

It is shown that there is a clear difference between the results achieved when RH
and T are included as the input to the ML algorithm calibration process. Better results
were achieved regardless of which pollutant was selected, and regardless of the set type
(calibration or test) in the case when RH and T are included as a calibration factor. The
obtained results are to be expected since the influence of RH and T on low-cost sensors
cannot be disputed. Furthermore, it is shown that both algorithms (RF and ANN) can
model these influences successfully. It is also important to note that when the raw sensor
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data are the only input, ANN achieves superior results on the test set, regardless of the
pollutant. This is most likely due to the ability of the ANN to better model non-linear
functions of single variables due to the presence of activation functions. On the other hand,
RF is superior if RH and T are taken into consideration.

It can be concluded that CO has the overall lowest value for NRMSE, which is expected,
since CO generally shows the best R2 value. It can also be observed that both the ANN
and RF additionally lower the RMSE, and therefore the NRMSE value for each pollutant.
By using the NRMSE parameters as a measure of comparison between the performances of
the algorithms for different pollutants, we can see that the biggest improvement can be
seen for the NO2 with the RF algorithm. This stands in line with the biggest improvement
for the R2 factor, which is present in the same case.

In the following text, we explore the calibration results for each observed month in
2019 separately. Tables 7–10 contain the results obtained using the 10-fold cross-validation
only on the data from the corresponding month in 2019 (i.e., February, April, August and
October), with a 50/50 train/test split. This data split was used instead of the 70/30 one be-
cause of the size of the dataset for each individual month, to ensure testing was performed
on a sufficiently large data sample. In the case of LR, there are no train/test periods, rather
the algorithm is applied to the whole data set.

Table 7. February 2019, CO, NO2, PM10, LR, ANN, RF.

Pollutant, Algorithm (Input Features)
R2 RMSE

Calibration Test Calibration Test

CO, LR (raw) 0.933 0.053
CO, ANN (raw, RH, T) 0.980 0.968 0.031 0.038

CO, RF (raw, RH, T) 0.993 0.934 0.017 0.052
NO2, LR (raw) 0.784 8.940

NO2, ANN (raw, RH, T) 0.857 0.832 7.986 8.625
NO2, RF (raw, RH, T) 0.985 0.904 2.360 5.976

PM10, LR (raw) 0.716 12.012
PM10, ANN (raw, RH, T) 0.780 0.737 11.567 12.549

PM10, RF (raw, RH, T) 0.962 0.767 4.436 10.221

The results in Table 7 show that for the CO calibration, only the ANN algorithm
surpassed the reference LR results. For the other two pollutants, RF has proven to be better
with a significant improvement achieved for the NO2.

Table 8. April 2019, CO, NO2, PM10, LR, ANN, RF.

Pollutant, Algorithm (Input Features)
R2 RMSE

Calibration Test Calibration Test

CO, LR (raw) 0.949 0.054
CO, ANN (raw, RH, T) 0.982 0.974 0.032 0.039

CO, RF (raw, RH, T) 0.996 0.970 0.015 0.042
NO2, LR (raw) 0.846 9.278

NO2, ANN (raw, RH, T) 0.889 0.866 9.463 10.001
NO2, RF (raw, RH, T) 0.993 0.943 2.008 5.695

PM10, LR (raw) 0.849 8.070
PM10, ANN (raw, RH, T) 0.888 0.867 8.111 8.680

PM10, RF (raw, RH, T) 0.984 0.891 2.806 7.204

Results for the month of April stand in line with the results from February, indicating
that the ANN models the CO sensor dependencies better than RF. Furthermore, PM10
and NO2 were better modeled by the RF, which is also in line with the results from the
previous month.
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Table 9. August 2019, CO, NO2, PM10, LR, ANN, RF.

Pollutant, Algorithm (Input Features)
R2 RMSE

Calibration Test Calibration Test

CO, LR (raw) 0.861 0.048
CO, ANN (raw, RH, T) 0.894 0.885 0.039 0.047

CO, RF (raw, RH, T) 0.978 0.927 0.019 0.033
NO2, LR (raw) 0.671 11.286

NO2, ANN (raw, RH, T) 0.940 0.767 4.590 10.130
NO2, RF (raw, RH, T) 0.961 0.817 3.620 9.460

PM10, LR (raw) 0.664 8.740
PM10, ANN (raw, RH, T) 0.813 0.678 6.985 8.664

PM10, RF (raw, RH, T) 0.967 0.731 2.882 7.935

The month of August has the lowest R2 factor for the LR, for each pollutant. The
improvements of this factor, however, are still present and indicate the applicability of
the ML algorithms. In this month, the RF was shown to be better than the ANN for
every pollutant.

Table 10. October 2019, CO, NO2, PM10, LR, ANN, RF.

Pollutant, Algorithm (Input Features)
R2 RMSE

Calibration Test Calibration Test

CO, LR (raw) 0.946 0.068
CO, ANN (raw, RH, T) 0.969 0.968 0.052 0.062

CO, RF (raw, RH, T) 0.991 0.949 0.028 0.067
NO2, LR (raw) 0.828 13.761

NO2, ANN (raw, RH, T) 0.893 0.875 10.880 11.820
NO2, RF (raw, RH, T) 0.988 0.914 3.698 9.786

PM10, LR (raw) 0.786 16.492
PM10, ANN (raw, RH, T) 0.910 0.819 4.550 9.570

PM10, RF (raw, RH, T) 0.977 0.824 5.623 8.940

The results from October show that the best algorithm for CO is the ANN. Regarding
the NO2 and PM10 measurements, the RF was superior to the ANN.

It is shown that for every month in 2019, the RF obtained the best results both for NO2
and PM10 measurements. However, the results for the CO are mostly in favor of the ANN,
which achieved the best results for every month except August, where the RF performed
better. It is important to note that the trend of lowering the RMSE does correspond to
the increase in the R2 factor, in each observed month individually, and for every applied
algorithm. The trends that the R2 factor and RMSE follow within one month are important,
but the comparison between months does have to include a careful evaluation since the
lower concentrations of pollutants tend to influence the R2 score negatively but can lower
the RMSE.

As a further step of evaluation, we present the scatter plots for different pollutants
and the applied algorithms, i.e., LR, ANN and RF. For ANN and RF algorithms, the values
from the test set are presented. In Figure 2, the results for the case where the data from
all months in 2019 is concatenated together, are presented. The axis limits were chosen to
maximize the usage of the space within each graph, and as such, cause a number of outlier
measurements to be on the border of some graphs.



Sensors 2021, 21, 3338 13 of 22

Figure 2. Test results from all observed months of 2019.

The scatter plots of the data from all months in 2019 show that if only the LR is
implemented, the best correlation with the reference measurements is obtained for the
CO. ANN and RF both improve the CO calibration, with the ANN having dispersed point
placement and the RF having clusters. Particularly, the RF shows scatter points clustered
into vertical lines. This means that for a small interval of reference measurements, the
RF algorithm tends to return the same values. Although the NO2 low-cost sensor has the
same measurement principle as the CO one, the nature of these pollutants and the sensors
that measure them do vary. For example, in the NO2–LR scatter plot, it is clearly shown
that by only using the raw sensor measurements as the inputs, a good linear correlation
cannot be obtained, which was possible for CO. This is due to the nature of the data, as two
different linear trends can be observed in the mentioned scatter plot. The ANN and RF
algorithms show a clear improvement, although visibly less successful than the CO results.
The PM10 scatter plots show that a single linear trend is present in the data and that both
ML algorithms improve the correlation. It is interesting to note that due to the smaller
number of data points (less than 50 in both the training and test set) with the higher PM10
concentration values (above 100 ug

m3 ), the ANN seems to be unable to produce the higher
values for PM10 concentration and maxes out at around 125 ug

m3 . The RF, on the other hand,
does not seem to have this problem. The reason is due to the way both algorithms are
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structured, ANN has a single complex structure and adapts its weights numerically to
optimize the loss function based on the data from the calibration set. Should the number of
data points in a certain range be limited, their influence on the weights of the network will
be insufficient to make the ANN output values in that particular range. On the other hand,
the RF has many simpler structures (decision trees) where each is trained on a part of the
calibration dataset, and this training process does not optimize a single model to the data,
rather it fits many models on parts of the dataset.

In the following paragraphs, the results of the measurements obtained in the year
2020 are presented. The observation periods are the same as in 2019, i.e., for February,
April, August and October. The methodology used for 2020 is the same as the one used
for the year 2019, averaged hourly values obtained from devices were compared with
measurements obtained from the reference station, for the same periods of the year on a
15-day level.

Firstly, we observe the R2 values obtained by using LR on only the raw sensor data
for the appropriate month in 2020. Secondly, we use all the data from 2019 as the training
data and evaluate it on the data from a given month in 2020. Finally, we train a second RF
on a sample of 4 days from the respective 2020 month and combine it with the RF trained
on 2019 data. The idea is that by combining a small sample from the respective month
with the data from the previous year, a significant improvement of the sensor performance
could be achieved. The results obtained on the test sets (four different splits of 4/11 days
of the respective 2020 month) were averaged and displayed in table format for each of
the observation months of 2020. The RF algorithm was selected since it achieved the best
results when using all the data from 2019 as shown in Table 5.

Observing the results obtained for the month of February 2020 (Table 11), using both
the data from 2019 and 2020, the advantages of having a years’ worth of measurements
are clear. Regarding the CO measurements, the results obtained after the calibration on
the 2019 data decrease the R2 factor, but also lower the RMSE. A similar result, with both
the R2 and RMSE lowered, is obtained using the RF trained on the four calibration days
from 2020. Finally, the CO results obtained using a linear regression on the outputs of the
two RF algorithms show a merely identical R2 to the initial data, with the lowest RMSE
out of all the previously mentioned cases. The NO2 measurements show that the linear
combination of the RF algorithms shows the highest R2 factor, followed closely by the
2019 RF algorithm. The linear combination of the RF algorithms achieves by far the lowest
RMSE for the NO2 measurements. PM10 measurements show that the linear regression
based on the outputs of two RF algorithms show the highest R2 factor alongside the lowest
RMSE, which stands in line with the data from the other two pollutants. Overall, for the
month of February, combining the algorithms trained on the data from 2019 and 2020 gives
the best results.

Table 11. February 2020 test results, CO, NO2, PM10.

Pollutant (Input Set) R2 RMSE

CO, LR (raw) 0.952 0.091
CO, RF (2019) 0.953 0.077

CO, RF (2019 + 2020) 0.957 0.065
NO2, LR (raw) 0.830 18.564
NO2, RF (2019) 0.853 15.667

NO2, RF (2019 + 2020) 0.856 10.564
PM10, LR (raw) 0.833 28.356
PM10, RF (2019) 0.844 12.071

PM10, RF (2019 + 2020) 0.863 11.046

During the month of April (Table 12), there are some differences from the results
obtained in February. In April, a state of emergency was declared in Serbia. This has, in
turn, caused a steep decrease in the concentrations of all pollutants due to the lowered traffic.
This made it more difficult for the algorithms to correctly pick up on the dependencies
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between the raw and reference data. The combination of two RF algorithms has a lower
R2 factor than both the raw data and the results from the 2019 RF calibration. On the
other hand, the obtained RMSE for the linear combination of the RF algorithms is by far
the lowest out of all the obtained results for the CO measurements. The NO2 results are
similar to the results from February with the linear combination of the two RFs having
both the highest R2 and the lowest RMSE. The PM10 results show the highest R2 factor for
the raw data measurements. The results obtained from the RF calibrated on 2019 data are
acceptable but the results from the 2020 calibration data are quite poor. This is due to the
high variations of PM10 values in April 2020 (measurements up to 450 µg

m3 , while all other
months’ measurements were up to 141 µg

m3 ). This is quite interesting since the extremely
high PM10 values (>200 µg

m3 ) occurred after relaxing the state of emergency measures in
Serbia. All other pollutant concentrations were also increased in the same period but not
as drastically. The lowest RMSE is obtained for the linear combination of RFs but the R2

factor is significantly decreased.

Table 12. April 2020 test results, CO, NO2, PM10.

Pollutant (Calibration Set) R2 RMSE

CO, LR (raw) 0.954 0.079
CO, RF (2019) 0.955 0.064

CO, RF (2019 + 2020) 0.956 0.051
NO2, LR (raw) 0.569 23.625
NO2, RF (2019) 0.676 21.973

NO2, RF (2019 + 2020) 0.689 15.316
PM10, LR (raw) 0.786 71.302
PM10, RF (2019) 0.732 49.949

PM10, RF (2019 + 2020) 0.739 48.516

The results obtained for the month of August (Table 13) show a significantly lower R2

value on the raw data for all pollutants, compared to the previous two observed months.
The CO results show that the combination of RF algorithms based on data from 2019 and
2020 has the highest R2 value and the lowest RMSE. The NO2 and PM10 measurements
have a relatively low R2 value on the raw data, but the RF algorithms behave differently
for these two pollutants. The best results for the NO2 are obtained for the combination of
the two RF algorithms, with the R2 value almost unchanged from the raw data, but with a
significantly lower RMSE. On the other hand, the PM10 results are quite poor indicating
no possibility for calibration. The lifetime of a PM sensor based on the manufacturer
declaration is 1 year and at the moment of these measurements, it was already 1 year
and 7 months “old”, so this loss of accuracy is expected behavior. On the other hand, CO
and NO2 sensors have a warranty of 2 years, but a slight degradation of accuracy is to be
expected (notable for the NO2 sensor).

Table 13. August 2020 test results, CO, NO2, PM10.

Pollutant (Calibration Set) R2 RMSE

CO, LR (raw) 0.764 0.074
CO, RF (2019) 0.787 0.054

CO, RF (2019 + 2020) 0.801 0.035
NO2, LR (raw) 0.476 24.134
NO2, RF (2019) 0.440 17.834

NO2, RF (2019 + 2020) 0.477 7.917
PM10, LR (raw) 0.408 17.935
PM10, RF (2019) 0.303 8.872

PM10, RF (2019 + 2020) 0.249 8.201
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The results obtained from the October data (Table 14) indicate further degradation of
the PM10 sensor and an operable state of the NO2 sensor. Although the results from August
could indicate that both of the mentioned sensors suffered from significant degradation, it
is clear that the NO2 sensor was still operable in October while the PM10 sensor has lost
its functionality. The calibration results for CO show that the lowest RMSE was achieved
when the two RF algorithms are combined, while the highest R2 factor is present for the
raw data, but with a significantly higher RMSE. For the NO2 results, the highest R2 factor
is obtained by combining both RF algorithms, while the lowest RMSE is obtained using
only the RF trained on the data from 2019.

Table 14. October 2020 test results, CO, NO2, PM10.

Pollutant (Calibration Set) R2 RMSE

CO, LR (raw) 0.901 0.081
CO, RF (2019) 0.903 0.069

CO, RF (2019 + 2020) 0.904 0.059
NO2, LR (raw) 0.748 15.432
NO2, RF (2019) 0.779 10.993

NO2, RF (2019 + 2020) 0.785 10.366
PM10, LR (raw) 0.213 30.217
PM10, RF (2019) 0.134 26.418

PM10, RF (2019 + 2020) 0.219 34.650

The results obtained from the data of 2020 show that a significant improvement in the
sensors’ performance can be achieved by using a year’s worth of data in combination with
just 4 days from a respective month. The CO sensor shows a high initial correlation for
each month but an increased RMSE value when compared to the measurements from 2019,
although the measurement value range was similar. This does imply sensor degradation,
but the degradation can be easily modeled, and the results obtained from using both 2019
and 2020 data show promising results. The NO2 sensor does not achieve the results that
are as good as the CO sensor, but it is still sufficiently accurate and shows an improvement
with the implemented algorithms. The PM10 sensor has the most prominent degradation
as it is practically unusable going forward from the month of August 2020 (while it is
usable in February and April). Overall, apart from the limited lifetime of the PM10 sensor,
the data acquired during 2019 has shown to be applicable in the calibration of the same
sensor in 2020, with only 4 days from the observed month in 2020 as training data.

4. Discussion

In this paper, we have first considered data from CO, NO2 and PM10 obtained from a
9-month measurement campaign (from February to October 2019). In order to understand
the behavior of the sensors’ performances, four different periods (February, April, August,
October 2019) are observed, thus considering different values of RH and T. Different
ML algorithms were used, that take into account RH and T in the calibration process,
and the results are compared with the benchmark results obtained by the LR method. It
was shown that the results from this experiment were satisfactory and that they can be
further improved using the selected ML algorithms. This is important since it implies the
possibility of using low-cost sensors alongside reference ones, to create better spatial and
temporal measurement resolution. Generally, RF outperforms the ANN algorithm values
except for the CO pollutant (although RF is better than the ANN in August). By using ML
algorithms, the R2 values are increased for all pollutants in the observed months. These
improvements are summarized in Table 15.
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Table 15. R2 improvements for CO, NO2, PM10, LR, ANN, RF, by months in 2019.

Pollutant
R2 Improvement

February April August October

CO 0.035 0.025 0.066 0.022
NO2 0.120 0.097 0.146 0.086
PM10 0.051 0.042 0.067 0.038

The best improvement for every pollutant out of all the months in 2019 is achieved
in the month of August (and after that in February, where the influence of RH and T on
sensors was the second-highest). This could seem counter-intuitive since the best achieved
R2 values for August are the lowest out of all the months. However, the measurements
of the pollutants in August show the lowest R2 score when the LR algorithm is applied,
indicating the high influence of weather conditions on the measurements in that month.
The highest improvement rate achieved in August is a great example of how ML algorithms
can achieve much more than a simple linear calibration, as they can successfully model
non-linear dependencies between features. It is also important to mention that the achieved
results for every individual month are obtained using cross-validation based only on the
data from that particular month. The fact that such a clear improvement can be achieved
with limited data acquisition represents a significant conclusion in this field of research.
Acquiring air quality data is highly time-dependent as the process cannot be sped up in
order to obtain a larger dataset. By showing that ML algorithms can be used both on
every individual month, and on the concatenated data from all months, it is clear that ML
algorithms do not only successfully scale up with larger datasets, but also that they can
be scaled down to work with rather sparse data. Regarding the improvements for the
pollutants, the highest R2 increase for every month is achieved for NO2, followed by PM10,
and finally CO. This could mean that the influence of RH and T on the low-cost sensors
for NO2 is substantial and that the ML models successfully accommodated the sensors’
shortcomings. The CO correlation after LR is relatively high for each month, so a more
modest improvement is expected, and PM10 particles stand somewhere in between CO
and NO2 regarding the improvement rate.

In Table 16, the improvements when using data from all of the months are summarized.
Both ML algorithms show improvements, but RF shows slightly better performances than
ANN in all analyzed test cases, so only the improvements for RF are presented.

Table 16. R2 improvements for CO, NO2, PM10, RF, all months in 2019.

Pollutant R2 Improvement

CO 0.014
NO2 0.101
PM10 0.078

The improvements achieved using RF algorithms for the concatenated data from all
of the months show that the ML algorithms can successfully be used on a dataset with
varying weather conditions. It is also important to note that the results achieved for the
concatenated data from all moths are obtained using a 70/30 train–test split, while the data
for each individual month are obtained with a 50/50 train test–split. With a larger dataset
and a more favorable train–test split, it would be expected that the improvements listed in
Table 16 would be better than the individual improvements for each month, but that is not
always the case. For example, the improvements for NO2 for the month of April are greater
than the ones achieved for all months combined. The reason for this is the wide variety of
values of RH, T and NO2 in the dataset consisting of all four months and a relatively low
data count for such a feature space. If a substantial quantity of data were available, a deep
learning algorithm could be implemented that would most probably successfully model all
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different dependencies. In this implementation, with a limited data quantity, the division
of the calibration problem into monthly calibrations could be the optimal way, as is shown
in the acquired results.

We have then focused on the measurement campaign conducted in the year 2020,
repeating measurements with the same methodology as in the year 2019, the same four
months are observed with the same measurement protocol. The observations from 2020
were used to analyze the possibility of using data from the preceding year to calibrate the
same sensor in the present. It was also interesting to analyze the sensors’ performance after
an entire year of in-field measurements.

The obtained values for the CO sensor show that the overall performance of the sensor
in 2020 is quite equivalent to the one from 2019. Considering that the R2 values are high
for this sensor, a high usability of this low-cost device for at least two years is possible.
The NO2 sensor does not have a performance as good as the CO one and the degradation
is a bit more prominent. On the other hand, the R2 factor during the 2020 months is
still acceptable and shows that the NO2 sensor is also operable after two year’s worth
of measurements. The PM10 sensor has shown to be the most sensitive and the results
show it is operable through February and April 2020. This stands in line with the sensors’
warranties, as the CO and NO2 sensors have a 2-year warranty period and the PM10 sensor
has a 1-year warranty.

The best-obtained results, using a combination of two RF algorithms, show a range of
improvements. The improvements for the CO R2 factor, ranging from 0.002 to 0.037, are
overall not incredibly high. The initial R2 for this pollutant is, however, quite high, and
achieving a great improvement has shown to be unlikely. The NO2 R2 factor has the best
improvement out of all the considered pollutants, ranging from 0.001 to 0.12. The PM10
sensor has shown an improvement of 0.03 in February, where the calibration process could
be applied. The obtained results do not differ greatly from the improvements that were
achieved with the 2019 data.

In this paper, a comparative analysis of ML algorithms through a span of four months
during two consecutive years (2019, 2020) is performed. The months selected are from four
different seasons so that the analysis of the ML algorithm performance could be performed
on various weather conditions. Furthermore, a comparative analysis between different ML
algorithms was performed, as well as the investigation of the influence relative humidity
and temperature can have on the calibration. The difference between the performance of
algorithms that are based solely on the raw pollutant measurements, and the ones that
include RH and T as input features are shown. An investigation of the possibilities of
calibrating a sensor from the data gathered in the preceding year is also performed. It
is shown that by combining the data from 2019 and a small sample of 4 days from the
observed month in 2020, the improvements could be comparable to the results obtained
in 2019 when 7.5 days from the observed month were used for calibration. This opens
the possibility of reducing the duration of the calibration period of a low-cost sensor in
a given month by using previously acquired data. It is important to note that different
low-cost devices can perform differently and that one of the limitations of this work is that
the analysis was performed on a single low-cost device. It was also impossible to acquire
a continual stream of data from a reference monitoring station that could cover an entire
year, which would surely be beneficial for the calibration process.

Based on this comprehensive study, it is proven that the measurement accuracy of
every single sensor has its own sensitivity to T, RH, etc., and that for every pollutant a
different approach for increasing the reliability of measurements should be developed
and applied. By applying ML algorithms on the pollutant measurements, measurement
accuracy is further improved, thus allowing low-cost sensors higher reliability and capa-
bility to be used as a complementary network to public monitoring stations, which will
allow much higher measurement granularity, and the ability to observe air pollution at
micro-locations. Furthermore, the integration of low-cost air quality measurement sensors
will enable a higher density of air pollution assessment in urban areas and the develop-
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ment of sophisticated location-aware services for environmental protection, intelligent
traffic control, accident detection, air pollutant transport and dispersion monitoring, etc. A
detailed explanation of how it could be performed is provided in the following text.

A Hybrid Sensors Network Approach

It is obvious that by increasing the number of deployed devices and providing a
higher measurement frequency, one will obtain the results with better quality and accuracy,
thus improving the detection of the sources of pollution and personal exposure. Low-cost
devices are without a doubt more cost-effective than public monitoring stations. Based on
the available vendor’s information, the average ratio is between 1:20 and 1:25, i.e., the cost
of one public monitoring station is comparable with the cost of 20–25 low-cost devices for
the same set of pollutants observed. In order to obtain more insight into the usage of one
possible low-cost device [9], we have provided more detailed device characteristics and
universal recommendations about the selection of the location and mounting of the device.
Device dimensions are 180 × 180 × 265 mm3, weight is 1.5 kg and power consumption
is 2.5 W. Different data transmission technologies are supported: GPRS, 3G, 4G, NB-IoT,
LoRa, SigFox and WiFi. Generally, a low-cost device could be mounted on a wall, pole,
pillar or some other solid object. It is also important to take into account the scope of
monitoring (use case), distance from the pollution source, area topography, presence of
different kinds of obstructions and the availability of appropriate deployment space. The
objective of urban air quality monitoring is to capture and understand pollution trends and
people exposure in the observed areas (depending on the use case it could be micro (up to
0.1 km), middle (0.1–0.5 km), neighborhood (0.5–4 km) or urban scales (4–50 km) [46,47].
Urban areas usually have local microclimate areas with different pollution conditions
that could be of very small scales. Finally, in order to create a more accurate estimation
of pollution, which is actually the goal of this paper, it is useful to install devices with
low-cost sensors as complementary measurement devices that could be installed virtually
anywhere. Collecting the data from these devices allows the creation of city pollution
maps that can provide a deeper understanding of pollutants spatial distributions over
specific areas, and on the other hand, high temporal resolution is provided using real-time
measurements conducted every minute. In order to predict air quality with a higher
accuracy, ML could be applied to help identify pollution hotspots. Reference monitoring
stations are accurate but placed on fixed locations and quite expensive, while low-cost
devices are cheap and mobile but suffer from a problem of accuracy and calibration. The
most promising solution appears to be a combination of these two kinds of monitoring
stations, i.e., the creation of a hybrid sensor network that combines the best of these two
monitoring approaches. In this hybrid sensor network, a reference monitoring station
is supported by multiple low-cost devices. In this way, sensors are virtually co-located
with the reference monitoring station and their recalibration process is much easier (thus
providing higher measurement accuracy), while reference monitoring stations are enhanced
by spatially distributed complementary measurements. If some of the sensors start to
suffer from in-accuracy, recalibration could be performed by correlation with a reference
monitoring station or cross-calibration by comparison with recently re-calibrated devices in
the area.Our future work will be devoted to the development of a model for the deployment
of hybrid sensor networks and recommendations for the number of nodes and their spatial
distribution (density).

5. Conclusions

In this paper, different ML algorithms are applied on the low-cost sensors’ measure-
ments in order to improve the calibration algorithms taking into account the impact of the
air RH and T on the readings.

The main contributions of the research described in this paper are the method and
approach for the calibration of the low-cost sensors (CO, NO2 and PM10) using corrective
measures (impact of RH and T). The method was evaluated on different ML algorithms for
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the measurements taken during four different seasons (February, April, August, October)
in a period of two consecutive years.

The CO, NO2 and PM10, have shown satisfactory improvements after applying ML
correction algorithms (the best improvements were obtained for NO2, then for PM10 and
finally for CO). RF has shown better performances for NO2 and PM10 pollutants, while
ANN was better for CO. With these corrections, the accuracy of the low-cost sensors’ mea-
surement becomes more reliable and closer to the measurements obtained from reference
monitoring stations. Depending on the observed period, R2 is in the range from 0.927–0.970
for CO, 0.817–0.943 for NO2 and 0.731–0.891 for PM10.

After the analysis of the data from 2019, data from 2020 was taken into consideration.
The 2020 data was gathered during the same months as the data from 2019 to observe
sensor degradation and the possibility of calibration based on the data from the preceding
year. The obtained results show that a valuable improvement on the sensors’ performance
can be achieved by using 2019 data in combination with just 4 days from a respective
month in 2020. Regarding sensor degradation, the results are promising for the CO and
NO2 sensors, while the PM10 sensor had significant degradation in the second half of 2020.

Finally, the results of the research have shown that the low-cost sensors with adequate
correction algorithms could be used as good support for the current traditional air quality
monitoring stations. A detailed analysis performed on how low-cost sensors could be
used for measurements in order to increase spatial and temporal measurement resolution
together with public reference monitoring stations, i.e., a hybrid sensor network approach
is elaborated.

For future work, the influence of weather conditions on other types of pollutant
measurements using low-cost sensors (SO2, PM2.5, O3) will be performed. The cross-
sensitivity between pollutants can also be measured, by experimenting with different
pollutants as input features to the ML algorithms. The development of more complex ML
models (1D convolutional neural networks and long short-term memory networks) will
also be conducted, which will be trained on larger data samples. Finally, a hybrid sensor
network approach will be analyzed in more detail. The possibilities of cross-calibration
between low-cost sensors will be performed, by calibrating several low-cost sensors at the
same measuring site and analyzing if the calibration models can be swapped between the
sensors and still obtain satisfactory results.
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