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Neutrophils are versatile innate effector cells essential for immune defense but also

responsible for pathologic inflammation. This dual role complicates therapeutic targeting.

However, neither neutrophils themselves nor the mechanisms they employ in different

forms of immune responses are homogeneous, offering possibilities for selective

intervention. Here we review heterogeneity within the neutrophil population as well as in

the pathways mediating neutrophil recruitment to inflamed tissues with a view to outlining

opportunities for therapeutic manipulation in inflammatory disease.
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INTRODUCTION

Circulating leukocytes have long been categorized by microscopic appearance as lymphocytes,
monocytes, and granulocytes. In the late 1870s, Paul Ehrlich distinguished neutrophils from
eosinophils and basophils using aniline stains (1). Neutrophils are diverse in phenotype, although
the understanding of this heterogeneity remains relatively basic. Related challenges include
the relative homogeneity of neutrophils on microscopic examination, a paucity of surface
markers defining clear-cut subgroups, short in vitro lifespan, and susceptibility to activation with
manipulation. Experiments using newer techniques such as mass cytometry and RNAseq often
exclude neutrophils by restricting analysis to cryopreserved peripheral blood mononuclear cells
(PBMC) or to cells with high mRNA content. The definition of subpopulations within neutrophils
has thus lagged behind work in other lineages.

This gap does not reflect doubt about the immune importance of neutrophils. Quantitative
and qualitative neutrophil defects expose patients to a high risk of infection, amply displayed
in both congenital and acquired neutrophil disorders (2, 3). In mice, neutropenia resulting, for
example, from congenital deficiency of the transcription factor Gfi1 translates into high mortality
from bacterial pathogens (4). Safety concerns translate into an understandable reluctance to target
neutrophils therapeutically.

The failure to develop such strategies passes up potential opportunities to intervene in
human disease. Neutrophils feature prominently in pathogenic sterile inflammation. For example,
neutrophils are ubiquitous in the inflamed joint in rheumatoid arthritis (RA), in peritonitis
associated with familial Mediterranean fever, and in the neutrophilic dermatoses (5–7). Among
the pediatric rheumatic diseases, neutrophils are uniformly present in inflamed juvenile idiopathic
arthritis (JIA) synovial fluid and have been implicated in the pathogenesis of the childhood-
restricted vasculitis Kawasaki disease (8–11) While presence alone does not establish causation,
evidence for a pathogenic role is frequently compelling. For example, experimental arthritis is
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abrogated in mice that lack neutrophils or with impaired
neutrophil migration or function (12–15). Analogous studies
implicate neutrophils as key effectors in a myriad of immune
mediated diseases, including neuroinflammation, colitis, and
bullous pemphigoid (16, 17). Neutrophils therefore remain an
interesting drug target.

The therapeutic challenge is to develop strategies that preserve
the defensive contribution of neutrophils while hindering
their capacity to mediate sterile inflammation. Selectivity may
be achieved by leveraging differences within the neutrophil
population, in the way that cancer chemotherapy for targets
cells that undergo frequent mitosis or bear specific mutations.
Opportunities to drive a “wedge” between protective and
pathogenic functions could also arise through differences in
effector pathways that neutrophils engage in responding to
sterile and septic triggers. This review will explore these
possibilities with a view to highlighting potential treatment
targets in neutrophils.

NEUTROPHIL BIOLOGY: ONTOGENY
AND LIFECYCLE

Neutrophils arise from hematopoietic stem cells (HSCs) in
bone marrow, spleen, and probably lung (Figure 1) (24, 25)
HSCs give rise to multipotent progenitors (MPP), which yield
common myeloid progenitors (CMP) and then granulocyte
monocyte progenitors (GMP). The latter commit to a program
to become monocyte/dendritic cells, mast cells, basophils,
or neutrophil/monocytes (26). A proliferation-competent
committed progenitor termed a preNeu develops into post-
mitotic immature neutrophils (myelocytes, metamyelocytes,
band cells) and finally segmented mature neutrophils (18).
Immature neutrophils are also be found in peripheral blood
in time of immunologic stress. Granulopoiesis is stimulated
predominantly through the IL-23/IL-17/G-CSF axis and
to a lesser extent by GM-CSF and M-CSF, although mice
lacking all three colony stimulating factors still have ∼10% of
normal circulating neutrophils (19, 27). Other cytokines have
also been implicated, for example IL-6, which has a special
importance in emergency granulopoiesis in response to systemic
infection (24, 28).

Studies in mice suggested a circulating neutrophil half-life
of 1.5 h by exogenous labeling followed by transfer and 8–10 h
after in vivo labeling (29, 30). In humans, endogenous labeling
raised the possibility that the neutrophil lifespan may be as
long as 5.4 days (half-life 3.7 days) (20). This surprising result
reflects assumptions about the relationship between marrow and
circulation that have been disputed, and more recent studies
suggest instead a half-life of 19 h, conforming more closely to
murine data and to conventional expectations (31, 32). In vitro,
human neutrophils typically undergo apoptosis within 24 h, but
>90% viability even after 9 days can be achieved in the presence
of GM-CSF (33). Thus, whatever the basal half-life of circulating
neutrophils, it is likely that some neutrophils live for a prolonged
period in vivo, especially in an inflamed context.

Neutrophils released into circulation can follow several paths
(Figure 1) (34). The simplest is uneventful aging followed

by return to the bone marrow, a process influenced by the
microbiome and mediated through progressive expression of
the SDF-1 (CXCL12) receptor CXCR4 in older neutrophils
(35–38). Production of mediators by marrow macrophages
phagocytizing aged neutrophils in turn regulates granulopoiesis,
forming a “neutrostat” that contributes to circadian release of
fresh neutrophils into blood (36). Some circulating neutrophils
marginate in lung, also under the influence of CXCR4, where
they can combat infection locally or be released at need into the
circulation (34, 39). A marginated neutrophil population is also
observed in liver and bone marrow (40).

Neutrophils recruited to inflamed tissues undergo several
distinct fates. Some die locally through apoptosis or other forms
of cell death, including ejection of their DNA as neutrophil
extracellular traps (NETs) (41). Neutrophils can egress from
tissues via lymphatics, appearing in lymph nodes loaded with
antigen (42). Neutrophils from inflammatory infiltrates can
return to the circulation, a possibility originally visualized
in zebrafish and subsequently observed in mice (38, 43,
44). More recently, it has been recognized that neutrophils
enter some tissues even without an exogenous trigger. For
example, neutrophils promote angiogenesis in the regenerating
uterine lining and modulate metabolism in adipose tissue,
particularly in obesity (34). In healthy mice, neutrophils have
also been observed in liver, skin, intestine, skeletal muscle,
kidneys, and heart, although not in brain or gonads (45).
While the role of these patrolling neutrophils remains to be
established, one function may be to modulate the activity of local
macrophages by which they are phagocytosed at the end of their
lifespan (45, 46).

NEUTROPHIL HETEROGENEITY AS A
FUNCTION OF MATURITY

The neutrophil lifecycle accounts for substantial phenotypic
heterogeneity (Figure 1). Mature human neutrophils exhibit a
characteristic multi-lobular nucleus and high surface expression
of CD16 (FcγRIII), CD62L (L-selectin), and CD10 (neutral
endopeptidase), along with neutrophil lineage markers CD15
and CD66b (21, 22). By contrast, immature neutrophils released
from marrow after immune stress are CD16lo and CD10lo,
often but not invariably together with band nuclear morphology
(22, 47, 48) Neutrophils less mature than band cells exhibit
elevated CD33 (Siglec-3) and lower CXCR2, the receptor that
enables mobilization out of the bone marrow niche (18, 21,
49). Immature neutrophils express more CXCR4 than mature
neutrophils, likely promoting their retention in the bone marrow
(18). As neutrophils age, expression of CXCR4 again increases,
licensing return to the bone marrow for clearance (35). Aging
is accompanied by other changes, including elevated expression
of the integrins CD11b and CD11c, lower CD62L, and lower
CD47, an inhibitor of phagocytosis (23). This maturation-
related variation corresponds to changes in effector function.
Aged neutrophils can be particularly effective in migration to
sites of inflammation for immune defense, although immature
neutrophils display superior bactericidal function against certain
pathogens (50, 51). Murine spleen contains a mature Ly6Ghi
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FIGURE 1 | Lifecycle of human neutrophils. Neutrophils arise in bone marrow, spleen and (at least in mice) in lung from hematopoietic stem cells (HSC), progressing

to committed granulocyte-monocyte progenitors (GMP), and then through a set of intermediate stages to mature neutrophils. Neutrophils exit to blood under the

control of CXCR2, usually as mature cells but under conditions of stress also as immature cells. Over time, neutrophils age, expressing CXCR4 that mediates return to

marrow. Alternate pathways for blood neutrophils include intravascular activation, intravascular margination, homeostatic migration into tissues, or migration into

inflamed tissues. Clearance occurs via macrophages either in tissues or in bone marrow. The localization of the recently-defined preNeu in the previously-accepted

neutrophil ontology (GMP → myeloblast → promyelocyte → myelocyte) remains uncertain; one plausible configuration is shown. The small circular arrow 	 reflects

replication competence. References:(18–23).

population of motile, highly phagocytic neutrophils as well as
immature Ly6Glo neutrophils with a preserved capacity for
mitosis, limited mobility, and low phagocytic capacity (49).
In humans receiving G-CSF, immature CD10neg neutrophils
stimulate T cells while mature CD10pos neutrophils are
suppressive (22).

NEUTROPHIL HETEROGENEITY AS A
FUNCTION OF ACTIVATION STATE

Beyond maturational changes, neutrophils shift phenotype with
activation. Mobilization of intracellular granules brings not only
soluble mediators but also pre-formed membrane proteins to
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the neutrophil surface. These include CD66b, the α and β

chains of the β2 integrin CD11b/CD18 (Mac-1), and in some
individuals CD177 with its associated protease proteinase 3
(PR3) (21, 52, 53). Other surface markers are lost, including
CD62L, which is rapidly shed in activated neutrophils. Activated
neutrophils exhibit multiple changes in function compared with
resting neutrophils. Inside-out signaling and clustering enhance
integrin binding, and activated neutrophils thus exhibit enhanced
mobility as well as production of lipid mediators, cytokines,
chemokines, and reactive oxygen species (54).

Neutrophils acquire additional surface markers that reflect
their migratory history (Figure 1). Many neutrophils that
transmigrate into inflamed tissue do not die by apoptosis,
as was previously assumed, but rather migrate back into
the circulation (38, 43, 44). In human neutrophils, in vitro
reverse transendothelial migration correlates with the appearance
of surface ICAM-1 (CD54), elevation of CD18, and lower
CD62L, CXCR1 and CXCR2 (55). In mice, reverse-migrated
neutrophils are characterized by ICAM-1 and upregulation
of CXCR4 through which they can “transplant” inflammation
from the periphery to the lung before returning to the bone
marrow for final clearance (38, 44, 56). ICAM-1 elevation
has also been reported in human neutrophils after prolonged
in vitro stimulation and in a CD16hiCD62LloCD11bhiCD11chi

peripheral blood neutrophil population induced in normal
donors treated with i.v. LPS, and hence is not restricted to
reverse-migrated neutrophils (20). Thus healthy donors exhibit
an almost uniform signature of mature neutrophils in blood,
CD11b+CD16hiCD62LhiCD10hi. After administration of LPS or
G-CSF, additional populations appear, including immature cells
(CD11bloCD16loCD62LhiCD10lo, banded nuclear morphology)
and cells with a phenotype suggestive of activated mature cells
(CD11bhiCD16hiCD62LloCD10+, increased nuclear lobulation)
(20, 22) Intriguingly, this latter subgroup can be found even
in normal marrow; labeling studies suggest a similar age to
mature neutrophils, raising the possibility that some CD62Llo

cells may not be mature neutrophils activated intravascularly but
rather a distinct type of neutrophil released directly frommarrow
under stress (57).

NEUTROPHIL HETEROGENEITY BEYOND
AGING AND ACTIVATION

The broad phenotypic variability associated with maturation and
activation complicates the task of discerning additional axes of
heterogeneity in the form of discrete neutrophil subsets. This
topic has been expertly reviewed (40, 58, 59). We will focus
on targetable neutrophil heterogeneity by limiting consideration
here to three areas: low-density neutrophils, immunomodulatory
neutrophils, and neutrophil subgroups defined by the surface
marker CD177.

Low-Density Neutrophils
The average density of neutrophils from healthy subjects is
>1.080 g/ml and therefore higher than lymphocytes (1.073–
1.077 g/ml) and monocytes (1.067–1.077 g/ml) (60). Density

gradient centrifugation leverages these differences to separate
PBMC from granulocytes. Low-density neutrophils (LDN, also
termed low-density granulocytes) are neutrophils found in the
PBMC layer rather than the granulocyte pellet (61, 62). On
microscopic examination, many display an immature nuclear
morphology, and gene expression studies suggest immaturity of
the population as a whole, although expression of CD10 and
other markers of maturity (e.g., CD16hi) suggest that not all
LDN are neutrophils released prematurely from the marrow (22,
62, 63). Importantly, normal-density neutrophils (NDN) exposed
to sera containing complement or immune complexes can also
segregate with PBMC, highlighting the dynamic nature of density
as a physical property of neutrophils that reflects factors such
as granule content and cytoplasmic volume (22, 61). Elevated
CD66b and CD11b further suggest that some LDN represent
activated mature cells (62). In mice, interconversion between
LDN and NDN occurs in neutrophils adoptively transferred into
live animals, while ex vivo TGF-β treatment induces LDN-like
features in NDN (64). Thus, LDN likely represent a diverse
population of immature and activated mature neutrophils.

Elevation in peripheral blood LDN has been observed in
many states of immune stress, including acute rheumatic fever,
JIA, RA, systemic lupus erythematosus (SLE), autoinflammatory
diseases, G-CSF administration, cancer, and sepsis (61–67). Their
characteristics vary widely with context, and can for example
include enhanced production of pro-inflammatory cytokines
such as TNF and type I interferons, spontaneous NET generation
(discussed further below), and immunosuppressive capacity (40).
LDN thus reflect the phenotypic and functional plasticity of the
neutrophil lineage. Whether some LDN also represent a discrete,
stable neutrophil subset remains to be determined.

Immunomodulatory Neutrophils
The view of neutrophils as simple foot-soldiers of immunity has
given way to a more nuanced understanding of these cells as full
participants in the immune network. Examples of the reciprocal
interchange between neutrophils and adaptive immunity are
abundant. Neutrophils home to lymph nodes in response to
CCL19 and CCL21, carrying antigen for presentation to T cells in
the context ofMHC II and the canonical costimulatorymolecules
CD80 and CD86 (68–74). Neutrophils can differentiate into cells
with surface and functional similarity to dendritic cells (75, 76).
CD15int/loCD16int/lowCD11bhigh “B helper” (NBH) neutrophils
have been reported in themarginal zone between lymphoid white
pulp and non-lymphoid red pulp of human spleen than interact
with B cells to promote IgM production and Ig class switching
(77). The NBH phenotype develops under the influence of IL-10
from local cells, including splenic endothelial cells, and confers
the capacity to produce mediators including APRIL, BAFF, and
IL-21. Of note, not all investigators have observed these cells
in human spleen, such that further exploration of NBH cells
is required (78).

Neutrophils can also suppress adaptive immunity. This
capacity has gained particular attention in cancer biology,
where neutrophils can promote tumor growth by inhibiting
responding lymphocytes (64, 79, 80). Mechanisms include
arginase-1 to deplete extracellular arginine required for T
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cell function, reactive oxygen and nitrogen species to impair
effector T cells in favor of regulatory T cells, IL-10, and TGF-
β as immunosuppressive mediators, and pathways mediated
through direct cell-cell contact (20, 34, 81). Myeloid cells
with the capacity to block T cell activation (and under some
conditions B cells and NK cells) have been termed myeloid-
derived suppressor cells (MDSC), a loosely-defined category now
recognized to include both neutrophil-like and monocyte-like
cells (82, 83). Neutrophilic MDSC (so-called PMN-MDSC) are
typically considered relatively immature, but in G-CSF-treated
donors suppressive capacity in fact resides within the mature
(CD10+) fraction, both LDN and NDN (22, 83). Suppressive
capacity can also be elicited ex vivo in healthy-donor neutrophils
exposed to TLR ligands, consistent with in vivo LPS challenge
data (20, 81). Immunosuppressive capacity is thus available to
neutrophils at a range of maturational states with appropriate
stimulation. It remains to be established whether this capacity
represents part of a broader differentiation program in a limited
group of neutrophils—i.e., whether PMN-MDSC represent one
or more distinct neutrophil subsets.

CD177
Another protein expressed dichotomously in human neutrophils
is CD177, originally known as NB1 (84). A glycoprotein of ∼60
kD attached to the neutrophil surface via a GPI linker, CD177 is
present on 40–60% of neutrophils in most donors, with a range
extending from 0 to 100%; some individuals manifest a CD177int

population as well (52, 85, 86). Like another dichotomously-
expressed neutrophil protein olfactomedin 4 (OLFM4), CD177
is localized to the specific granules, residing in the granule
membrane for rapid mobilization to the surface with cell
activation; however, CD177pos and OLFM4hi subsets otherwise
exhibit no interdependence (52, 87).

The function of CD177 is incompletely understood. Lacking
a transmembrane domain, CD177 cannot itself transmit a
signal intracellularly, but antibody ligation studies show that
CD177 can signal through the β2 integrins with which it
associates in cis at the neutrophil surface (88, 89). Resulting
enhancement in integrin expression and affinity translate CD177
ligation into neutrophil arrest, blocking transmigration (89).
CD177 thus functionally echoes murine Ly6G, a neutrophil-
restricted GPI-linked protein from the same Ly6/UPAR protein
family that also interacts with β2 integrins and can modulate
neutrophil migration, although Ly6G ligation appears to impair
rather than enhance integrin binding (15, 90, 91). The
endogenous receptor for CD177 remains uncertain. In vitro data
implicate the endothelial adhesion molecule PECAM-1; however
CD177pos neutrophils display no particular affinity for PECAM-
1-expressing platelets or in vivo migratory advantage, rendering
the physiological significance of the in vitro observations
uncertain (89, 92–94) Interestingly, CD177 specifically binds the
neutrophil protease PR3, which is stored primarily in azurophilic
and specific granules in resting neutrophils and mobilized to
the membrane during activation, such that CD177pos cells
are identical to PR3pos cells among activated neutrophils (95–
97) Some data suggest that PR3 may promote the migration
of CD177pos neutrophils, but more recent data indicate that

CD177 binding impairs PR3 function, leaving the functional
implications of the CD177-PR3 interaction uncertain (92, 98).

The basis for the expression of CD177 in some neutrophils
but not others is partially understood. CD177 resides adjacent
to a related pseudogene CD177P1 that is characterized by a stop
codon in the region corresponding to CD177 exon 7. Through
a process of homologous recombination (gene conversion),
approximately 12% of CD177 alleles feature the CD177P1
stop codon and thus represent null variants. Accordingly, the
observed allelic distribution matches that expected by Hardy-
Weinberg equilibrium, with 78%WT/WT, 19%WT/null, and 3%
null/null (85, 99). In subjects with 2 intact copies of CD177, the
CD177pos fraction is typically 50–98%; in WT/null, 10–60%; and
in null/null 0%. Why some neutrophils from WT/WT donors
lack CD177 expression remains undefined, but presumably
reflects epigenetic regulation (100). Interestingly, in individuals
with 2 intact copies of CD177, epigenetic control enforces
expression of single parental allele in all CD177-expressing
neutrophils, although the purpose of such tight control is
unknown (101).

Distinct immunological roles of CD177pos and CD177neg

neutrophils have not yet been established. Individuals with
nearly 100% CD177pos neutrophils or lacking CD177 altogether
appear healthy. The proportion of neutrophils expressing CD177
in an individual typically remains stable over time but rises
in pregnancy, sepsis, and pathologic conditions including
polycythemia vera, vasculitis, and SLE (86, 102). Studies of
circulating CD177pos and CD177neg neutrophils reveal similar
expression of integrins and Fc receptors, fibronectin adhesion, in
vitromigration, and reactive oxygen species production (89, 103).
Gene expression profiling using microarrays identified minor
differences, principally in genes encoding granule proteins,
although protein levels remained similar (104). Surface PR3 has
been proposed as a potential modulator of T cell proliferation
(105). A recent study suggested that CD177pos cells express
enhanced bactericidal capacity as well as IL-22 production,
reflecting a potentially protective role in inflammatory bowel
disease, including through use of a murine model (106).
However, the use of an antibody clone that is known to activate
neutrophils (MEM-166) to sort CD177 populations complicate
the interpretation of these data, as functional measures may
become confounded by the activation-mediated effect of the
antibody itself (89). CD177 may be of interest in vasculitis,
as it can mediate the tethering of PR3, the target of c-ANCA
autoantibodies to the neutrophil surface.

MIGRATORY PATHWAYS AS A WEDGE
BETWEEN PROTECTIVE AND
PATHOLOGIC FUNCTIONS
IN NEUTROPHILS

Beyond population heterogeneity, opportunities for intervention
in neutrophil biology could emerge through effector pathways
that are employed differentially in pathogenic and defensive
functions. Given the myriad effector pathways employed by
neutrophils, it is likely that there are multiple such opportunities.
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For example, in zebrafish, H2O2 is required for initiation
of neutrophil recruitment to wounding but dispensable for
migration toward injected bacteria (107). The zebrafish IL-
1β ortholog and its downstream signaling partner MyD88
are similarly required for neutrophil recruitment triggered by
wounding but not bacteria (108). We will focus here on another
intriguing discrepancy between sterile and septic neutrophil
migration related to the role of neutrophil β2 integrins.

The leukocyte recruitment cascade is well-established (54,
109). Circulating neutrophils roll across the endothelial surface
under the influence of adhesive interactions between endothelial
P- and E-selectins and neutrophil ligands including PSGL-1,
further slowed by weak, transient interactions between other
receptor-ligand pairs such as endothelial ICAM-1 and low-
affinity neutrophil β2 integrins. With activation, endothelial cells
upregulate these adhesion molecules and neutrophils augment
the quantity and affinity of surface integrins, resulting in
neutrophil arrest. Further neutrophil activation via chemokines
presented on the endothelial glycocalyx and/or transported
by endothelial cells to the luminal surface solidifies the
attachment through post-adhesion strengthening (54, 110).
Adherent neutrophils crawl in an integrin-dependent manner to
sites suitable for transmigration between or through endothelial
cells and then along sub-endothelial pericytes to sites of eventual
egress into tissue (111, 112). While much of this cascade
has been defined in mice, human relevance is supported by
the susceptibility to infection in patients lacking the β2 chain
CD18 (113).

Yet this selectin-integrin paradigm is not the whole story.
Neutrophils lacking all integrins can migrate through the 3-
dimensional matrix of tissue interstitium via amoeboid motion
(“flowing and squeezing”) (114) Mice lacking β2 integrins or
subject to integrin blockade still mount neutrophilic infiltrates. In
particular, neutrophils can enter the airway without β2 integrins,
although entry into the pulmonary parenchyma exhibits partial
integrin dependence, as shown in studies employing adoptive
transfer of mixed wild-type and CD18–/– neutrophils (90,
115–120) Indeed, under certain circumstances integrins slow
neutrophil migration into lung, such that impairing integrins
actually promotes neutrophil entry (116, 120). Consistent with
these murine findings, neutrophilic pneumonia is observed in
humans and cows lacking CD18, although recurrent pulmonary
infections remain a clinical feature of this immunodeficiency
in both species (113, 121, 122). In peritoneum, migratory
impairment resulting from integrin deficiency or blockade is
partial, with marked variability among experimental systems
(90, 115, 116, 123–125). In the liver, integrins mediate neutrophil
accumulation after thermal injury but are dispensable for
migration induced by live bacteria in favor of CD44-hyaluronan
adhesion (126). In other sites, β2 integrins play a more
clear-cut role, including skin and in joints inflamed through
immune complex deposition, although at least in joints the
initial dependence on integrins may become less prominent
as inflammation proceeds (13, 110, 114, 116, 127–129). Thus,
mechanisms employed by neutrophils to enter tissues vary with
site and also with stimulus, via pathways not limited to the classic
leukocyte adhesion cascade.

Could this variability be exploited therapeutically? In liver,
sterile infiltration is dependent on β2 integrins, while these
integrins appear dispensable for septic infiltration (126).
The generalizability of this principle was tested in murine
peritoneum. Co-transfer of WT and CD18–/– neutrophils
identified a markedly greater role for β2 integrins in sterile
than septic peritonitis (i.p. IL-1β vs. live E. coli) (90).
Correspondingly, targeting integrin-mediated neutrophil
recruitment via an antibody directed against the integrin
modulator Ly6G attenuated only sterile neutrophil infiltration,
and then only in neutrophils expressing CD18. Consistent
with the known variation in integrin dependence, ligation of
Ly6G attenuated integrin-dependent arthritis and integrin-
mediated post-adhesion strengthening on inflamed cremaster
muscle but had no effect on integrin-independent neutrophil
infiltration into lung (15, 90). These findings suggest that
neutrophil migration in sterile disease could potentially be
targeted without impairing antimicrobial defense. To the extent
that integrin compromise can be rendered neutrophil-selective,
as with Ly6G ligation, blockade is unlikely to phenocopy human
CD18 deficiency, which impacts not only neutrophils but also
monocytes, macrophages, and T cells. Humans do not express
Ly6G, but CD177 could potentially fulfill a similar role, given
its similar structure, selective expression in neutrophils, spatial
association with β2 integrins, and capacity to block neutrophil
migration upon ligation (88, 89, 91, 93). Anti-CD177 (clone
MEM166) arrests migration by enhancing integrin-mediated
adhesion via mechanisms including inside-out signaling and
impaired integrin recycling (89). Since the relevant endogenous
counterligands of both Ly6G andCD177 are unknown, it remains
unclear if this difference in effect reflects intrinsic differences
between these proteins or variability among the available
targeting antibodies.

Importantly, not only integrin binding but also timely
integrin release is required for successful transmigration.
Interference with this step through interventions that prevent
integrin affinity modulation represent a further opportunity
for intervention in migration, a “leukadherin”-type mechanism
(120, 130). To date, however, this approach lacks specificity
for neutrophils.

NEUTROPHIL TARGETING IN
INFLAMMATORY DISEASES

Heterogeneity within the neutrophil population and in the
pathways that neutrophils employ to access inflamed tissues
represent opportunities for intervention in neutrophil-mediated
disease. None of these have yet been explored definitively, so this
discussion remains necessarily speculative.Wewill focus on three
diseases: inflammatory arthritis, SLE, and vasculitis.

Inflammatory Arthritis
This disease family encompasses conditions including JIA,
adult RA, and crystalline arthropathies such as gout (131).
The presence of neutrophils in the joint fluid is the sine qua
non of active inflammation across this spectrum. Experimental
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data across species implicate neutrophils in both initiation and
perpetuation of disease (13–15, 132–134). Neutrophils stimulated
via C5a arrest at the synovial endothelium in a β2 integrin-
dependent manner and transmigrate under the influence of
leukotriene B4 (LTB4) and other chemokines (110, 135, 136).
Within the joint, activated neutrophils provide LTB4 and IL-
1β that amplify the inflammatory process (13, 136, 137).
Abundant in synovial fluid, neutrophils remain sparse in synovial
tissues, although they can be observed in the inflamed pannus
early in disease and at the cartilage-pannus junction (138,
139). Their proteases can injure cartilage, including through
“frustrated phagocytosis” of embedded immune complexes
(140). More recently, neutrophils have been recognized as
a source of citrullinated autoantigens in seropositive RA
at sites including joint, oropharynx and lung (141–147).
Interestingly, not all neutrophil activity in arthritis is pathogenic.
Neutrophil microvesicles can protect cartilage by promoting
local production of TGF-β (148). In gout, aggregated NETs can
help resolve flares through protease-mediated clearance of pro-
inflammatory mediators, though the practical contribution of
these mechanisms remains unclear (149, 150).

Neutrophils likely play roles in arthritis beyond their
immediate impact within the joint environment. Their capacity
for regulation of B cells and T cells, and for transport and
presentation of antigen, has been noted above. Neutrophils
provide mediators that contribute to systemic inflammation.
For example, they are a major source of the pro-inflammatory
calgranulins S100A8/A9 and S100A12, danger-associated
molecular pattern (DAMP) proteins that can activate other
cells via pathways including TLR4 ligation (151–153). In
systemic JIA, a form of childhood arthritis characterized by
fever and rash, concentrations of these mediators in blood
are highly elevated, correlating with circulating neutrophil
counts and potentially contributing to IL-1β release by
monocytes and other cells (48, 154). Recent studies have
identified a specific expansion of hypersegmented CD16pos

CD62Ldim neutrophils in patients with systemic JIA with
active, systemic symptoms compared to patients with
active arthritis or inactive disease (155). These changes
in phenotype and count are accompanied by a sepsis-
like transcriptomic pattern in systemic JIA circulating
neutrophils (67).

Points of intervention in neutrophil biology in arthritis
range across a broad spectrum, including recruitment, effector
pathways, and antigen generation. Mechanisms of recruitment
blockade in mice include neutrophil-specific integrin blockade
and chemokine antagonism (15, 90, 156). Targeting toxins and
other compounds to neutrophils, e.g., via scavenger receptors,
could potentially hasten resolution of inflammation (157). A
similar strategy could alter the ability of neutrophils to generate
citrullinated autoantigens, for example by introducing inhibitors
of peptidylarginine deiminase enzymes (158). Of note, RA was
one of the first diseases to be associated with LDN (61). Induction
of the LDN phenotype by RA plasma, complement, or aggregated
IgG suggests that LDN could represent an activated and/or
degranulated cell population (61, 159). Direct ex vivo analysis of
RA LDN has found markers of immaturity but failed to identify

the enhanced capacity for NET formation observed in SLE LDN,
such that their role in antigen generation remains uncertain (63).

Systemic Lupus Erythematosus
The evidence for a role for neutrophils in SLE is now compelling,
as has been reviewed in depth (158, 160, 161) Most of the
attention has focused on LDN and NETs. The presence of
neutrophils in PBMC preparations was described originally in
a cohort of diseases including SLE, and it was in SLE that
the term “low density granulocytes” was first applied (61, 62).
LDN within SLE have several features that suggest a role in
disease pathogenesis. They can elaborate type I interferons and
generate NETs in vitro without exogenous stimuli, expose SLE-
associated autoantigens and stimulate interferon production by
plasmacytoid dendritic cells. (62, 162–164). Free DNA has been
observed in lupus nephritis kidneys, potentially reflecting an
impaired ability to clear NETs (165). Indeed, some SLE patients
exhibit autoantibodies against DNase I, the enzyme primarily
responsible for NET clearance, or against the NET themselves
that block enzymatic attack (165). NETs can be elicited by anti-
phospholipid antibodies, potentially contributing to elevated
thrombosis risk in SLE (166). Finally, neutrophils may contribute
to aberrant B cell development in SLE bone marrow through
production of IFNα and B cell growth factors (167).

This substantial evidence base renders neutrophils, and
particular NETosis, an intriguing therapeutic target in SLE
(158). Interference with NETosis can ameliorate manifestations
of experimental SLE (168, 169). Importantly, however, genetic
deficiency of PAD4 and other pathways required for NETosis can
have no effect or even worsen SLE-like disease in mice (170–
172). Which murine studies replicate the human potential of
NET blockade remains to be determined. Depleting or blocking
LDN could represent an avenue forward, but will require further
understanding of their origin and role in immune defense as well
as in pathogenic inflammation.

Vasculitis
Inflammatory disease of blood vessels can assume many forms,
with a severity ranging from trivial to catastrophic. Neutrophilic
infiltration into blood vessels is a common feature of vasculitis.
For example, neutrophils are the dominant tissue leukocyte
in immune complex-mediated leukocytoclastic vasculitis and
in inflamed coronary arteries in Kawasaki disease (173–175).
Neutrophils may mediate Henoch-Schönlein purpura (HSP),
the most common childhood vasculitis, through their ability
to recognize the Fc portion of IgA molecules (176). In anti-
neutrophil cytoplasmic antibody (ANCA)-associated vasculitis
and related in vivo disease models, the neutrophil enzymes PR3,
and myeloperoxidase are targeted by autoantibodies and play a
potential pathogenic role, mediating neutrophil activation and
β2 integrin-dependent adhesion to endothelium (177–182). For
PR3, the subset of neutrophils expressing CD177 may play a
particularly important role, because CD177 binds PR3 to enable
surface expression at high level (92, 96). This binding enables
anti-PR3 antibodies to activate neutrophils by signaling via
CD177-associated integrins, potentially similar to the activation
of neutrophils via anti-CD177 antibodies (88, 89, 103). Of

Frontiers in Immunology | www.frontiersin.org 7 March 2019 | Volume 10 | Article 346

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Grieshaber-Bouyer and Nigrovic Neutrophil Heterogeneity in Immune-Mediated Disease

note, PR3 may be expressed via CD177-independent pathways,
and CD177 expression is not an invariable requirement
for neutrophil-mediated inflammation induced via anti-PR3
antibodies (102, 183). ANCAs bound to the neutrophil surface
also activate neutrophils via their surface Fc receptors and
can trigger NETs that contribute to tissue injury (184–186).
Detailed mechanistic understanding of the role of neutrophils in
non-ANCA vasculitis remains more limited, but it is plausible
to suspect that their presence in these sterile inflammatory
infiltrates reflects a pathogenic role (187).

These considerations render neutrophils an interesting target
population in vasculitis. In some patients, there is an emergent
need to shut down inflammation to protect affected tissues
including lung, kidney, brain, nerve, and heart. In such cases,
short-term infectious risk might be a tolerable exchange for rapid
cessation of disease activity. In other cases, vasculitis is chronic
and indolent, and a more careful balancing act is required.
The neutrophil populations and pathways to be targeted vary
with the disease. These include CD177pos neutrophils in anti-
PR3 ANCA-associated vasculitis, which could be depleted or
treated to interfere with the ability of CD177 to bind PR3,
although non-CD177-mediated PR3 expression may limit the
effectiveness of such a strategy (102). Blockade of neutrophil
β2 integrins could attenuate vasculitis mediated through firm
adhesion between neutrophil and endothelium. Intracellular
activation pathways and NETs have also been proposed as
targets (188, 189).

CONCLUSIONS

Neutrophils exhibit a broad range of phenotypes. Much of
this variability reflects developmental stage and activation
status, integrating both stimulatory exposures and migratory
history. As a result, neutrophils diverge from one another in
nuclear morphology, buoyancy, surface markers, migratory, and
phagocytic capacity, NET generation, and immunomodulatory
function, among other characteristics. There remains intense
interest in the possibility that this diversity manifests specific
developmental programs to which individual neutrophils
become committed, reflecting thereby true neutrophil subsets.

However, to date evidence in favor of discrete subsets is
insufficient to reject the alternative hypothesis that phenotypic
variation reflects the impact of diverse environments on
neutrophils within a single developmental continuum. The
growing capacity for single-cell analysis of immune populations
will likely provide important insights into this biology in
coming years.

For the purposes of therapeutic targeting, the ontogeny of
neutrophils is less important than the fact of their phenotypic
diversity, now well-established if still incompletely delineated.
This diversity opens the possibility of targeting neutrophils
engaged in disease pathogenesis without similarly perturbing
neutrophils engaged in antimicrobial defense. Such “wedge
opportunities” arise not only with respect to heterogeneity
within neutrophil population but also, somewhat less
appreciated, in the pathways employed by neutrophils to
respond to different stimuli. We reviewed here the evidence
in favor of a greater role for neutrophil β2 integrins in
neutrophil migration toward sterile than septic triggers, at
least in some sites, and the potential role for neutrophil-
specific integrin modulators (Ly6G in mice, potentially CD177
in humans) to enable lineage-specific integrin targeting.
Better understanding of neutrophil biology will open further
possibilities for the selective manipulation of this lineage in
human therapeutics.
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