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Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases

and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq

(snATAC-seq) to map skeletal muscle cell–specific chromatin accessibility landscapes in frozen human and rat samples, and

single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human.We additionally performmulti-omics pro-

filing (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle

fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-

species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all

nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site–distal ATAC-seq

peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find hetero-

geneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide as-

sociation studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns inmuscle mesenchymal stem cells

(∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs,

transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and

rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.

[Supplemental material is available for this article.]

Skeletal muscle tissue accounts for 30%–40% of body mass, which
is the largest tissue, on average, in adult humans and is central to
basic quality of life and complex diseases (Janssen et al. 2000;
Frontera and Ochala 2015). Like other tissues, skeletal muscle is
composed of a mixture of different cell types. Most of the tissue
is composed ofmuscle fibers, whichmaybe categorized into differ-
ent fiber types, each of which display distinct metabolic and mo-
lecular phenotypes. The proportion of muscle fibers accounted
for by each fiber type varies across individuals (Simoneau and
Bouchard 1989). Muscle-related diseases may differentially impact
different fiber types, and fiber type proportions are associated with
complex phenotypes, including aerobic and anaerobic exercise ca-
pacity and type 2 diabetes (T2D) status (Talbot and Maves 2016).
Muscle satellite cells are progenitors to muscle fibers, indispens-
able for the generation and regeneration of muscle (Relaix and
Zammit 2012); these cells are present in skeletal muscle tissue, as

are several other cell types, such as mesenchymal stem cells, that
cooperate in muscle regeneration (Judson et al. 2013; Klimczak
et al. 2018). Molecular associations with skeletal muscle tissue/
muscle fiber characteristics and muscle-related complex diseases
could be mediated in part by these stem cell–like populations;
for example, a genetic variant that alters the development of a sat-
ellite cell could carry important implications for later muscle func-
tion, just as some T2D-associated variants are proposed to impact
pancreatic/beta cell development rather than the function of ma-
ture beta cells (Travers et al. 2013; Mattis and Gloyn 2020) and fa-
cial morphology-associated variants may act through progenitor
cell populations (Xiong et al. 2019). Immune cells infiltratemuscle
tissue and communicate withmuscle cells as well, playing a partic-
ularly important role following injury (Pillon et al. 2013). Profiling
the transcriptomic and epigenomic landscapes of these cell types
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and muscle fiber types may therefore contribute to our under-
standing of the biology ofmuscle development andmuscle-related
complex traits.

Bulk profiling of skeletal muscle tissue ignores this heteroge-
neity and is dominated by the most common cell types (muscle fi-
bers), but single-cell/-nucleus methods overcome this and allow
profiling of the constituent cell types. In the case of skeletal mus-
cle, the distinction between single-nucleus and single-cell profil-
ing is particularly important as (1) skeletal muscle fibers have an
elongated shape that may make them difficult to capture in sin-
gle-cell suspensions, and (2) muscle fibers are multinucleated,
meaning that a single-cell measurement will capture the output
of many nuclei. Previous single-cell RNA-seq studies of human
(Rubenstein et al. 2020; Xi et al. 2020; De Micheli et al. 2020b),
mouse (The Tabula Muris Consortium 2018; Dell’Orso et al.
2019; Giordani et al. 2019; Pawlikowski et al. 2019; Oprescu
et al. 2020; De Micheli et al. 2020a), and pig (Qiu et al. 2020) skel-
etal muscle tissue either capture no muscle fiber nuclei or capture
them in unrepresentative proportions. Bulk analysis of pooled, dis-
sectedmuscle fibers has generated fiber type-specific transcription-
al profiles (Chemello et al. 2011, 2019; Raue et al. 2012; Alessio
et al. 2019), and analysis of specific isolated muscle resident cell
populations (Fukada et al. 2007; Cho and Doles 2017; Liu et al.
2019) has generated insights into targeted cell subpopulations,
but these studies are necessarily biased toward specific cell types.

Here, we employ single-nucleus RNA-sequencing (snRNA-
seq), ATAC-seq (snATAC-seq), and multiomic profiling (joint
snRNA-seq+ snATAC-seq) on the 10x Genomics platform to pro-
file gene expression and chromatin accessibility of frozen skeletal
muscle cell populations in human and rat. To our knowledge,
this represents the first snATAC-seq data from rat skeletal muscle
tissue and the first joint single-nucleus gene expression+ chroma-
tin accessibility data from human and rat skeletal muscle tissue.
First, we examine the influence of fluorescence-activated nucleus
sorting (FANS) and nucleus loading concentration on the perfor-
mance of the 10x Genomics platform. Next, we perform clustering
of the snRNA-seq and snATAC-seq nuclei to determine the cell
types detected in skeletal muscle tissue samples and map their
respective transcriptomes and chromatin landscapes. We then in-
tegrate the resulting genomic maps with UK Biobank and T2D-
related GWAS results to explore the relationship between these
cell types and a broad range of human phenotypes and diseases
and nominate causal SNPs at several genomic loci.

Results

FANS negatively impacts 10x snATAC-seq results

Before being loaded onto the 10x platform, nucleimust be isolated
from the samples of interest. This process involves cell lysis, which
produces viable nuclei as well as substantial cellular debris, some of
which remains in the final nuclei suspension. Debris reduces the
quality of the resulting libraries. By staining the DNA in live nuclei
and using FANS to selectively filter the suspension for stained en-
tities, one can remove cellular debris in the suspension, potentially
improving the purity and quality of the suspension loaded onto
the 10x platform. Debris must be removed post-lysis, as lysis itself
produces much of the debris. Although FANS may result in sub-
stantial nucleus loss, this is not a problem when enough input is
available. However, the FANS process could stress the nuclei or oth-
erwise alter the snRNA-seq and snATAC-seq results. Comparing
quality control metrics and (in the case of snRNA-seq) aggregate

gene expression or (in the case of snATAC-seq) aggregate ATAC-
seq peaks/signal between snRNA-seq and snATAC-seq libraries
generated from nuclei that either did or did not undergo FANS al-
lows one to detect substantial changes that FANS may introduce.
Also, because the aggregate of reads from a snATAC-seq library
should resemble the profile of an ATAC-seq library on the same bi-
ological sample, one can generate bulk and single-nucleus libraries
from a single sample and compare quality control metrics and
ATAC-seq signal between them. Therefore, to determine the effect
of FANS on 10x snRNA-seq and snATAC-seq results, we performed
three nuclear isolations from a single human muscle sample,
mixed the resulting nuclei together, and performed FANS (using
DRAQ7 staining) on one half of the suspension (Fig. 1A). DRAQ7
is a DNA stain and was used to sort positive nuclei. The FANS
and non-FANS suspensions were each used to produce two repli-
cate snATAC-seq and two replicate snRNA-seq libraries, resulting
in eight total libraries (four snATAC and four snRNA).We also gen-
erated two independent bulk ATAC-seq libraries from the same bi-
ological sample, allowing us to compare snATAC-seq profiles, with
and without FANS, to a comparable bulk ATAC-seq profile.

First, we examined the four snATAC-seq libraries, comparing
the aggregate signal for each library to bulkATAC-seq libraries from
the same biological sample. We called peaks for the four libraries
and ran the ataqv quality control software package (Orchard
et al. 2020) on the aggregated data to examine the overall transcrip-
tion start site (TSS) enrichment and fragment length distributions.
The fragment length distributions for each library resembled the
expected stereotypical ATAC-seq fragment length distribution,
showing an abundance of short fragments as well as mononucleo-
somal fragments (Fig. 1B; Buenrostro et al. 2013); however, the TSS
enrichment was lower in the FANS libraries (Fig. 1C), indicating
that the FANS libraries had a lower signal-to-noise ratio. This differ-
ence in signal-to-noise ratio is demonstrated when visualizing the
ATAC-seq signal at genomic regions active in muscle, such as the
ANK1 locus (Fig. 1D; Scott et al. 2016).We additionally overlapped
TSS-distal ATAC-seq peaks from each of the libraries with existing
chromatin states from diverse tissues and cell types (Roadmap
Epigenomics Consortium et al. 2015) and found that the peaks
from the non-FANS libraries showed considerable overlap with
skeletalmuscle enhancers, whereas the peaks from the FANS librar-
ies showed poor overlap (Supplemental Fig. S1). ATAC-seq signal
across FANS libraries showed poor correlation with the two bulk
ATAC-seq libraries from the same sample (Supplemental Fig. S2).
We therefore concluded that FANS, at least as it was performed
here, has a clear negative impact on 10x snATAC-seq results.

Next, we examined the four snRNA-seq libraries. All four li-
braries showed high correlation, indicating that FANS does not
substantially alter snRNA-seq results at the pseudobulk gene ex-
pression level (Fig. 1E). In order to determine if FANS altered the
yield of quality nuclei, we used read counts and mitochondrial
contamination to select quality nuclei from each library
(Supplemental Fig. S3). We found that FANS substantially in-
creased the number of quality nuclei obtained (2264 and 2343
for non-FANS libraries; 8423 and 7779 for FANS libraries). We
therefore concluded that FANS has little effect on pseudobulk
gene expression measurements but may alter nucleus yield.

snATAC-seq and snRNA-seq results are robust to nucleus

loading concentrations

The concentration at which nuclei are loaded onto the 10x plat-
form is an important parameter affecting data quality and the
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number of nuclei available for downstreamanalysis. Increasing the
loading concentration increases the maximum number of nuclei
from which data can be obtained; however, it also increases the
probability that multiple nuclei end up with the same gel bead,
thereby increasing the doublet rate. Balancing these outcomes is
important to maximize the amount of quality data and number
of nuclei available for downstream analysis. To evaluate the effect
of increasing the number of nuclei loaded onto the platform, we
performed a separate experiment in which we isolated nuclei
from two muscle samples, mixed them together, and then loaded
either 20k or 40k nuclei (as quantified by a Countess II FL
Automated Cell Counter) into a 10x well for snRNA-seq and for
snATAC-seq (Fig. 1F). We also generated two independent bulk
ATAC-seq libraries from the biological sample for which bulk
ATAC-seq profiles were not already available, allowing us to com-
pare snATAC-seq profiles to comparable bulk ATAC-seq profiles.

The snATAC-seq libraries displayed the expected fragment
length distributions and comparable TSS enrichments (Fig. 1G,
H). We examined the aggregate signal of the snATAC-seq libraries
next to bulk ATAC-seq libraries from the same samples and con-
firmed that both libraries showed strong signal, comparable to
that of bulk data (Fig. 1I). Overlap between TSS-distal ATAC-seq
peaks called on both libraries and chromatin states were likewise
similar, showing relatively high overlap with skeletal muscle en-
hancers (Supplemental Fig. S4), and the ATAC-seq signal in the li-

braries correlated with bulk ATAC-seq signal to an extent
comparable to the correlation between twobulk ATAC-seq libraries
(Supplemental Fig. S5). After selecting quality nuclei (Supplemen-
tal Fig. S6), we found that the higher loading concentration yield-
ed 2104 nuclei whereas the lower concentration yielded 830nuclei
(after doublet removal).

Correlation between the snRNA-seq libraries was high, indi-
cating that the loading concentration could be changed substan-
tially without compromising data quality (Fig. 1J). We again
found the higher loading concentration yielded more quality nu-
clei than the lower concentration (3475 vs. 2056) (Supplemental
Fig. S7) after doublet removal. As the aggregate gene expression/
ATAC-seq signal profile was comparable between loading concen-
trations, we concluded that snRNA-seq/snATAC-seq results are
robust to the number of nuclei loaded. One caveat to these conclu-
sions is that the actual number of nuclei loaded into the well may
differ from our estimated numbers, as debris in the nuclei preps
may affect the accuracy of the nuclei counts.

Clustering of human and rat snATAC-seq and snRNA-seq

identifies skeletal muscle cell types

To determine cell types present in skeletal muscle samples, we se-
lected high-quality ATAC and RNA nuclei from the FANS/non-
FANS libraries and the 20k/40k nuclei libraries generated above
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Figure 1. Impact of FANS and loading concentration on 10x Genomics snATAC-seq and snRNA-seq results. (A) Study design to determine the effect of
FANS on snRNA-seq and snATAC-seq results. Muscle cartoon adapted from Scott et al. 2016. HSM1 refers to one specific skeletal muscle sample (“human
skeletal muscle 1”). Bulk ATAC-seq was performed on HSM1 as well (two replicates, each separate nuclei isolations). (B) Fragment length distribution and
(C ) TSS enrichment for two snATAC-seq libraries that did not undergo FANS and two that did, as well as two bulk ATAC-seq replicates from the same sample
(“Bulk”). (D) ATAC-seq signal at the ANK1 locus for FANS or non-FANS input snATAC-seq libraries, and the two bulk ATAC-seq libraries. All tracks are nor-
malized to 1-M reads and have the same y-axis range corresponding to zero reads per million to three reads per million. Genemodel (GENCODE v19 basic)
displays protein coding genes only. (E) Correlation between FANS and non-FANS snRNA-seq libraries; each point represents one gene. (F ) Study design to
determine the effect of loading 20k versus 40k nuclei into the 10x platform, utilizing HSM1 as well as a second sample, HSM2 (“human skeletal muscle 2”).
Bulk ATAC-seq was performed on HSM1 (same libraries as in A) and on HSM2 (two replicates, each separate nuclei isolations). (G) Fragment length dis-
tribution and (H) TSS enrichment for snATAC-seq libraries after loading 20k versus 40k nuclei, as well as for the four bulk ATAC-seq libraries (two each
from the two muscle samples, “HSM1 bulk” and “HSM2 bulk”). (I) ATAC-seq signal at the ANK1 locus for the 20k and 40k libraries and the four bulk
ATAC-seq libraries. All tracks are normalized as in D. Gene model (GENCODE v19 basic) displays protein coding genes only. (J) Correlation between
snRNA-seq libraries resulting from loading 20k versus 40k nuclei.
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and performed joint clustering. snATAC-seq libraries that under-
went FANS were excluded as they failed to provide quality data.
We generated and included a snATAC-seq library containing a
mix of human and rat nuclei (Supplemental Figs. S8, S9;
Supplemental Tables S1, S2), as well as a single-nucleus multi-
omics library (gene expression+ chromatin accessibility from the
same nucleus) containing a mix of human and rat nuclei
(Supplemental Figs. S10, S11). Information about the biological
samples and post-QC nucleus summary statistics for each library
is provided in Supplemental Table S3. In total, we obtained
26,340 human snRNA-seq (mean UMIs=8159), 5274 human
snATAC-seq (mean reads = 97,173), 643 rat snATAC-seq (mean
reads = 138,705), 1265 human multiome (mean RNA UMIs=
2638; mean ATAC reads = 66,470), and 722 rat multiome (mean
RNA UMIs =2346; mean ATAC reads = 74,544) nuclei. We used
Seurat (Butler et al. 2018; Stuart et al. 2019) to jointly cluster the
snRNA-seq, snATAC-seq, and multi-omics nuclei and identified
seven cell type clusters (Fig. 2A). Nuclei from different modalities,
species, and libraries integrated well, indicating that clusteringwas
not driven by technical factors (Fig. 2B). To ensure that the clusters
were robust, we additionally used integrative nonnegative matrix
factorization (iNMF) as implemented in the LIGER (linked infer-
ence of genomic experimental relationships) software package
(Welch et al. 2019) to jointly cluster the nuclei and found that clus-
ter assignments were largely concordant (95.9% of nuclei were as-
signed to the same cluster) (Supplemental Fig. S12).

We used marker genes to assign cell types to each cluster
(Supplemental Table S4) and found clear concordance between
human snRNA-seq and snATAC-seq (Fig. 2C,D). We foundmarker
gene expression and accessibility in the rat data to be largely con-
sistent with the human data, though examination of the myosin
heavy chain genes, used to distinguish differentmuscle fiber types,
indicated that a considerable number of rat type II muscle fiber nu-
clei were likely present in the type I muscle fiber cluster (the oppo-
site did not seem to occur; i.e., the type II muscle fiber cluster
appeared to be relatively free of rat type I muscle fiber nuclei)
(Supplemental Fig. S13). This mixing of some rat muscle fiber nu-
clei is a limitation of our data; because only 1365 of 34,244 (4.0%)
of all nuclei used for clustering are rat nuclei, the human data drive
the clustering. As expected, the vast majority of the profiled nuclei
(88.8%) came from muscle fibers (Fig. 2E).

We sought to independently assess cluster identity without
relying on marker gene patterns and therefore focused on clus-
ter-level TSS-distal ATAC-seq peaks, many of which would not be
taken into account when assigning cell types using marker genes.
We developed a logistic regression approach to score the similarity
between these peaks and enhancer chromatin states from 127
Roadmap Epigenomics cell types (Fig. 2F; Roadmap Epigenomics
Consortium et al. 2015). We found concordance with the marker
gene-based cell type assignment approach (Fig. 2G), and this ap-
proach also worked relatively well in assigning rat nuclei, despite
the fact that the number of rat nuclei per cluster with chromatin
accessibility data ranged between 10 and 35 for the rarest three
cell types (Supplemental Table S5; Fig. 2H).

The majority of the nuclei were assigned as type I or type II
muscle fibers. Genes previously discovered to be preferentially ex-
pressed in type I versus type II muscle fibers (Rubenstein et al.
2020) were usually similarly preferentially expressed in our
snRNA-seq data (Supplemental Fig. S14), validating the quality
of the data and accuracy of muscle fiber type assignments.

To determine transcription factors (TFs) that may play an im-
portant role in each cell type, we used chromVAR (Schep et al.

2017) to score the relative accessibility of TFmotifs in nuclei of dif-
ferent cell types (Supplemental Fig. S15). This analysis uncovered
many cell type–TF relationships consistent with known biology;
for example, PAX7 and MYOG motifs were especially accessible
in satellite cells (Seale et al. 2000; Ganassi et al. 2020); GATA and
SOX motifs in endothelial cells (Kanki et al. 2017); ATF4 and
CEBPB motifs in mesenchymal stem cells (Cohen et al. 2015);
SRF motifs in smooth muscle cells (Mack 2011); and STAT5A and
SPI1 motifs in immune cells (Friedman 2007; Hennighausen and
Robinson 2008; Owen and Farrar 2017).

Integration of cell type–specific ATAC-seq peaks with UK

Biobank GWAS reveals cell type roles in complex phenotypes

Genetic variants associated with complex traits and disease are fre-
quently located in noncoding regions of the genome (Maurano
et al. 2012; Schaub et al. 2012; Parker et al. 2013). Variants associ-
ated with a given complex trait are expected to be enriched specif-
ically in noncoding regulatory elements of the trait-relevant cell
types; for example, T2D-associated genetic variants are enriched
in regulatory elements specific to pancreatic islets and beta cells
(Parker et al. 2013; Pasquali et al. 2014; Finucane et al. 2015;
Gaulton et al. 2015; Quang et al. 2015; Varshney et al. 2017,
2021; Mahajan et al. 2018; Thurner et al. 2018; Rai et al. 2020),
and variants associated with autoimmune disorders are enriched
in immune cell–specific regulatory elements (Finucane et al.
2015). Variant enrichment in cell-specific regulatory elements
can therefore be used to determine which cell types are relevant
to a given trait or disease. Variants in high linkage disequilibrium
(LD) with trait-influencing SNPs are often statistically associated
with the trait as well, making it difficult to infer the causal SNP
through statistical association alone. Epigenomic data, such as
chromatin accessibility in trait-relevant cell types, can be used to
nominate causal genetic variants under the assumption that non-
coding SNPs in accessible regions of the genome are more likely to
be causally related to a trait than noncoding SNPs in inaccessible
regions.

To explore the relationship between complex traits and the
cell types present in our data, as well as demonstrate the value of
our muscle cell type chromatin data in narrowing the post-
GWAS search space, we used LD score regression (LDSC) (Finucane
et al. 2015; Gazal et al. 2017) to perform a partitioned heritability
analysis using GWAS of 404 heritable traits from the UK Biobank
(Sudlow et al. 2015) (http://www.nealelab.is/uk-biobank/) and
our muscle cell type open chromatin regions (Supplemental Table
S6; seeMethods; Finucane et al. 2015; Gazal et al. 2017). Results for
all traits in which at least one of our cell types showed significant
(P<0.05) enrichment after Benjamini–Yekutieli correction are dis-
played in Figure 3. Due to the heavy multiple testing correction
burden, relatively few traits meet this threshold. However, we ob-
served that immune cell abundance traits showenrichment for the
immune cell cluster, blood pressure GWAS SNPs are enriched in
smoothmuscle ATAC-seq peaks, and SNPs associated with “diseas-
es of veins, lymphatic vessels, and lymph nodes, not elsewhere
classified” showed enrichment in endothelial cell ATAC-seq peaks.
In addition, we see that several skeletal trait GWAS SNPs are en-
riched in mesenchymal stem cell peaks. Previous work has shown
a central role of bone mesenchymal stem cells in osteoblast devel-
opment (Xian et al. 2012; Pittenger et al. 2019). In addition, SNPs
for several corneal traits are also enriched in mesenchymal stem
cell peaks, consistent with previously observed enrichment of cor-
neal thickness GWAS SNPs in mesenchymal stem cell/connective
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tissue cell annotations (Iglesias et al. 2018). Results using rat peaks
projected into human coordinates largely mirror the mesenchy-
mal stem cell enrichment findings (Supplemental Fig. S16), sug-
gesting that cross-species clustering identified comparable cell

types between the species. These enrichment resultsmust be inter-
preted with caution due to the small number of rat nuclei with
chromatin accessibility data for the more minor cell types, which
limits peak calling power.
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Figure 2. Joint clustering of human and rat snATAC-seq and snRNA-seq identifies skeletal muscle cell types. (A) UMAP after clustering human snATAC-
seq, human snRNA-seq, rat snATAC-seq, and human and rat dual modality (snATAC-seq + snRNA-seq) nuclei with Seurat. (B) UMAP facetted by species and
modality. Dual modality nuclei were clustered using RNA and are displayed within the “RNA” facets. (C) Gene expression (snRNA-seq, including dual mo-
dality nuclei RNA) or accessibility (snATAC-seq; gene promoter + gene body) of marker genes. Values are column-normalized. (D) ATAC-seq signal for hu-
man snATAC-seq (+ dual modality) nuclei in each cluster. All tracks are normalized to 1M reads. (E) Fraction of nuclei assigned to each cell type. (F ) Logistic
regression-based approach to score similarity between TSS-distal ATAC-seq peaks (>5 kb from TSS) and Roadmap Epigenomics enhancer states. For all TSS-
distal ATAC-seq peaks across all cell types, we scored the accessibility of the peak (0/1) in each of themuscle cell types based on the presence or absence of a
peak call. Then, for a given one of the 127 Roadmap Epigenomics cell types, we determined the maximum posterior probability of the enhancer states in
the Roadmap Epigenomics ChromHMMmodel within each peak. We then used logistic regression tomodel the relationship between the peak accessibility
and the enhancer posteriors (running one model per muscle cell type per Roadmap Epigenomics cell type). Then, for each muscle cell type, the model
coefficient was normalized to 1 by dividing by the maximum coefficient across all 127 Roadmap Epigenomics cell types, and this value was used as the
enhancer similarity score for that muscle cell type and Roadmap Epigenomics cell type. (G) Similarity of snATAC-seq peak calls for each cell type and species
to Roadmap Epigenomics ChromHMM enhancer states based on the logistic regression procedure outlined in F. The Roadmap Epigenomics cell type
names have been adjusted for clarity and the sake of space. The full names and the identifiers from the Roadmap Epigenomics paper are: psoas muscle
(E100), mesenchymal stem cell–derived adipocyte cultured cells (E023), HUVEC umbilical vein endothelial primary cells (E122), stomach smooth muscle
(E111), primary monocytes from peripheral blood (E029), and fetal muscle trunk (E089). (H) Nucleus counts per species for snATAC-seq data. Copyright
disclosure for rat cartoon: Rat by Francisca Arévalo from the Noun Project (https://thenounproject.com/search/?q=rat&i=15130).
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Integration of cell type–specific ATAC-seq peaks with T2D

GWAS credible sets nominates causal cell types, regulatory

elements, and SNPs

It is well-established that T2DGWAS SNPs overlap pancreatic islet/
beta cell enhancers (Parker et al. 2013; Gaulton et al. 2015;
Varshney et al. 2017; Mahajan et al. 2018; Rai et al. 2020); howev-
er, some SNPs may act through other T2D-relevant tissues, such as
muscle, adipose, or liver.We therefore used LDSC to perform a par-
titioned heritability analysis for T2D-associated SNPs (Mahajan
et al. 2018) in each of the muscle cell types as well as in beta cell
ATAC-seq peaks, adipose ATAC-seq peaks, and liver DNase I hyper-
sensitive sites (see Methods; Fig. 4A). When modeling each cell
type separately (adjusting for the cell type–agnostic LDSC baseline
annotations and common open chromatin regions), we found sig-
nificant enrichment (after Bonferroni correction for 40 tests) in

type I muscle fibers and beta cells, though when modeling all
cell types in a single jointmodel, only beta cell open chromatin re-
gions showed significant enrichment. We performed a similar
analysis on GWAS SNPs for a T2D-related trait, fasting insulin
(Fig. 4A; Manning et al. 2012). For fasting insulin, we found signif-
icant enrichment inmesenchymal stem cells, smoothmuscle, and
bulk adipose when modeling each cell type individually, but only
adipose showed significant enrichment when modeling all cell
types jointly. For fasting insulin, we note that the small sample
size of that GWAS means the analysis was likely underpowered,
leaving open the possibility that other cell types will show signifi-
cant enrichment when GWAS with larger sample sizes are avail-
able. We also note that the adipose open chromatin regions are
derived from bulk tissue open chromatin profiling; it is therefore
possible that at least some of the signal from adipose is being driv-
en by cell types shared between our muscle samples and adipose

Figure 3. Integration of cell type–specific open chromatin regions with UK Biobank GWAS reveals cell type roles in complex phenotypes. UK Biobank
LDSC-partitioned heritability results for traits for which at least one cell type showed significant heritability enrichment after Benjamini–Yekutieli correction
(LDSC coefficient P<0.05) across all cell types and traits. Asterisks denote the significant cell type–trait combinations. One trait name has been shortened to
preserve space: “Diseases of veins, lymphatic vessels, and lymph nodes, not elsewhere classified” has been shortened to “Diseases of veins, lymphatic ves-
sels, and lymph nodes.”
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tissue, such as mesenchymal stem cells. This is an area for further
exploration when single-nucleus data from adipose is available.

We performed similar GWAS enrichments using the rat mus-
cle cell type peaks projected into human coordinates (Supplemen-

tal Fig. S17). For T2D, we found muscle fiber types, mesenchymal
stem cells, and beta cells were significantly enriched after Bonfer-
roni correction, but as with human muscle cell types, only the
beta cell enrichment persisted in a joint model with all cell types.

E

F

B

A

C

D I

G

H

Figure 4. Integration of cell type–specific ATAC-seq peaks with T2D GWAS nominates causal cell types, regulatory elements, and SNPs. (A) LDSC-par-
titioned heritability results for T2D (BMI-unadjusted) and fasting insulin GWAS (BMI-adjusted), using human peak calls. For each cell type, one model
was run adjusting for cell type–agnostic annotations from the LDSC baseline model and common open chromatin regions. Asterisks represent
Bonferroni significance (P<0.05 after adjusting for 40 tests). (B) LocusZoom plot for ITPR2 (T2D). (C ) T2D credible set near the ITPR2 gene, consisting
of 22 SNPs. Only SNP rs7132434 (highlighted in red) overlaps a peak call in any of the muscle cell types. (D) gkmexplain importance scores for the ref
and alt allele (top two rows) and the difference between the ref and alt importance scores (third row); the G allele disrupts an AP-1 motif (bottom row).
(E) LocusZoom plot for ARL15 locus (T2D). (F) T2D credible set SNPs near the ARL15 gene. The three SNPs represent the three-SNP credible set discussed
in the text. One of these SNPs (rs702634; highlighted in red) overlaps a mesenchymal stem cell–specific peak. (G) Projecting the SNP highlighted in F,
rs702634, into the rat genome (projected SNP position indicated by the red vertical line) shows the corresponding region has open chromatin in rat mes-
enchymal stem cells. (H) gkmexplain importance scores for the ref and alt alleles (top two rows), the difference between them (third row), and aMEF2motif
disrupted by the SNP. (I) Luciferase assay using a construct containing either allele of SNP rs702634 in human adipose-derived mesenchymal stem cells.
Each point represents one clone; the experiment was performed twice, once on two different days (“Replicate”). P-values computed using a two-sided
unpaired t-test. Copyright disclosure for rat cartoon: Rat by Francisca Arévalo from the Noun Project (https://thenounproject.com/search/?
q=rat&i=15130).
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For fasting insulin, no rat muscle cell types showed enrichment af-
ter Bonferroni correction, and significant enrichmentwas only ob-
served for bulk adipose ATAC-seq peaks (Supplemental Fig. S17),
again mirroring results using human peak calls.

Although none of our cell types showed significant enrich-
ment in 10-cell-type models after Bonferroni correction, it is still
possible that some T2D GWAS loci act through muscle cell types
or cell types shared between muscle and other tissues such as adi-
pose. There are a substantial number of T2D GWAS credible sets
that show no overlap with pancreatic islet functional annotations
(Mahajan et al. 2018). We therefore overlapped 380 previously
published T2D GWAS signals with 99% genetic credible set SNPs
(Mahajan et al. 2018) with our snATAC-seq peaks to nominate
SNPs that may be acting through the muscle cell types, including
those that are expected to be shared with other T2D-relevant tis-
sues (Supplemental Table S7).

One locus highlighted by our data is the ITPR2 locus on
Chromosome 12 (Fig. 4B). This locus contains 22 credible set
SNPs, none with a particularly high posterior probability of associ-
ation (PPA) in the DIAMANTE genetic fine-mapping (maximum
across all credible set SNPs =0.06). Only one SNP (rs7132434;
PPA=0.042) overlaps any of our muscle cell type peak calls (Fig.
4C). This SNP is in a large mesenchymal stem cell ATAC-seq
peak and also overlaps peak calls in smooth muscle and immune
cells, though the chromatin accessibility signal in those cell types
is lower in our data. The SNP also overlaps a peak call in a subset of
adipose and islet samples (Supplemental Fig. S18).

To predict allelic effects on chromatin accessibility at this
SNP in our cell types, we trained a gapped k-mer support vector
machine model (gkm-SVM) (Ghandi et al. 2014; Lee 2016) to
detect k-mers associated with increased or decreased chromatin ac-
cessibility using the top ATAC-seq peaks for each of our cell types
and then ran deltaSVM (Lee et al. 2015). DeltaSVM predicts a
SNP’s effect by comparing the gkm-SVM inferred k-mer weights
for k-mers created by the reference versus the alternative allele;
we transformed the deltaSVM score to a z-score based on the dis-
tribution of the predicted impacts of all autosomal 1000 Genomes
SNPs (The 1000Genomes Project Consortium 2015).We validated
our models using held-out test data (Supplemental Table S8) and
by comparing deltaSVM scores to ATAC-seq allelic bias observed
in our data set, where we found a high level of consistency (92%
of SNPs had concordant allelic directional effects; binomial P=
5.12×10−44) (Supplemental Fig. S19). We found that this SNP
had a large deltaSVM z-score in several of themuscle cell types (ab-
solute z-score = 4.06 in mesenchymal stem cells; the T2D risk al-
lele, A, is predicted to result in greater chromatin accessibility)
(Supplemental Fig. S20). No other SNP in the credible set had as
great a deltaSVM score in any of the cell types (Supplemental
Fig. S20). We also attempted to interpret how each allele of the
SNP affects the gkm-SVM model’s score for the sequence using
the gkmexplain software package, which scores the importance
of each base in a sequence to the gkm-SVMmodel score for the se-
quence (Shrikumar et al. 2019). We ran gkmexplain on the se-
quence surrounding the SNP in the presence of either the
reference or the alternative allele and found the gkmexplain im-
portance scores for the sequence in the presence of the risk allele
resembled an AP-1 motif (Fig. 4D; Kheradpour and Kellis 2014). A
literature search revealed that the element underlying this SNP has
been validated for enhancer activity using a luciferase assay (in the
786-O cell line), and the risk allele showed preferential binding of
the AP-1 transcription factor in an EMSA assay in the same study
and cell line (Bigot et al. 2016), consistent with our findings. AP-1

subunits are expressed in mesenchymal stem cells in our data
(Supplemental Fig. S21). We note that this SNP is also a 95% cred-
ible set SNP for waist-hip ratio (one of eight SNPs in the credible
set) (Liu et al. 2014). We therefore hypothesize that rs7132434 is
the causal SNP at this locus and that it may be acting throughmes-
enchymal stem cells.

To determine which gene or genes might be regulated by the
regulatory element containing the SNP, we used three methods to
determine potential target genes. First, we examined public Hi-C
data from 21 cell types (Schmitt et al. 2016). Second, we used CIC-
ERO (Pliner et al. 2018) to determine if any ATAC-seq peaks near
the TSS of nearby genes were co-accessible with the regulatory ele-
ment ATAC-seq peak. Third, we used human nuclei from the mul-
tiome library to test for significant correlation between the
accessibility of the regulatory element and the expression of near-
by genes (using the Signac software package [Stuart et al. 2019,
2021]). In mesenchymal stem cell Hi-C data, the genomic region
containing the regulatory element interacted with genomic re-
gions containing the TSS of six genes within 1 Mb (RNA5SP354,
ITPR2, SSPN, BHLHE41, ASUN, and LMNTD1) (Supplemental Fig.
S22). All but one of these genes (RNA5SP354) have nonzero RNA
counts in several muscle cell types, including mesenchymal stem
cells (Supplemental Fig. S23). The interactions with most of these
TSSs was also observed in several other cell types (Supplemental
Fig. S22). Using CICERO, we found that three genes had promoter
peaks that showed co-accessibility score > 0.05 (Rai et al. 2020)
with the regulatory element peak in mesenchymal stem cells
(ITPR2, RASSF8, STK38L). ITPR2 and RASSF8 promoter peaks
showed co-accessibility > 0.05 in smoothmuscle and immune cells
as well (Supplemental Fig. S24). In the multiome library, we found
little evidence of correlation between the peak and the expression
of any nearby gene (Supplemental Fig. S25). The discordance be-
tween the three methods at this locus is not necessarily surpris-
ing—each method is measuring different outcomes (frequency
of contact in 3D space; peak-peak ATAC signal correlation; peak-
gene correlation)—but makes it difficult to confidently nominate
a target gene at this locus.

A second region highlighted by our data is an intronic locus
in theARL15 gene (Fig. 4E). The DIAMANTE genetic fine-mapping
narrowed the list of potentially causal SNPs at this locus to three
(two other, larger DIAMANTE genetic fine-mapping credible sets
are also annotated to ARL15). Variants in this three-SNP credible
set are statistically associated with fasting insulin (Mahajan et al.
2014), and more broadly variants in or near ARL15 associate
with metabolic traits including adiponectin, HDL cholesterol lev-
els, and BMI (Richards et al. 2009; Teslovich et al. 2010; Mahajan
et al. 2014; Udler et al. 2018), suggesting that the locus may affect
T2D risk not through islets but through adipose or a related cell
type. None of the SNPs overlap with any of ENCODE’s 1.3 million
candidate cis-regulatory elements (Moore et al. 2020) or any of the
∼3.6 million DNase I hypersensitive sites (DHSs) annotated in
(Meuleman et al. 2020); however, in our data we find that one of
the SNPs (rs702634) is in the center of a mesenchymal stem cell–
specific ATAC-seq peak (Fig. 4F), and a mesenchymal stem cell
peak is likewise present in the corresponding position in the rat ge-
nome (Fig. 4G), indicating that this is a highly cell type–specific
regulatory element that has been conserved across species. The
DIAMANTE genetic fine-mapping assigned this SNP a probability
of 0.48 of being the causal SNP at this locus, higher than either
of the other two SNPs (0.33 and 0.19, respectively). We examined
publicly available beta cell (n =1), islet (n = 10) (Rai et al. 2020),
and adipose (n=3) (Cannon et al. 2019) ATAC-seq data to see if
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hints of this peak are present in these T2D-relevant cell types. No
convincing signal appears to be present in beta cell or islet data; a
weak increase in signal at that SNP is evident in the adipose sam-
ples and a peak is called (Supplemental Fig. S26). As mesenchymal
stem cells are one component of adipose tissue, it is possible that
the weak signal in adipose is due to mesenchymal stem cell popu-
lations within adipose; this is one area for follow-up when adipose
single-nucleus ATAC-seq data is available. The absolute deltaSVM
z-score in mesenchymal stem cells for this SNP was 1.37, indicat-
ing that it does not have a particularly large impact on predicted
chromatin accessibility (Supplemental Fig. S27); however, the
risk allele is predicted to disrupt a MEF2 motif (Grant et al. 2011;
Kheradpour and Kellis 2014), and we found the change in gkmex-
plain importance scores between the reference and alternative al-
lele showed similarity to this motif (Fig. 4H). MEF2 TF family
members are expressed in mesenchymal stem cells in our data
(Supplemental Fig. S28). To determine if the SNPmight alter regu-
latory element activity, we tested the regulatory element with each
allele in a luciferase assay in human adipose-derivedmesenchymal
stem cells (hAMSCs) and found that the G (nonrisk) allele resulted
in significantly greater luciferase expression than the A (risk) allele
(fold change=2.6 and P=4.57×10−6 in the forward orientation;
fold change=1.4 and P= 3.48× 10−4 in the reverse direction), con-
sistent with the expected allelic directional effect based on the
MEF2 PWM (Fig. 4I; Supplemental Fig. S29) and assuming that
MEF would act as an activator. We found that the allele-specific
effects remained throughout differentiation to adipocytes
(Supplemental Fig. S29). This data is consistent with a model in
which rs702634 is the causal SNP and acts through mesenchymal
stem cells or a closely related cell type.

To determine which gene or genes might be regulated by the
regulatory element, we again applied three methods (Hi-C data,
peak-peak co-accessibility via CICERO, and peak-gene expression
correlation) to probe the relationship between the ATAC-seq peak
and nearby genes. Hi-C data showed no SNP-gene TSS connec-
tions for any genes within 1 Mb in mesenchymal stem cells; how-
ever, connections between the SNP-containing genomic bin and
the FST gene TSS were observed in two other cell types (Supple-
mental Fig. S30). An ATAC-seq peak near the FST promoter
showed co-accessibility > 0.05 with the regulatory element
ATAC-seq peak (an ATAC-seq peak at the NDUFS4 promoter
showed co-accessibility > 0.05 as well) (Supplemental Fig. S31).
FST is expressed in mesenchymal stem cells (Supplemental Fig.
S32), and FST gene expression showed relatively high correlation
with the element accessibility in the multiome single-nucleus li-
brary (z-score= 2.65 relative to control ATAC-seq peak accessibili-
ty) (Supplemental Fig. S33). These results suggest that FST may be
a promising target gene candidate for the regulatory element at
this locus. The FST gene encodes follistatin, which binds and an-
tagonizes members of the transforming growth factor beta (TGFB)
family (Michel et al. 1993; Fainsod et al. 1997; Amthor et al.
2004). FST has a well-established role in driving muscle growth
(Amthor et al. 2004; Kota et al. 2009) but is involved in other bi-
ological processes as well (Patel 1998; Bilezikjian et al. 2004; Tang
et al. 2020). Knockout of FST is associated with decreased adipo-
genesis (Braga et al. 2014; Chen et al. 2020) and overexpression
of FST promotes white adipose tissue browning (Braga et al.
2014; Tang et al. 2020). Therefore, in addition to the genomic ev-
idence suggesting FST is the target gene at this locus, FST’s estab-
lished roles in T2D-relevant cell types and mesenchymal stem
cell–related processes (adipogenesis) render it a biologically com-
pelling candidate.

Discussion

Here, we present snATAC-seq and snRNA-seq for human skeletal
muscle and snATAC-seq for rat skeletal muscle, which we use to
map the transcriptomes and chromatin accessibility of cell types
present in skeletal muscle samples. The cell types identified are
consistent with known biology and with previous studies of hu-
man (Rubenstein et al. 2020) and mouse (The Tabula Muris Con-
sortium 2018; Dell’Orso et al. 2019; Giordani et al. 2019) skeletal
muscle tissue. However, our use of single-nucleus rather than sin-
gle-cell techniques allows us to capture muscle fiber nuclei, cell
types missing from previously published snRNA-seq data sets. To
our knowledge, this is the first published snATAC-seq data set for
human and rat skeletal muscle tissue. We therefore anticipate
that this data set will be useful in nominating causal GWAS SNPs
and affected genes and demonstrate this by integrating the data
with previously published T2D GWAS credible sets, highlighting
potentially causal SNPs at the ARL15 and ITPR2 loci. At the
ARL15 locus, we also demonstrate that rat mesenchymal stem cells
have an orthologous ATAC-seq peak. This (1) provides additional
evidence that this peak is real (not a false peak call), (2) reinforces
the cell type–specificity of this peak, and (3) suggests that rats may
be a suitable model in which to study this locus. Rats are a com-
mon model organism for skeletal muscle biology (Chaillou 2018;
Christian and Benian 2020), and we expect that the rat single-nu-
cleus data will be a valuable resource for those utilizing rat muscle
in their research. Just as the ATAC-seq signal at the ARL15 locus
suggests rats would be an ideal model organism for studying the
regulatorymechanisms at this locus, researchers investigating oth-
er loci can use the data generated here to help determinewhichhu-
man loci might be reasonably studied in rat.

Additionally, we explore the effect of two technical parame-
ters on snRNA-seq and snATAC-seq results. First, we find that
FANS (usingDRAQ7DNA staining) prior to Tn5 tagmentation sub-
stantially alters snATAC-seq results. Though the stereotypical
ATAC-seq fragment length distribution is observed, signal-to-noise
(as measured by TSS enrichment and fraction of reads in peaks, as
well as by visual inspection) appears to decrease substantially rela-
tive to non-FANS libraries. We note that the effect of FANS (nucle-
us sorting) may differ from that of FACS (cell sorting) carried out
prior to nuclear isolation. 10x Genomics, the producer of the sin-
gle-nucleus platforms utilized here, states that FANS is compatible
with successful snATAC-seq, provided certain guidelines and par-
ticular dyes are used (others may disrupt chromatin structure)
(10x Genomics 2020). To our knowledge the data presented here
represent the first published direct comparison between FANS
and non-FANS snATAC-seq libraries and suggest that FANS using
a DRAQ7DNA stain prior to tagmentation, at least with the proto-
col tested here, compromises snATAC-seq data quality. It is possi-
ble that this could be overcome by using a different dye.

In contrast to snATAC-seq, snRNA-seq results appear to be
substantially less sensitive to FANS—the pseudobulk gene expres-
sion from FANS libraries correlates strongly with that from non-
FANS libraries—suggesting that chromatin is more sensitive to
FANS than is RNA. This finding is in line with previous work suc-
cessfully utilizing FANS prior to snRNA-seq (Denisenko et al.
2020). We also observed higher nucleus yield in our FANS
snRNA-seq libraries than our non-FANS libraries. There are several
potential explanations for this. One is that the nuclei counting
step that necessarily precedes loading of the 10x platform may
be sensitive to debris. If greater amounts of debris are observed
in non-FANS libraries, nucleus concentration may be
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systematically overestimated in non-FANS libraries, resulting in
more nuclei actually being loaded onto the 10x platform from
FANS libraries. Although not mutually exclusive, FANS may also
decrease the amount of debris being loaded into the 10x platform
and thereby improve nucleus capture.

We found that snATAC-seq and snRNA-seq results were
highly consistent at different loading concentrations. Previous
work utilizing customized protocols and indexing strategies has
demonstrated quality scRNA-seq/snRNA-seq results can be ob-
tained at loading concentrations exceeding standard 10x recom-
mendations (Stoeckius et al. 2018; Gaublomme et al. 2019;
Datlinger et al. 2021); our data suggest that snATAC-seq results
are relatively robust to loading concentration as well. One clear
caveat is that this may change as the loading concentration is fur-
ther increased. It is also important to note that the actual number
of nuclei loaded may differ from the estimated 20k or 40k nuclei.
The number of nuclei passing QC for these libraries was approxi-
mately an order of magnitude lower than the number of nuclei os-
tensibly loaded (e.g., 3839 and 2118 nuclei for snRNA-seq). There
are several steps between nuclei isolation and computational
quality control that might explain this. First, the initial nucleus
count may have been incorrect. As discussed above, it is possible
that debris in the input preparation makes nucleus counting less
accurate, in which case our cited values may not reflect the true
values. Second, some nuclei loaded onto the Chromium platform
may not be captured in gel beads. Third, some of the captured nu-
clei may be unhealthy or may receive an insufficient dose of the
enzymes necessary for successful library construction (e.g., in
the case of snATAC-seq, some captured nuclei may receive an in-
adequate dose of Tn5). Previous work on the 10x Genomics
scRNA-seq platform suggests that ∼50% of the loaded nuclei
may be captured and undergo successful library construction
(Zheng et al. 2017). Last, some quality nuclei may simply be fil-
tered out computationally, for example, as likely doublets; howev-
er, the barcode rank plots (Supplemental Fig. S34) suggest that the
number of gel beads with above-background numbers of UMIs/
reads was simply substantially less than the number of nuclei
loaded.

The GWAS enrichments presented here will be one interest-
ing area to follow up on as more snATAC-seq data are published.
Interpretation of the results is complicated by the fact that many
tissues share cell types. For example, mesenchymal stem cell–like
populations exist in many tissues besides muscle, such as adipose
tissue and bone marrow. Taking the fasting insulin enrichments
as an example, we found that the enrichment of GWAS SNPs in
muscle cell type ATAC-seq peaks disappeared when adipose tissue
was included in the enrichment model. However, it is possible
that the adipose enrichment is being driven in part by mesenchy-
mal stem cell populations within adipose itself. Direct compari-
son of snATAC-seq and snRNA-seq profiles from mesenchymal
stem cells from a wider array of tissues will help tease apart com-
monalities and tissue-specific differences in this interesting
population.

Methods

Ethics approval and consent to participate

Human samples were approved by the University of Michigan IRB
protocol #HUM 000060733. Collection of the rat muscle sample
was approved by the University of Michigan Institutional
Animal Care and Use Committee.

snATAC-seq and snRNA-seq, FANS versus no FANS

experiment

Three separate pieces of tissue were cut from a single human skel-
etal muscle sample (weighing 60 mg, 50 mg, and 50 mg; sample
HSM1, quadriceps femoris muscle group). Nuclei were isolated us-
ing a modified version of the ENCODE protocol (Supplemental
Protocol S1) (The ENCODE Project Consortium 2012), customized
from step 5 onwards to accommodate FANS. In step 5, the nuclei
were resuspended in 700 µL of sort buffer (1% BSA, 1 mM EDTA
in PBS) and filtered through a 30-µm filter. Three different nuclei
isolations were performed and the nuclei suspended in sort buffer
were mixed, pooled together, and divided into two groups, one
with FANS and onewithout FANS. FANS nuclei were sorted accord-
ing to the previously published FANS protocol using DRAQ7
(Preissl et al. 2018). DRAQ7 (0.3 mM from Cell Signaling
Technology) was added to the FANS nuclei suspension, at 100-
fold dilution to get a final concentration of 3 μM.Nuclei were gent-
ly mixed and incubated for 10min on ice. Nuclei were analyzed in
the presence of DRAQ7 and sorted for high DRAQ7 positive signal
using Beckman Coulter’s Astrios MoFlo. We followed the gating
strategy outlined in the FANS protocol (Preissl et al. 2018). The
sorted nuclei were collected in a recovery buffer (5% BSA in PBS).
The nuclei with and without FANS were spun at 1000g for 15
min at 4°C. The nuclei were resuspended in 100 µL of 1× diluted
nuclei buffer and counted in the Countess II FL Automated Cell
Counter. The appropriate amount of nuclei were split for snRNA-
seq and spun down at 500g for 10 min at 4°C and resuspended
in RNA nuclei buffer (1% BSA in PBS containing 0.2 U/μL of
RNase inhibitor). The nuclei at appropriate concentration for
snATAC-seq and snRNA-seq were submitted to the Advanced
Genomics core for all the snATAC-seq and snRNA-seq processing
on the 10x Genomics Chromium platform (v. 3.1 chemistry for
snRNA-seq). For each modality nuclei were loaded at 15.4k nu-
clei/well.

snATAC-seq and snRNA-seq, loading 20k or 40k nuclei

Twopieces of tissue (weighing 85.3mg and 85.8mg)were cut from
one human skeletal muscle sample (HSM1) and two tissue pieces
(weighing 95.9 mg and 92.6 mg) were cut from a second human
skeletal muscle sample (HSM2; quadriceps femoris muscle group).
Each of the samples was cut on dry ice using a frozen scalpel to pre-
vent thawing. The samples were pulverized using a CP02 cryoPREP
automated dry pulverizer (Covaris 500001). We developed a cus-
tomized nuclei isolation protocol (Supplemental Protocol S2) de-
rived from the previously published ENCODE protocol (The
ENCODE Project Consortium 2012). All four pulverized tissue
pieces were mixed and redistributed to perform four different nu-
clei isolations. The desired concentrationof nucleiwas achieved by
resuspending the appropriate number of nuclei in 1× diluted nu-
clei buffer for snATAC-seq and RNA nuclei buffer (1% BSA in PBS
containing 0.2 U/µL of RNase inhibitor) for snRNA-seq. The nuclei
at appropriate concentration for snATAC-seq and snRNA-seq were
submitted to the Advanced Genomics core for all the snATAC-seq
and snRNA-seq processing on the 10x Genomics Chromium plat-
form (v. 3.1 chemistry for snRNA-seq). For each modality, nuclei
were loaded at two different concentrations, 20k nuclei/well and
40k nuclei/well.

snATAC-seq, human and rat mixed library

Tissue from human (49 mg of pulverized human skeletal muscle;
sample HSM1) and rat (45 mg of pulverized gastrocnemius sam-
ples) were used in this single nuclei ATAC experiment. We used
the previously published ENCODE protocol (Supplemental
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Protocol S1) (The ENCODE Project Consortium 2012) to isolate
nuclei. After isolating nuclei from each sample (species) individu-
ally, the nuclei were mixed in equal proportions. The desired con-
centration of nuclei was achieved by resuspending the appropriate
number of nuclei in 1× diluted nuclei buffer for snATAC-seq. The
nuclei at the appropriate concentration for snATAC were submit-
ted to the University of Michigan Advanced Genomics core for
all the snATAC-seq processing on the 10x Genomics Chromium
platform; 15.4k nuclei were loaded into a single well.

Bulk ATAC-seq

Two tissue piecesweighing 99.4mg and 80.7mgwere cut fromone
human skeletal muscle sample (HSM1) and two pieces weighing
67.6mg and 103.5mgwere cut froma secondhuman skeletalmus-
cle sample (HSM2). Each of the samples was cut on dry ice using a
frozen scalpel to prevent thawing. The samples were pulverized us-
ing a CP02 cryoPREP automated dry pulverizer (Covaris 500001).
For bulk ATAC-seq, we followed the nuclei isolation protocol out-
lined in Supplemental Protocol S2, except in the final step the nu-
clei were resuspended in 250 μL of 1% BSA in PBS. The nuclei were
counted in a Countess II FL Automated Cell Counter, and the ap-
propriate volume of the suspension for 50k nuclei was spun down
and used for the downstream transposition reaction (a modified
version of the ENCODE protocol; Supplemental Protocol S3)
(The ENCODE Project Consortium 2012).

Multiome library

Tissue from human (74 mg of pulverized human skeletal muscle;
sample HSM2) and rat (79 mg of pulverized gastrocnemius
samples) were used in the multiome experiment. The pulverized
tissues were mixed together prior to isolation. For this experiment,
we developed a customized protocol based on those recommended
by 10x Genomics (https://www.10xgenomics.com/resources/
demonstrated-protocols/) and on the previously developed Sup-
plemental Protocol S2 to isolate nuclei (Supplemental Protocol
S4). The desired concentration of nuclei was achieved by resus-
pending the appropriate number of nuclei in 1× diluted nuclei
buffer for joint (on the same nucleus) snATAC-seq and snRNA-
seq. The nuclei at appropriate concentration for joint snATAC-
seq and snRNA-seq were submitted to the Advanced Genomics
core for processing on the 10x Genomics Chromium platform;
16.1k nuclei were loaded into a single well.

Processing of muscle bulk ATAC-seq data

Adapters were trimmed using cta (v. 0.1.2; https://github.com/
ParkerLab/cta). Reads were mapped to hg19 using BWA-MEM
(-I 200,200,5000 -M; v. 0.7.15-r1140) (Li and Durbin 2009). Dupli-
cates were marked using Picard MarkDuplicates (v. 2.21.3; https
://broadinstitute.github.io/picard/). We used SAMtools to filter to
high-quality, properly-paired autosomal read pairs (-f 3 -F 4 -F 8
-F 256 -F 1024 -F 2048 -q 30; v. 1.9 using htslib v. 1.9) (Li et al.
2009). To call peaks, we used BEDTools bamtobed to convert to a
BED file (v. 2.27.1) and then used that file as input to MACS2 call-
peak (‐‐nomodel ‐‐shift -100 ‐‐seed 762873 ‐‐extsize 200 ‐‐broad
‐‐keep-dup all ‐‐SPMR; v. 2.1.1.20160309) (Zhang et al. 2008;
Quinlan 2014). To visualize the signal, we converted the bedGraph
files output by MACS2 to bigWig files using bedGraphToBigWig
(v. 4) (Kent et al. 2010).

Processing of snATAC-seq data

Adapters were trimmed using cta.We used a custom Python script,
available in the GitHub repository, for barcode correction (see

Supplemental Methods). Reads were mapped using BWA-MEM
with flags “-I 200,200,5000 –M”. We used Picard MarkDuplicates
tomark duplicates and filtered to high-quality, nonduplicate auto-
somal read pairs using SAMtools viewwith flags “-f 3 -F 4 -F 8 -F 256
-F 1024 -F 2048 -q 30”. Quality control metrics were gathered on a
per-nucleus basis using ataqv (v. 1.1.1) on the BAM file with dupli-
cates marked. In the case of mixed rat and human libraries, all
reads were mapped to the hg19 and rn6 genomes separately, and
then a nucleus was assigned as either rat or human by counting
the number of high-quality, nonduplicate autosomal reads after
mapping to either genome. If (# reads mapping to genome of spe-
cies A)/(# readsmapping to genome of species A+# readsmapping
to genome of species B) was greater than 0.87, then the nucleus
was assigned to species A. If a nucleus did not meet this threshold
for either species, it was dropped.

For the two snATAC-seq libraries that contained a mix of nu-
clei from the two human individuals, we assigned nuclei to biolog-
ical samples and determined doublets using demuxlet (Kang et al.
2018) (see Supplemental Methods).

When comparing aggregate snATAC-seq signal to bulk ATAC-
seq signal (Fig. 1), we eliminated sequencing reads corresponding
to nucleus barcodes that couldn’t be matched to the 10x barcode
whitelist but otherwise processed it as bulk ATAC-seq data (i.e.,
marking duplicates ignoring cell-level information, and not filter-
ing to quality nuclei).

To select quality nuclei from each library, we selected nuclei
(barcodes) meeting the thresholds in Supplemental Table S1. In ad-
dition to setting a threshold for minimum fragments (to filter out
barcodes that only capture ambient DNA fragments), we set a
threshold for maximum fragments, because barcodes with very
high fragment counts may be enriched for doublets (Rai et al.
2020). We also set a threshold for minimum TSS enrichment
(because ATAC-seq signal for healthy nuclei is expected to be en-
riched near TSSs) (Buenrostro et al. 2013, 2015; Rai et al. 2020),
andwe filteredout barcodes that showed anunexpectedly large frac-
tion of reads coming from a single autosome (see Orchard et al.
2020).

Processing of snRNA-seq data

snRNA-seq datawas processed using starSOLO (STAR v. 2.7.3a, with
GENCODE v. 19 annotation; options ‐‐soloUMIfiltering MultiGe-
neUMI ‐‐soloCBmatchWLtype 1 MM_multi_pseudocounts ‐‐solo-
CellFilter None), which outputs the count matrices needed for
most of the analyses (Dobin et al. 2013). To select quality nuclei
from each library, we selected nucleimeeting the thresholds in Sup-
plemental Table S2 (we set a threshold for minimum UMIs to filter
out barcodes that only capture ambient RNA; a threshold for maxi-
mum fragments, because barcodes with very high UMI counts may
be enriched for doublets; and a threshold for maximummitochon-
drial contamination, because barcodes with quality nuclei and low
ambient RNA should show reduced mitochondrial contamination)
(Alvarez et al. 2020). For the snRNA-seq libraries containing nuclei
from two human individuals, nuclei were assigned to samples
(and doublets called) using demuxlet (see Supplemental Methods).
Prior to clustering and downstream analysis, we used DecontX
(Yang et al. 2020) to adjust the nucleus× gene expression countma-
trices for ambient RNA (see Supplemental Methods).

Processing of single-nucleus multiome data

The reads from the chromatin accessibility component of themul-
tiome data were trimmed, mapped (to both the hg19 and rn6 ref-
erence genomes separately), and filtered (including duplicate
marking) as described above for snATAC-seq libraries.

Orchard et al.
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The reads from the gene expression component of the multi-
ome datawere processed using starSOLO (STAR v. 2.7.3a). All reads
were mapped to the hg19 and rn6 genomes separately. For rn6, we
used NCBI Rattus norvegicus Annotation Release 106 (for hg19, we
used the same reference as for snRNA-seq).

To select quality nuclei from the library, we first assigned
nuclei to the human or rat sample by counting the number of
high-quality, nonduplicate autosomal ATAC reads after mapping
to either genome (“HQAA” statistic from ataqv) (Orchard et al.
2020). If (# reads mapping to genome of species A)/(# reads map-
ping to genome of species A+# reads mapping to genome of spe-
cies B) was greater than 0.85, then the nucleus was assigned to
species A. If a nucleus did notmeet this threshold for either species,
it was dropped. Next, we filtered out nuclei that did not meet any
of the following thresholds: at least 20,000 ATAC reads pass filter-
ing; at least 500 RNA UMIs (based on starSOLO counts matrix);
minimum TSS enrichment of two; no more than 15% of ATAC
reads derived from any single autosome; and no more than 2%
of RNA UMIs derived from mitochondrial genes (Supplemental
Fig. S11).

The fraction of species-unique ATAC fragments or RNA UMIs
derived from human (i.e., the number of fragments mapping to
human but not rat, divided by the total number of fragmentsmap-
ping to rat or human but not both) in each pass-QC nucleus is
shown in Supplemental Figure S10 (bottom right panel). We
note that many points are closer to 0.5 along the RNA axis (y-
axis) than along the ATAC axis (x-axis). A similar pattern is observ-
able in previously published joint chromatin accessibility and
gene expression data from another platform (Ma et al. 2020). It
is possible that this could be explained by the sources of ambient
contamination being different for RNA than for DNA.

Specifically for the DropletUtils panel in Supplemental Figure
S10 (top right panel), we reprocessed the raw RNA data using
starSOLO to map to a chimeric reference (concatenating the hu-
man and rat references used when mapping to each species indi-
vidually), resulting in a single barcode× gene UMI matrix. We
then usedDropletUtils’ emptyDrops function (Lun et al. 2019) (de-
fault parameters except niters = 1×105) to determinewhether each
barcode represented a nucleus by comparing the UMI counts for
each barcode to the ambient contamination estimated from barc-
odes with less than 100UMIs.We used a strict FDR threshold of 1 ×
10−5 for calling nuclei.

Prior to clustering and downstream analysis, we used
DecontX (Yang et al. 2020) to adjust the nucleus × gene expression
count matrices for ambient RNA (see Supplemental Methods).

Clustering with Seurat

All pass-qc nuclei were clustered using Seurat (Butler et al. 2018;
Stuart et al. 2019) (v. 3.9.9.9010, in R v. 3.6.3) (R Core Team
2021). Multiome library nuclei were clustered using RNA UMI
counts. First, we integrated RNA from each individual (threematri-
ces; two human samples and one rat sample), identifying the top
2000 variable features for each individual and then finding inte-
gration anchors and integrating (dims=1:20). After scaling and
PCA, we found neighbors (k = 20, using PCs 1–10, except PC9
which otherwise drove a modality-specific cluster) and clustered
using the Louvain algorithm (resolution=0.05). Next, we integrat-
ed ATAC from each individual (threematrices as for the RNA data).
As ATAC peak calls on the aggregate snATAC-seq libraries would be
heavily biased toward muscle fiber type peaks and against peaks
specific to minor cell populations, we worked only with per-gene
scores calculated for eachnucleus as the number of fragments over-
lapping with each gene’s promoter/gene body using BEDTools in-
tersect. Gene promoter/body was calculated based on NCBI

annotation GTF files (NCBI Rattus norvegicus Annotation Release
106 and Homo sapiens Updated Annotation Release
105.20190906), filtered to include only protein-coding/lncRNA
genes with source “BestRefSeq”/BestRefSeq%2CGnomon’/
’Curated Genomic’. Genes assigned to multiple chromosomes/
strands were excluded, and then the regions for each gene were
merged to get the gene body. Promoters were taken as the 3 kb up-
stream of the TSS; after this, genes represented by multiple non-
contiguous genomic stretches were excluded. Using these per-
nucleus, per-gene scores as input to Seurat, we normalized the
matrices, integrated them using the top 2000 variable
genes from the integrated RNA data (setting dims=2:20 for
FindIntegrationAnchors and IntegrateData), and scaled the result-
ing integrated ATAC data. Next, we transferred cluster labels from
the RNA to the ATAC using the FindTransferAnchors and
TransferData functions (FindTransferAnchors reduction=CCA,
using the top 2000 RNA variable features; TransferData anchor
weighting using the top 20 PCs from the integrated ATAC data).
In order to co-embed the RNA and ATAC in the same UMAP, we
used the TransferData function to impute RNA values (for the
top 2000 RNA variable genes) in the ATAC nuclei (using same
TransferData parameters as used to transfer cluster labels), merged
the ATAC and RNA nuclei, and created the UMAP using the top 20
PCs on the centered data. Lastly, as recommended in the Seurat
RNA-ATAC integration vignettes, we removed ATAC nuclei with
low-confidence cluster assignments (prediction.score.max<0.7).

Per-cluster ATAC-seq peak calling

The filtered reads from all snATAC-seq nuclei in each cluster were
merged using SAMtools merge. Peaks were called and bigWig files
produced as described for the bulk ATAC-seq data. Peak files were
filtered against blacklist files available from http://hgdownload.cse
.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wg
EncodeDacMapabilityConsensusExcludable.bed.gz and http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEnco
deMapability/wgEncodeDukeMapabilityRegionsExcludable.bed.gz
(hg19) (The ENCODE Project Consortium 2012) and GitHub (https://
github.com/shwetaramdas/maskfiles/blob/master/rataccessible
regionsmaskfiles/strains_intersect.bed) for rn6 (Ramdas et al. 2019).

For analysis of rat peak overlap with human GWAS data, rat
peaks were projected into the human genome using bnMapper
(v. 0.8.6) and the chain file at http://hgdownload.cse.ucsc.edu/
goldenpath/rn6/liftOver/rn6ToHg19.over.chain.gz.

Roadmap enhancer regression

We called peaks on the aggregate of the nuclei in each cluster and
then took the union of peaks across all clusters to generate amaster
peak list.We thenused logistic regression tomodel, for each cluster
and each Roadmap Epigenomics cell type in the Roadmap 15-state
ChromHMM model, the accessibility of each TSS-distal master
peak (>5 kb from a RefSeq TSS) in that cluster as a function of
the posterior probability that that master peak is an enhancer in
that Roadmap cell type according to the Roadmap ChromHMM
model (Roadmap Epigenomics Consortium et al. 2015). Because
the posteriors are given in 200-bp windows, and there are also
three different enhancer states (“Genic enhancers,” “Enhancers,”
and “Bivalent Enhancer”), multiple windows overlap with each
master peak—the posterior for the master peak is therefore taken
as the maximum of the 200-bp window posteriors, across all three
of the enhancer states. The model coefficient was used as the
(unnormalized) score for that Roadmap cell type in that cluster,
and the normalized score was simply the score for that Roadmap
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cell type in that cluster divided by the max score across all cell
types for that cluster.

For rat peaks, in addition to removing master peaks near TSS
in rat coordinates, we additionally removedmaster peaks that were
within 5 kb of a TSS after projecting into human coordinates.

Motif scores

Motif scores were generated using chromVAR (v. 1.8.0) (Schep
et al. 2017) in R v. 3.6.0 (see Supplemental Methods).

UK Biobank GWAS enrichment

We downloaded UK Biobank GWAS summary statistics made
available by the Benjamin Neale lab (Sudlow et al. 2015) (see
Supplemental Methods).

The LDSC software package (v. 1.0.1) includes a “baseline”
model with 59 categories derived from 28 genomic annotations
(Finucane et al. 2015; Gazal et al. 2017). Many of these annota-
tions are cell type–agnostic; for example, a SNP’s minor allele fre-
quency does not change between cell types. However, other
annotations in the baseline model are not cell type–agnostic; for
example, the FANTOM5 enhancer annotation is derived from ex-
periments performed on a range of different cell types and may
change substantially if the cell types used to create the annotation
were to change. When performing the UK Biobank GWAS enrich-
ments, we utilized the cell type–agnostic annotations from the
LDCS baseline model (Supplemental Table S9). In order to reduce
the likelihood of model misspecification, we then added common
open chromatin regions and open chromatin regions from a range
of cell types. Specifically, we added (1) the ATAC-seq peaks from all
seven of our snATAC-seq cell types, (2) beta cell ATAC-seq peaks,
(3) adipose ATAC-seq peaks, and (4) DNase-seq peaks derived
from 23 additional tissues/organs (see Supplemental Methods).
The various annotation files (regression weights, frequencies,
etc.) required for running LDSC were downloaded from https
://data.broadinstitute.org/alkesgroup/LDSCORE. LD scores were
calculated using the Phase 3 1000 Genomes data, keeping only
the HapMap3 SNPs as recommended by the LDSC authors and us-
ing only SNPs withminimumMAF of 0.01. GWAS summary statis-
tics were prepared for LDSC using the munge_sumstats.py script,
with option ‐‐merge-alleles w_hm3.snplist (where w_hm3.snplist
is the file in the data download). When running the regression,
we required a minimum MAF of 0.05 and utilized the Phase 3
1000 Genomes SNP frequencies/weights.

Hi-C contacts

Hi-C contacts were inferred using the Fit-Hi-C (Ay et al. 2014)
results from Schmitt et al. (2016), at a strict FDR threshold of
1 × 10−6 (used throughout that publication). If the genomic bin oc-
cupied by the ATAC-seq peak significantly interacted with the bin
occupied by any of the TSSs from a given gene, the peak was con-
sidered to interact with that gene’s promoter. The TSS list was gen-
erated from the GENCODE v. 19 annotation, after removal of
geneswith gene_status = “NOVEL” orwith gene_typenot amongst
(“lncRNA”, “rRNA”, “protein_coding”, “retained_intron”, “proc-
essed_transcript”, “non_coding”, “ambiguous_orf”, “lincRNA”,
“macro_lncRNA”, “bidirectional_promoter_lncRNA”).

Peak-peak co-accessibility

We ran CICERO (Pliner et al. 2018) (v. 1.4.0; R v. 3.6.1) on the
broad peak fragment counts to score peak-peak co-accessibility.
CICERO was run once for each cell type. We used UMAP dimen-
sions 1 and 2 (Fig. 2) as the reduced coordinates and set window

size to 1.75 Mb. A peak was considered to be a TSS peak for a
gene if it overlapped the 5-kb window upstream of that gene’s
TSS. If multiple TSS peaks were present for a gene, the maximum
co-accessibility score was shown in the heat map (Supplemental
Figs. S24, S31). The TSS list was generated as described for the Hi-
C contact analysis.

Peak accessibility—gene expression correlation in multiome

library

We used Signac (Stuart et al. 2021) (v. 1.1.0; R v. 4.0.3) to score the
Spearman correlation between fragment counts in ATAC-seq peaks
and gene expression in human nuclei in the multiome library.
We set EnsDb.Hsapiens.v75 (https://bioconductor.org/packages/
EnsDb.Hsapiens.v75) as the annotation and normalized the RNA
counts using the SCTransform normalization (Hafemeister and
Satija 2019). We required that at least five nuclei be positive for
the peak and gene to be included in the test and set the distance
threshold to 1.5 Mb.

T2D and fasting insulin GWAS enrichment

We used the T2D (BMI-unadjusted) and fasting insulin (BMI-ad-
justed) GWAS summary statistics from Mahajan et al. (2018) and
Manning et al. (2012), respectively.

Because the cell types relevant to T2D are generally thought
to be pancreatic beta cells, adipose, muscle, and liver, we per-
formed enrichments using each of these cell types, common
open chromatin, and the cell type–agnostic LDSC baseline anno-
tations. First, for each of these muscle/beta cell/adipose/liver cell
types, we ran one model containing the open chromatin from
that cell type, the common open chromatin regions, and the cell
type–agnostic LDSC baseline annotations. Then, we ran one joint
model containing all of those cell types and annotations. LDSCpa-
rameters were the same as for the UK BiobankGWAS enrichments.

T2D GWAS locus genome browser screenshots and peak overlaps

All signal tracks in the genome browser were created by converting
the normalized bedGraph files output by MACS2 to bigWig files
using bedGraphToBigWig (v. 4) (Kent et al. 2010).

Processing and provenance of adipose ATAC-seq and beta cell
ATAC-seq is described in the Supplemental Methods. The 10 bulk
islet libraries were from Rai et al. (2020). These libraries were pro-
cessed as described in that manuscript, except we used the 10%
FDR peak set from peak calling on the unsubsampled libraries.

Allelic bias analysis

Prior to the allelic bias analysis, we reprocessed snATAC-seq reads
using the WASP software package (commit 36c0e5f8b5) (van de
Geijn et al. 2015) to reduce reference allele mapping bias (see
Supplemental Methods). To determine if a SNP showed allelic
bias, we used a two-sided binomial test with expected fraction of
reads derived from the ref allele = 0.5. We tested only SNPs that
had coverage of at least 15 and at least one count for each allele.
Multiple testing correction (Benjamini–Hochberg correction
[Benjamini and Hochberg 1995]) was performed within each cell
type.

Predicting SNP regulatory impact

We used the lsgkm package modified by the Kundaje lab with
gkmexplain (https://github.com/kundajelab/lsgkm; commit
c3758d5bee7) (Ghandi et al. 2014; Lee 2016; Shrikumar et al.
2019). For each cell type, we took the 150 bp on either side of
the summits of the top 40,000 narrowPeaks (by P-value) as the
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positive sequences for gkmSVM. To generate negative sequences,
we took windows across the genome (step size = 200), removed
those containing Ns, overlapping hg19 blacklists, overlapping
any FDR 10%broadPeaks from that cell type, or having repeat con-
tent > 60%, and then for each positive sequence selected a negative
sequence with matching GC content and repeat content (repeat
content was calculated based on the hg19 simpleRepeat table
from the UCSC Genome Browser [Kent et al. 2002; Casper et al.
2018], downloaded on March 29, 2020, which contains simple
tandem repeats annotated by Tandem Repeats Finder [Benson
1999]; GC content and repeat content for the negative sequence
was required to be within 2% of that of the positive sequence; in
the case that no such negative sequence could be found, the pos-
itive sequence was dropped from the analysis). We held out 15%
of sequences as test data and trained the gkmSVMmodel on the re-
maining 85% of sequences, setting l = 10 and k=6 and using the
gkm kernel. The model performance on the test data for each
cell type is given in Supplemental Table S8. Using this model
and deltaSVM (Lee et al. 2015), we predicted the effect of all auto-
somal 1000 Genomes phase 3 SNPs (downloaded onMay 27, 2015
from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502)
(The 1000 Genomes Project Consortium 2015). For each muscle
cell type, deltaSVM scores were converted to z-scores based on
the distribution of scores across all SNPs for that cell type. We ad-
ditionally passed the gkmSVM model to gkmexplain to generate
importance scores for sequences containing the ref/alt alleles.

Cell culture and differentiation

Human adipose-derived mesenchymal stem cells purchased from
ATCC were grown in a culture medium of DMEM supplemented
with 10% FBS (Sigma-Aldrich) at 37°C with 5% CO2 in a humidi-
fied incubator. To differentiate hAMSCs into adipocytes, three in-
duction periods were performed over 10 days, as previously
described (Gojanovich et al. 2018). Briefly, hAMSCs were seeded
in 24-well plates (40,000 cells/well), and at 90% confluency, cells
were chemically induced with an adipogenic differentiationmedi-
um (ADM) comprised of culture medium and supplemented with
250 nM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine, 2
µM rosiglitazone, and 10 µg/mL insulin. Cells were incubated in
the ADMcocktail for 3 d, then switched to culturemedium supple-
mentedwith insulin (10 µg/mL) for 2 d. This inductionwas repeat-
ed once more, with 2 d (days six and seven) of the ADM cocktail
and 1 d (day eight) of insulin, followed by two additional days
(days nine and ten) of incubation in the ADM cocktail.

Lipid droplets were first visible after day five of induction and
grew in size and number as adipogenic differentiation progressed.
To differentiate hAMSCs to preadipocytes, cells were induced for
24 h with ADM induction medium. Transfections for both preadi-
pocytes and adipocytes were carried out in culture media contain-
ing 10 µg/mL insulin.

Transcriptional reporter assays

To test for allele-specific differences in transcriptional activity,
we designed PCR primers (5′-AGCTGGGACTTGATTTGGTG and
5′-AGCGGGTAGCTTTCCTTGAT) to amplify a 647-bp region
(hg19Chr 5: 53,271,139–53,271,785) containing rs702634. Geno-
mic DNA of individuals homozygous for the reference allele was
used as a template. The PCR products were cloned into the multi-
ple cloning site of the firefly luciferase reporter vector pGL4.23
(Promega) in both orientations, as previously described (Fogarty
et al. 2014). To create the alternate allele constructs at rs702634,
the resulting construct was altered using a QuikChange site-direct-

ed mutagenesis kit (Agilent Technologies). Isolated clones were
confirmed by Sanger sequencing.

One day prior to transfection, human adipose-derivedmesen-
chymal cells (40,000/well) were seeded in 24-well plates. These
hAMSCs, in addition to preadipocytes (hAMSCs after 24 h of adi-
pogenic differentiation) and adipocytes (hAMSCs after 11 d of adi-
pogenic differentiation), were transfected in triplicate with
Lipofectamine 3000 (Thermo Fisher Scientific). For each allele,
four to five independent luciferase constructs were cotransfected
with a Renilla internal control reporter vector (phRL-TK,
Promega). We incubated the transfected cells at 37°C with 5%
CO2 for 30 h, then measured the luciferase activity using the
Dual-Luciferase Reporter Assay System (Promega). Firefly luciferase
readings were normalized to Renilla luciferase readings, then to the
average of readings from two empty pGL4.23 vectors.

Overlap of SNPs and peaks with ENCODE candidate

cis-regulatory elements

The set of 1,310,152 candidate cis-regulatory elements in
ENCODE’s “Registry of Candidate Regulatory Elements” (in hg19
coordinates) were fetched from the ENCODE web portal on April
7, 2020 (Moore et al. 2020).

LocusZoom plots

LocusZoom plots were created for the DIAMANTE T2D GWAS
summary statistics with the LocusZoom standalone v. 1.4, using
the Nov. 2014 EUR 1000 Genomes data included in the download
(‐‐pop EUR ‐‐source 1000G_Nov2014) (Pruim et al. 2010).

MEF2 motif disruption

To determine which motifs were disrupted by SNP rs702634, we
scanned the surrounding hg19 DNA sequence, and the same se-
quence with the alternative SNP allele switched in, for motif
hits. The motif scan was performed using FIMO (v. 5.0.4) with a
background model calculated from the hg19 reference genome
(Grant et al. 2011) and otherwise default parameters. We used
the motif library from Kheradpour and Kellis (2014), excluding
“∗_disc” motifs. The MEF2_known10 motif (displayed in Fig. 4H)
received a minimum P-value of 4.51× 10−5 using the reference se-
quence; when changing the SNP allele to the alternate allele, no
motif was called at the default FIMO P-value threshold of 1 ×
10−4 (the minimum P-value for the sequence with the alternative
allele was 0.00183).

Data access

Raw sequencing data generated in this study have been submitted
to the European Genome-phenome Archive (EGA; https://ega-
archive.org/) under study accession number EGAS00001005730.
Processed sequencing data, including anonymized BAM files (see
Supplemental Methods), have been submitted to Zenodo
(doi:10.5281/zenodo.5009200) and to the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE178735. Codes used for analyses in this manu-
script are available at GitHub (https://github.com/ParkerLab/
2021-03-sn-muscle) and as Supplemental Code.
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