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Jumping over baselines with new
methods to predict activation maps
from resting-state fMRI

Eric Lacosse'*", Klaus Scheffler>?, Gabriele Lohmann?>* & Georg Martius'*

Cognitive fMRI research primarily relies on task-averaged responses over many subjects to describe
general principles of brain function. Nonetheless, there exists a large variability between subjects that
is also reflected in spontaneous brain activity as measured by resting state fMRI (rsfMRI). Leveraging
this fact, several recent studies have therefore aimed at predicting task activation from rsfMRI

using various machine learning methods within a growing literature on ‘connectome fingerprinting’.
In reviewing these results, we found lack of an evaluation against robust baselines that reliably
supports a novelty of predictions for this task. On closer examination to reported methods, we found
most underperform against trivial baseline model performances based on massive group averaging
when whole-cortex prediction is considered. Here we present a modification to published methods
that remedies this problem to large extent. Our proposed modification is based on a single-vertex
approach that replaces commonly used brain parcellations. We further provide a summary of this
model evaluation by characterizing empirical properties of where prediction for this task appears
possible, explaining why some predictions largely fail for certain targets. Finally, with these empirical
observations we investigate whether individual prediction scores explain individual behavioral
differences in a task.

Functional magnetic resonance imaging (fMRI) offers noninvasive whole-brain activity measurement. Generally,
different experimental paradigms are used to understand aspects of brain function. The two main experimental
fMRI paradigms study the brain in resting-state (rsfMRI) and while performing a controlled task (tfMRI). The
first records brain activity usually with instruction to “keep awake,” “do not think about anything in particular,’
and/or “visually fixate upon a crosshair display” In contrast, tfMRI measures brain activity evoked by tasks
typically seeking to isolate some specific cognitive process, usually contrasting it to a control condition. These
two paradigms are usually treated separately and little is known about how they precisely relate. However, it
was observed that brain activity in both share many features that may help to explain brain function!-. Many of
these observations show that much of the estimated variance in rsfMRI functional connectivity (FC) appears to
be shared with tfMRI activation maps. These observations are often based on group averages. However, averag-
ing across groups destroys relevant information'®. Therefore, predictions about individual brains are vital for
making progress in neuroscience. The relationship between rsfMRI and tfMRI for individual subject prediction
can be captured by a regression problem, as illustrated in Fig. 1. This topic has been addressed in numerous
studies!!~!®. Here we re-examined methods that address this problem using machine learning techniques with
only functional data. That is, learning statistical models mapping rsfMRI and tfMRI data that generalize on
unseen test data (individual subjects)'. Problematically, when considering individual predictions evaluated
over the whole-cortex, our benchmark comparison shows that previous methods are extremely limited beyond
predicting better than a trivial baseline of group averaging. This is alarming. In this paper we develop a modifica-
tion of previous methods that allows them to jump over baselines in many cases, though some limitations still
exist. These modifications can be briefly summarized as follows: using a regularized regression method that fits
and estimates hyperparameters on a single vertex or voxel basis. This technique is known from previous fMRI
studies®’, however, has not been used in this context.

Therefore, the first aim of the present paper is to demonstrate that the methods we propose are capable of
superior prediction. To do so, we provide a benchmark comparison showing how our modifications improve
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Figure 1. A conceptual model of the problem setup and goal. Both rsfMRI and tfMRI measuresments are
acquired using BOLD echo planar imaging (EPIporp) by the Human Connectome Project scanners and
acquisition protocols. These reconstructed and processed images from a single subject are mapped by some
encoding model: either resting-state functional connectivity features (rsFC) by function gfgsures or tMRI

data mapped to a z-statistical map summarizing task activation by function ggrum. Function fis the model
mapping rsfMRI features to task maps. Our goal is to find optimal models gryres and f that give the highest
performing whole-cortex prediction of task GLM maps (see “Evaluation” section for metrics describing how
model performance score is measured). Additionally, activity during the acquisition of tfMRI generates some
observed behavior commited during the task. Whether the relative dependence between rsfMRI and tfMRI tell
us anything about task behavior is an important question we sought to answer through improving these models.

Model name Proposed here | Parcellation—feature extraction | Type of fitting # of features
MMP-RR-PCR v MMP—opartial correlations SV ridge regression 379
Rest-task GICARR | v/ ICA on task data SV ridge regression 80
Rest-rest GICA RR v ICA on rest data SV ridge regression 80
MMP-RR-DR v MMP w/ dual regression SV ridge regression 379
MMP-RR v MMP SV ridge regression 379
GPR-RR v Random projection SV ridge regression 379
AF-Mod v Mean activation maps SV linear regression 1
GICA-DR-OLS" X ICA w/ Dual regression parcel-wise linear regression | 50
MMP-ParcelRR* X MMP Parcel-wise ridge regression | 360
MMP-OLS v MMP SV linear regression 379
AFB X Mean activation maps None ?

Table 1. An overview of all methods we compare and benchmark. The names are composed of parts for
feature extraction (MMP, PCR, GPR, GICA, AF) and regression model (RR, OLS), see “Materials and
methods” section for details.

models considerably on a large Human Connectome Project (HCP) dataset. Following these modifications,
model predictions achieve above baseline performance for a large number of target contrasts. Notably, these
results not only predict individual subject differences, i.e., ‘connectome-fingerprints**??, as many have previously
shown!*"182; they provide support that whole-cortex prediction by a model exceeds what any kind of group
averaging, i.e., baselines, could achieve—a point we will reiterate the importance of.

Second, to investigate the benefits of the proposed vertex-wise regression, we consider a set of algorithms
for feature extraction and prediction, see Table 1. Besides comparing relevant methods in the literature, we also
provide additional insights into which features are actually predictive and discuss other aspects worth investigat-
ing. For instance, we give evidence for the relevance of the vertex-wise regularization strategy. Also, we found
that widely adopted parcellations surprisingly do not outperform random projections by a considerable margin
initially expected for this task.

To arrive at these insights we report additional metrics that we believe should be included in these kinds of
studies in the future. That is, in addition to a widely accepted metric evaluating whole-cortex predictions, we
report predictive variance explained (R? according to sum of squares) on a single vertex level. This examination
allowed us to empirically investigate where predictions performed well spatially, explaining why predictions of
only a certain number of contrasts perform by a respectable margin above naive baselines.

Finally, recent literature finds correspondence between rest and task activity to be rich in information about
individual subject behavior?. Following this line, we explore the behavioral relevance of the rest-task dependency
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found by our best performing method. Namely, we check whether the prediction scores for individual subjects
based in rsfMRI carry any information about their behavior during the tfMRI acquisition. We demonstrate how
amodel’s prediction score can be taken as a relative measure of dependency between rest and task measurements.
In this way we show that this model may provide information relevant within a behavioural neuroscience context.
We also evaluate these behavioral measures relative to a group average baseline. Our results show a compelling
behavioral correspondence between resting state and a subject’s task performance in certain contrasts. We believe
this can drive further progress in the field.

Materials and methods

We consider fMRI data in “grayordinate” space, an HCP-specific standard in a CIFTI data structure separating
a surface cortical space that is vertex-based from subcortical and cerebellar areas that are volumetric or voxel-
based. In this study we use data from the Human Connectome Project (HCP) $900 release® and use 100 subjects
for training and 100 subjects to make predictions. Here, we consider prediction targets of each subject i to be
fixed-effects task GLM maps only on the cortical surface y; € R>*4!2 defined across 7 different task categories.
Performance across these 7 task categories intended to elicit brain activity diverse enough to provide a vast cov-
erage across the entire cortex®. Together, a total of 47 different contrasts were included. To model these predic-
tions, we consider methods that first rely on some feature extraction from rsfMRI data. This feature extraction
makes use of the entire grayordinate space, i.e., including the volumetric data component. For each subject i we
consider the data matrix X; € R"*! where v = 91, 282 is the vertex+voxel dimension in grayordinate space and
t is the number of samples acquired in time. Further details on the pre-processing of X; and computation of y;
are found in “fMRI data and processing” section.

Evaluation. Before detailing feature extraction and a new modeling approach, we would like to bring atten-
tion to important details regarding how the models are compared against each other. All model evaluation meas-
uring predictive performance is done only on the 59,412 cortical surface vertices within the 100 subject test-set
although rsfMRI feature extraction uses the entire grayordinate space. We exclude volumetric evaluation, i.e., in
subcortical regions, primarily to avoid evaluation bias due to the low signal-to-noise ratios and technical chal-
lenges of subcortical imaging?, for visualization purposes, and to be consistent with previous work, e.g.'?. Indi-
vidual subject scores were computed as the Pearson correlation score r; for subject i between prediction y; and
“true” activation map y;. This image similarity metric is a unit-less measures that provides a concise summary of
whether the overall shape of activation prediction is determined to be accurate?.

This measure alone, however, does not inform us where spatially the model is capable of making accurate
predictions. For that, we include the predictive R? score, a standard measure to quantify how much variance is
explained by the predictive model®. Given test-set predictions at vertex j as y; € R'°’ and “true” activation map
y; € R'%, this score is computed as

Ily; — ¥;11?
RE=1-— - 1
j lyj — %112 M

wherey; = Ziwo yijis the subject-wise mean over 100 test-subjects. This score indicates where and to what extent
prediction was possible for each vertex of the fitted model. It does so by allowing a standardized comparison,
i.e. as an expression of fraction of variance explained. Note that according to the definition of R? here, it allows
for negative scores. In that case, the mean of the data being evaluated would provide a better prediction than
the fitted model’s output. In other words, where predictions yield a negative R? score, predictions do not jump
above a simple mean average prediction. For whole-cortex comparisons, the weighted average R? across the
cortical surface was computed. This was done by weighting each vertex R? by the variance of the target sample.

Note that we do not report higher intra-subject vs. inter-subject prediction scores as an evaluation criterion as
was done in'2. We do not believe this observation is particularly constructive beyond the two evaluation metrics
above we use. This position is based on the following observations. We understand intra-subject dependence
between separate, spatially normalized whole-brain measurements exists to the extent it allows highly accurate
subject identification from both rsfMRI and tfMRI-based measurements®**°. We could expect that an output
derived from an arbitrary encoding model of rstMRI compared to tfMRI activation maps could reveal higher
intra-subject correlation than inter-subject, preserving the dependency structure defining rsfMRI and tfMRI
are both acquired from the same individual brain. Yet, that prediction can be vastly poorer than a naive, unfit-
ted baseline model in terms of whole-cortex evaluation. Supplementary Figure S1 illustrates that an arbitrary
FC encoding of rsfMRI can demonstrate exactly this. A correlation map produced by a random averaging can
show higher intra-subject than inter-subject scores to task activation maps clearly marked. This illustrates that
inter-subject differences exist despite explaining no variance on a vertex-wise level and vastly underperform-
ing baseline scores. While this observation still reveals individual features unique to the subject are preserved,
we hesitate to claim it is evidence of a successful prediction about something unknown. Instead, we believe it
reiterates what we know from the very outset of the problem: both rsftMRI and tfMRI are measured from the
same brain. Therefore, we try to place our claims of predictability by emphasizing comparison against models
of massive subject averaging. Our goal is that our prediction performance exceed these simple subject averaged
baselines across the whole cortex.

Also note that we specifically choose not to evaluate any model performance based on a measure of suprath-
reshold extent, e.g., thresholded maps and their overlap indices—Jaccard or Dice. We also do not report any
qualitative comparisons based on suprathreshold extent as we believe it can be misleading. We found results
based on these indices to be highly dependent on their chosen threshold, which acts as a nonlinear transform to
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spatial maps. Further, we also found that group results are highly dependent on the number of subjects used in a
manner that is atypical of increasing sample size influence on model performances. That is, an increasing num-
ber of subjects used for Group Z-stat or Group Z-stat (TFCE) biases Dice coeflicients scores downward when
thresholds become conservative, e.g., from Gaussian mixture model thresholding. An empirical demonstration
of these influences from chosen thresholds and number of subjects used on predictive versus group averaged
models is provided in the Supplements, Figs. S2 and S3. These observations together provide the basis why using
these two metrics appear inappropriate. Therefore, we do not use them to measure any model performance,
which deviates from previous reports.

Modeling. The subsections below will detail various feature extraction methods used in the benchmark eval-
uation. For making predictions we are comparing a number of existing methods, as listed in Table 1.

Vertex-wise ridge regression model. 'We propose to use a regression model for each vertex j independently, each
with its own hyperparameters. We use a ridge regression model fit over all train subjects n = 100 to estimate
vertex j model coefficients w as

w; = arg min |ly; — Gjwjl[3 + 4| |wjl|3 )
wj

where yj is an n-dimensional vector of task activation belonging to vertex j (here j = 1,...,59,412) on the
cortical surface. Gj is the n x f feature matrix of extracted f number of rsfMRI features, as detailed below. Any
model making use of this vertex-wise ridge regression is denoted by RR in its complete model title. Since the
regression model is typically under-determined, regularization is essential for generalization of the model. We
chose a quadratic regularization with hyperparameters /; controlling the degree of regularization separately for
each j vertex. The values A; were chosen via a generalized cross-validation procedure over the training-set data®'.
We suspected that any method offering some degree of shrinkage would be suitable'>%.

Baseline models. Three baseline models were used to judge the actual prediction performance of all models lists
in Table 1. A first and most obvious choice is simply the mean (Group Mean) of our targets computed from the
training set data. Further, we computed group-level Z-statistics with multiple comparison correction (Group
Z-Stat (TFCE)) and without multiple comparison correction (Group Z-Stat) for every contrast. Group Z-Stat
(TFCE) results were only used to investigate the results based on suprathreshold extent. Details on the computa-
tion of Group Z-Stat (TFCE) and Group Z-Stat is provided in the supplemental material.

Finally, as an additional baseline model, we fit a ridge regression model separately for each surface vertex
with 6 anatomical features (Anatomical RR). The motivation for including the anatomical baseline stems from
speculation that most variance of task-activation shapes can be explained by the subject’s anatomical features.
These anatomical features are the mean image across the RL-phase and LR-phase (encoded EPI resting-state
session-1 runs) and 4 anatomical T1w features extracted from Freesurfer segmentations (recon-all): cortical
(quasi) myelin, sulcal depth, curvature, and thickness maps.

Resting-state feature extraction. ~All resting-state models we consider rely on some functional covariance-based
(FC) feature extraction of resting-state data of the entire grayordinate space. For each subject i the normalized
data matrix X; € R"*! is converted into the feature matrix G; in the general form as:

G = ATX;x] (3)

where A € RV, A projects the subject-sample covariance matrix into a lower dimensional space f (number
of features). G; is also known as a “semi-dense connectome”. Matrix A is selected either based on predefined
Regions of Interest (ROI), e.g. parcellations, on group-based ICA, or on selecting specific features directly, e.g.,
random projections or mean task activity. Note, that no smoothing of data matrix X; was applied before any
feature computation in any of methods examined.

Multimodal parcellations. Let us first consider the case of predefined brain regions using Multimodal
Parcellations® (MMP) with f =379 and A € {0,1}. In other words A averages over the activity in spatial
regions. As an additional modification we include an additional step of Dual Regression for feature extraction®
denoted as DR.

ICA-based. For the case of ICA methods we consider the method of computing A via Multi-subject/Group
Independent Component Analysis (GICA) for calculating G; following the algorithm (Canonical ICA) outlined
in*. This was done to compare group maps extracted either between rest or task. That is, GICA features were
either derived from rsfMRI or tfMRI data for models Rest-Rest GICA RR or Rest-Task GICA RR, respectively.
In the tfMRI case, separate features were calculated by selecting only 6 of the 7 tfMRI datasets, leaving out the
tfMRI measurement of the to-be predicted GLM task contrast. Doing this excludes circularity. These group-level
maps were computed over the 100 training subjects. Briefly, the estimation involved a separation of subject-
level noise by applying PCA in the time dimension. These subject-level PCs were then concatenated to estimate
group-level patterns via Canonical Correlation Analysis (CCA). Group-level PCs were then finally decomposed
into group-level independent sources with ICA via FastICA*. The number of both subject-level and group-level
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components selected was 80°. Note, we did not apply further region extraction from these group-level maps to
obtain non-overlapping, parcellations. Hence, the number of features remains at 80.

Activity flow. A method called “Activity Flow”, AF'® uses a group-mean task-activation pattern computed
across the training set and uses it directly for prediction for held-out regions of the cortex (as defined by some
parcellation) without data-driven fitting. Note, like all other models, we do not perform spatial smoothing on
the rsfMRI data. We add a version where this is selected as a single feature used for regression called AF-Mod.

Random projections replacing parcels. To assess the impact of the parcellation, we replaced the standard
parcellation with a random projection scheme. Random projections are a technique for dimensionality reduc-
tion using a random matrix having unit column norms such that the projected lower-dimensional subspace
approximates the original distances between data points. Provably, if data points in a vector space are projected
onto a randomly selected subspace that is sufficiently large, distances between data points are approximately
preserved”. In our case A is a randomly generated matrix drawn from N(0, 1/f) denoted as Gaussian Random
Projection (GRP).

Principle component regression. Functional correlation features extracted from MMP models so far do not
distinguish between direct and indirect interactions of whole-cortex brain activity to time-dependent signals
averaged within parcels. In order to compute features that resemble direct interactions more closely, principle
component regression PCR is used to compute a semi-partial covariance feature matrix G; for each subject!*?.
This was accomplished by masking vertices for exclusion within a crucial area surrounding each parcel. Since
neighboring vertices are spatially autocorrelated, this step is essential. In detail, MMP partial covariance matrices
were computed for each subject by projecting a masked data matrix X* for each ROL k = {1, ... ., 379} belonging
to the MMP parcellation and masking all surrounding vertices within a 10 mm neighborhood of vertices belong-
ing to the kth ROI Surface cortical distances were estimated as their geodesic distances on a group-averaged
(all 200 subjects) midthickness surface mesh. Subcortical distances were estimated by their Euclidian distance
within MNI space. For every masked ROI, 512 principle components (PC) were computed via a randomized
singular value decomposition (SVD)*. These selected PC covariates were then regressed using ordinary least
squares (OLS) onto the selected k ROI mean signal averaged time-series. Estimated regression coeflicients from
this regression were then projected back into the original 91,282 dimension space of the original data matrix X;.
This together results in a same sized subject feature matrix G; based on MMP as used in other models that only
compute covariances.

Modified activity flow model. ~ As mentioned above, the activity flow model performs no statistical fitting to task
activation maps. We include our technique of vertex-wise regression to the AF model, denoted as AF-mod. In
detail it is learning a simple two parameter OLS model fit of G; € R>*12 to task maps for each surface vertex.
This was similar to our other vertex-wise models. Additionally, model AF-mod does not perform spatial mask-
ing of vertices surrounding the ’to-be’ predicted vertex as done in the original Activity Flow conceptualization.
We do not perform region or vertex prediction in held-out regions.

Remarks on method choices. Importantly, we only use BOLD data features for all resting-state data model evalu-
ations since this is what underlies our significance claims, deviating from'2. Also, a 100/100 train/test split was
used rather than the leave-one-out cross validation employed in'>'*!*. In all cases, all features for each subject
were normalized to zero mean and unit norm. Note that we did not seek to use an optimal cross-validation
strategy to maximize the performance available on the whole dataset, but provide a robust comparison of gen-
eralization performance across models given a large test sample size case. Lastly, due to the enormous compu-
tational burden of computing a vertex-wise semi-partial covariance matrix, we do not to implement the partial
covariance model described in'®. To do so would be an enormous computational burden that would require
downsampling the data since a PCR would need to be computed at each vertex for each subject. Additionally,
downsampling the data would render model comparison unfair between models. All evaluations of all model
performances were across the same sized data with no additional smoothing applied. Further details regarding
model implementation of the Group ICA dual regression OLS model GICA-DR-OLS, vertex-wise Activity Flow
AF, and a ridge regression model fit over parcellations rather than single vertices/voxels MMP-ParcelRR may
be found in'>!>1%, respectively.

fMRI data and processing.  All data analyzed in this study is from the Human Connectome Project (HCP)
$900 release?. To limit a number of covariates that are known to be severe confounds to any of the inter-subject
analyses, we selected 200 unrelated subjects, i.e., no family relatives, with a T1, T2, complete rsfMRI, complete
tfMRI, and physiological data acquired. Additionally, we selected subjects with functional data reconstructed
exclusively with algorithm r227. From these available subjects, a random selection of 100 males and 100 females
were made.

The study was performed using data provided by the Human Connectome Project (HCP). All data accessed,
downloaded, and used by this study was in accordance with WU-Minn HCP Consortium Open Access Data
Use Terms (https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-consortium
-restricted-data-use-terms). The study was performed in agreement with those terms. By agreeing with those
use terms, no further ethics approval was required at our local institute to use the data. The HCP project (http://
www.humanconnectomeproject.org) is an open National Institutes of Health (NTH) initiative and received the
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required ethics approval for data acquisition and public distribution. All subjects who participated gave written,
informed consent according to the protocol by the HCP consortium as approved by the Washington University in
St. Louis Institutional Review Board (IRB). All human data was acquired in accordance with these experimental
procedures adhering to these IRB processes by the HCP. These can be found in further detail®*.

All results in this manuscript are performed on a random train-test split (100/100 subjects) of the 200 selected
subjects.

Functional data was acquired with highly accelerated gradient echo type echo-planar imaging (GRE-EPI) in
2 sessions on 2 separate days with 2 two different phase encoding directions (left-right and right-left). These 4
runs, 15 min each, were acquired with the behavioral instruction to keep eyes open with fixation on a projected
cross-hair®’. All runs were concatenated together prior to deriving rsfMRI features. 7 tasks were performed during
the task functional acquisition (IDs: emotion, language, motor, social, gambling, relational, working memory).
Further details regarding the tfMRI paradigms and the extent of their brain coverage is found in®. Due to some
of the potential benefits offered by particular HCP data acquisition choices, data used for our analyses were
exclusively in the standard CIFTI-grayordinate space form. This form allows combined cortical surface and
subcortical volume analyses without enormous storage and processing burdens among increases in SNR due to
surface smoothing and and better cortical fold alignments*'.

Minimally preprocessed ICA-FIX denoised data of the HCP was used for our analysis. Details and code of
those pipelines can be found in*' and*, respectively. Each measurement had its first 5 repetitions discarded
before any local processing. All data prior to being applied in any of the models implemented were demeaned
and variance normalized (unit-noise variance) feature-wise. No additional preprocessing procedures, e.g., filter-
ing or smoothing, were applied.

Prediction targets were fixed-effects (2 Sessions) GLM estimated contrast maps over all 7 tasks with a surface
smoothing kernel FWHM of 4 mm applied. Fixed-effects GLM results were computed by HCP tfMRI pipelines
in CIFTI-greyordinate space and z-transformed*?. All HCP tfMRI pre-computed GLM contrasts from these
tasks are used such that no redundant predictions would be made, e.g., from sign flipping the contrast vector.
This selection follows'? such that 47 contrast map targets are used.

A cortical parcellation with 360 regions generated by the work of*? was used for the left, right cortical surfaces,
and we refer to this parcellation as MMP (MultiModal Parcellation). Additionally, for completeness and to utilize
the volumetric data component of CIFTI-greyordinate space data for feature extraction, we used an additional
19 sub-cortical regions parcellation given by the HCP release, available at*2. This results in a total of 379 regions.

Behavioral data. An assessment of cognitive ability of individual subjects was provided by measures
tested during tfMRI acquisition (downloaded at https://db.humanconnectome.org). This is used to understand
whether individual predictions scores are related to the amount of correspondence between rest and task. Here,
we correlate prediction scores (see “Evaluation” section) to individual behavior measures of cognitive ability. The
cognitive tasks for our analysis are behavioral measurements during: working memory, language, and relational
processing tasks performed while inside the scanner. Following®, these tasks were selected primarily because
they fulfill normality assumptions. Additionally, they provide the most complete tasks associated with the con-
trasts we choose for predictions. Pearson r correlation prediction scores were all Fischer-z transformed across
all subjects, a variance-stabilizing transformation, before computing further correlations between the behavioral
measures.

Software implementation and usage. Python was used for all reported experiments and implementa-
tions with the exception of model GICA-DR-ICA. This model was implemented in Matlab using code shared
from the authors'?. Scikit-learn provided state-of-the-art statistical learning algorithms (http://scikitlearn.org)®.
Additional experiments used code modified from the nilearn library for high-dimensional neuroimaging data-
sets (http://github.com/nilearn/nilearn)*. Flatmap cortical visualizations used code modified from*. The neu-
roinformatics platform that allowed downloading large datasets and a tool for 3D cortical visualizations used
software provided by HCP*. Our public code is available at https://gitlab.com/elacosse/cf-benchmark-dev).

Results

Benchmarking: which methods jump over the baseline?  First, we investigate the accuracy of pre-
dictions using the described methods based on Pearson r correlation score for individual subject prediction.
We provide a comprehensive performance benchmark comparison with a total of 14 different models. These
are compared across the 47 contrast-map targets provided by the HCP S900 dataset. Note that we only focus on
model prediction of a single contrast map; this does not leverage any additional information provided by incor-
porating multiple maps for prediction across subjects.

Our benchmark evaluation compares models using resting-state data against each other and, importantly,
against simple baselines models. This is reported in two Figs. 2 and 3, summarizing results across the entire cor-
tex according to either Pearson r correlation scores or vertex predictive R?scores (Eq. (1)). The scores displayed
in Fig. 2 are provided in the Supplements Table S1. All models were evaluated with the same test-set consist-
ing of 100 subjects. This allows to report statistical significance with a one-sample paired t-test. Importantly,
Group Z-Stat (r = 0.540 =+ 0.044) shows Pearson r correlation score mean performance worse than Group Mean
(r = 0.561 £ 0.047) for the vast majority of contrasts; only four (three making up the worst performing con-
trasts) from Group Z-Stat performed significantly better than Group Mean. Additionally, a model fit only from
anatomical features Anatomical-RR does not generalize better than Group Mean baseline across all but one,
the highest scoring contrast (REL). Therefore, comparisons are made against Group Mean, the highest perform-
ing baseline model. Many methods, especially from previous approaches, fall short of jumping over this trivial
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Figure 2. Pearson r correlation score benchmark results for 100 subject test set: Colorbar indicates mean r score
across all test subjects for given contrast and model. Dashed black boxes indicate where model performance is
significantly greater than test-subjects’s baseline (mean) model performance (one-sided paired sample t-test,
P < 0.05, 5000 permutations, Bonferroni corrected across contrast comparisons). Boxes in the left column mark
baseline models. Scores are ordered top (best) to bottom (worst) by their subject-wise mean score computed
across all 47 different contrasts (left-most column).
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Figure 3. Predictive R? score benchmark results: scores indicate the mean of cortical surface R, see Eq. (1),
weighted by the variance of each surface vertex. The colorbar indicates this measure. Roughly half of contrast
targets have mean cortical R? below 0 since predictive R? can be arbitrarily negative. Math-Story stands out

as the easiest contrast to predict. A discussion providing a reason why is provided in “Spatially resolved
predictability” section. Column and row ordering are not sorted by performance and remains identical to Fig. 2.
The left most column is the mean score across all contrasts.

baseline, meaning whole-cortex prediction from the resting state are problematic. That is, despite many of these
contrast’s Pearson correlation scores appearing quite high. However, results marked in Fig. 2 by significance boxes
reveal that only a limited subset of the 47 contrasts do significantly better than a group mean baseline, Group
Mean. The margin of difference between predicted score and mean baseline is shown in Supplementary Fig. S5.

Improved predictions by vertex-wise models. ~ All methods with the proposed vertex-wise fitting procedure dem-
onstrate subject predictions (averaged across contrasts) above the mean baseline prediction (Group Mean),
Fig. 2 (one-sided paired sample t-test, p < 0.05, Bonferroni corrected across all 47 contrasts, 5000 permutations)
and Fig. S5.

Our model MMP-RR-PCR yields both the highest mean performance of subject scores averaged over all con-
trast targets (r = 0.582 =% 0.048) with the highest number of significant prediction performance, see Fig. 2. Addi-
tionally, this model holds the highest performance in 31 of the 47 contrasts (see Table S1). However, several other
models augmented with our vertex-wise regression method show only slightly worse performance, as Fig. 4 high-
lights. A direct comparison between the classical way of tuning the ridge regression parameter and our vertex-
wise method is seen by comparing MMP-RR (r = 0.574 £ 0.048) versus MMP-ParcelRR (r = 0.550 =+ 0.049),
showing a significant gain (one-sided paired sample t-test, p < 0.001, ¢t = 15.77, 5000 permutations).

To understand the importance of regularization, we can compare MMP-RR (r = 0.574 £ 0.048) and MMP-
OLS (r = 0.409 £ 0.047), where the latter only relies on ordinary least squares fits. This notable performance
difference shows that regularization is essential for successful generalization when the number of rsfMRI features
is very large. However, a complex model is not necessarily needed for successful prediction; Model AF-mod
(r = 0.571 £ 0.049) generalizes comparatively well and has proven to be one of the best performing models
despite its simplicity. From our analysis, we expect many methods with some degree of shrinkage would reveal
comparable performance when trained on a single-vertex level >,
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Figure 4. Pearson r correlation score results for 100 subject test set averaged across contrasts. Models are
ordered top to bottom by score. These scores appear as the first column in Fig. 2. Top performing models
perform similarly between each other. Individual subject scores from the test-set are plotted along with box-
whisker plots showing quartiles of prediction score distribution.

Effects of feature extraction and parcellation. 'We investigate the effect of various feature extraction strategies for
determining A in Eq. (3). First, A derived from task Rest-Task GICA data yields a very small improvement over
model Rest-Rest GICA derived only from resting-state data, see Table S1. This motivated us to investigate other
effects of selecting A. Specifically, we replaced the expert-based parcellation MMP with a random projection A.
Again, the advantage of a expert-based parcellation over a random projection is surprisingly small: GPR-RR
r = 0.568 &= 0.048 vs. MMP-RR r = 0.574 £ 0.048. This result suggests that in many cases random projections
for generating features appears to be sufficient. It simply provides a means of performing dimensionality reduc-
tion akin to perhaps any arbitrary parcellation scheme, an observation consistent with'>.

Lastly, we investigate whether deriving more subject specific features via dual regression yielded any appreci-
able improvement. Model MMP-RR-DR over MMP-RR shows a statistically significant, yet small, improvement
over subject predictions averaged across contrasts (one-sided paired sample t-test, p < 0.001). For small sample
sizes, however, the use of dual regression appears to be promising, see Supplementary Fig. S9.

Predictive R? evaluation. In addition to Pearson r correlation scores, we examine the variance explained
on a vertex level (Eq. (1)) evaluated on the same test set. This evaluation is summarized in Fig. 4 and provides a
complementary measure of prediction performance. The scores displayed in Fig. 4 are provided in the Supple-
ments Table S2. To quantify one number per contrast we report the variance-weighted average of the R? scores
across the cortical surface. This number is color-coded in Fig. 4 and quantifies to which degree and in which
contrasts predictions about individuals can be made. Models and contrast targets with a positive R? aligns well
with the ordering of previous Fig. 2 results and supports how the use of single-vertex regression based methods
yields a considerable performance boost and valuable predictions. Nevertheless, Fig. 4 emphasizes that it is only
roughly half of the contrast targets that show considerable predictability.

Spatially resolved predictability. Figure 4 shows considerable variability between predictive performance of
certain contrasts. This can be explained due to the fact that only certain regions of the cortex drive a model’s
prediction ability above the baseline. This becomes clearer with an investigation of where on the cortical surface
we observe positive R? values. To report this concisely, we render the cortical surface with a mean averaged R?
score across the 47 contrasts of model MMP-RR-PCR in Fig. 5. An additional plot showing individual contrast
R? across each task category separately is shown in Fig. S4. The surface plot reveals that only a limited subset
of vertices lying outside of the primary-sensory regions can explain the 100 test-sample variance. These remain
confined within the association cortex where most inter-subject variability of rsfMRI functional connectivity
lies*”. Regions of high inter-subject variability as measured by either rsfMRI features, task activation maps, or
sulcal depth of a subject’s brain anatomy are associated with the predictability, see Fig. S6. This outlines that
regions where subject differences in the cortical functional anatomy are highest are the regions where subject
rsfMRI features or task activations also differentiate themselves the most. Supplementary Figure S7 shows this
spatially in flatmap visualization.

To give a better empirical characterization of the spatial dependency of model parameters and prediction qual-
ity, we report several metrics per vertex for the MMP-RR-PCR model. For visualization we use flatmap cortical
projections of the entire cortex, as shown in Fig. 6. We consider the root mean square errors (RMSE) in Fig. 6A
and see that the highest RMSE appears primarily concentrated around the visual cortex. The vertex-wise strength
of regularization 4 determined via cross-validation over the training-set is shown in Fig. 6B. Strong regulariza-
tion is employed in primary-sensory regions where predictions perform poorly. The optimal regularization is
inversely proportional to the explained variance shown in Fig. 6C,D. We show R? on the training subjects (C)
and on the 100 test-subjects (D).
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Figure 5. Mean R? Score of MMP-RR-PCR across all contrast targets. Plotted are the R? values averaged over
the 100 test subjects. This is rendered on the a 200 subject averaged midthickness surface map of left and right
cortical hemispheres. Positive values (red and yellow) indicate where prediction is possible. Note that prediction
accuracy is best outside the primary sensory regions.

Right
(D) R? - Out Sample

Right Left
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Figure 6. Flatmap cortical surface projections of MMP-RR-PCR model fits. (A) root mean square error
(RMSE), (B) Degree of regularization / in model fit, (C) R>—100 train subjects (D) R2—100 test subjects.
RMSE, 4, and R? are averaged across all 47 model fit results. Train and test R? show consistent patterns between
each other. /. shows how regularization is inversely related to the method’s ability to predict (R?). Both vertex-
wise R? and regularization parameter / offer the ability to resolve spatially where rsfMRI data is capable of any
prediction.

How many subjects are needed? To examine top performing models closer and according to their
capacity, we investigate the impact the number of training samples on 4 of the best models (MMP-RR-PCR,
Rest-Task GICA-RR, MMP-RR-DR, AF-Mod) as defined by their median contrast score (left most column
in Fig. 2. We included two baseline models Mean (Baseline), Group Z-stat for comparison. These models were
all evaluated on the 100 subject test set. 3 contrast targets were arbitrarily chosen because of their poor, medio-
cre, good performance as contrasts Motor—Right Hand, Emotion—Faces, Language—Math-Story, respectively.
Pearson r correlation scores and predictive R? score with respect to the number of subjects (3-100) are reported
in Figs. 7 and 8, respectively.

All curves of model performance with respect to the number of samples follow typical generalization curves,
i.e., an inverse power law, where a rapid increase is seen to a slow saturation when sample size increases*. As
shown in both Figs. 2 and 7, Group Z-stats consistently underperforms its Group Mean counterpart by a con-
siderable margin, especially at lower sample sizes. Top performing models largely yield the same performance
as the training set increases above 40 subjects.

Behavioral results. Prediction scores may provide a powerful means of summarizing rest-task depend-
ency. We therefore hypothesized that prediction scores may be a means for discriminating behaviorally rel-
evant information about the task performed. It was previously speculated that the degree to which brain activity
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Figure 7. Subject-wise Pearson r score benchmark results for 3 selected (poor, mediocre, good), 4 high
performing models (MMP-RR-PCR, Rest-Task GICA-RR, MMP-RR-DR, AF-Mod) and two baseline models
(Mean (Baseline), Group Z-stat). Poor (left): Motor-Right Hand; Mediocre (middle): Emotion: Faces; Good
(right): Language: Math-Story. Experiment included 3-100 subjects for training. The group z-statistic baseline
results are considerably worse than the group mean baseline. The 4 models largely resemble each other’s
performance when sample sizes increase past 40 subjects.
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Figure 8. Top row: subject-wise Pearson r score benchmark results for 3 selected (poor, mediocre, good), 4
high performing models (MMP-RR-PCR, Rest-Task GICA-RR, MMP-RR-DR, AF-Mod) and two baseline
models (Mean (Baseline), Group Z-stat). Poor (left): Motor-Right Hand; Mediocre (middle): Emotion: Faces;
Good (right): Language: Math-Story. Experiment included 3-100 subjects for training. The group z-statistic
baseline results are considerably worse than the group mean baseline. The 4 models largely resemble each other’s
performance when sample sizes increase past 40 subjects. Bottom row: The weighted mean cortical surface

R? for four top performing models as a function of number of samples (3-100) used for training. As training
samples approach over 80 samples, R? largely becomes indiscernible between the 4 models in these contrasts.

departs from rest may provide information about individual behavioral performance*!. Within the network
neuroscience community, this phenomenon is recognized as reconfiguration efficiency: high-performing indi-
viduals may have brain connectivity that more efficiently updates to the task at hand by not having to produce
greater changes in a task functional network organization required to perform the task.

We therefore speculated that if our resting-task model performance for individual subjects could be taken
as a relative measure of rest-task dependence, we would see a clear pattern of higher behavioral performance
correlating with higher tfMRI prediction scores.

To test this idea, we turn to three behavioral measures of general cognitive ability from Human Connectome
Data measured during tfMRI acquisition: working memory, language, and reasoning task. We selected contrasts
2BK-0BK, Math-Story, and Match-Relation since they provided the most general and complete summary of the
task and its behavioral data. To see whether prediction scores corresponded to task performance of individuals,
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Figure 9. Correlation of cortex-wise score and behavioral task accuracy. (A) Comparison of different models
investigated in detail shown in Fig. 8. Only Math-Story and 2BK-0BK showed significant correlations using a
one-sided corrected resampled t-test compared to Group Mean (significance marked in by *). (B) Subject-wise
comparison of correlation between model MMP-RR-PCR prediction score and behavioral task performance for
20 permutation depending on the training set size (3-100). (C) For comparison, same as B, but for the Group
Mean baseline model.

on the 100-subject test set we calculate the correlation of individual subject Fischer-Z transformed Pearson r
correlation prediction scores to subject task accuracy. This marks whether individual differences in prediction
scores correspond to individual differences in behavioral task accuracy. 20 random train/test permutations of
100 train, 100 test subject sizes on the original 200 subject dataset were fit across the models investigated in
the subject-wise investigation. Additionally, similar to Fig. 7, we also fit the model MMP-RR-PCR from these
results for the three selected contrasts under 20 permutations train/test splits with increasing sample sizes (3-100
subjects) and expected that these averaged performance evaluation curves would follow typical generalization
curves. To accommodate that the 20 training and testing permutations were not independent from each other,
statistical comparisons between models were made using a corrected resampled t-test*.

Our results demonstrate that Pearson r correlation prediction scores provide an indicative relative meas-
ure of rest-task correspondence to the behavioral task accuracies measured during the performance of these
tasks, Fig. 9). All predictive models provide statistically significant results over the baseline for contrast Math-
Story (one-sided corrected resampled t-test, Fisher-z transformed r, dof=19, p < 0.01). Mean correlations over
20 train/test permutations for model MMP-RR-PCR compared to Group Mean was r = 0.26 = 0.05 versus
r = 0.20 & 0.05, respectively. Models MMP-RR-PCR, Rest-Task GICA-RR, MMP-RR provided statistically
significant results over baseline for contrast 2BK-0BK (one-sided corrected resampled t-test, Fisher-z tran-
formed r, dof=19, p < 0.05). The mean correlation for contrast 2BK-0BK over 20 train/test permutations for
model MMP-RR-PCR was r = 0.67 & 0.07 versus Group Mean at r = 0.66 & 0.07. However, importantly, in
one out of the three contrasts (Match-Relation), no predictive model provides any added benefit over a simple
correlation to mean activation (Group Mean). That is, despite having strong correlations of r = 0.40 = 0.1. A
plot of individual scores for one permutation (original subject test set) is shown in Supplementary Fig. S11 as
an illustration of these strong, statistically significant correlations.

Discussion

Motivated by recent progress in establishing a stronger link between spontaneous and task-evoked activity, we
examine the problem of mapping rsfMRI measurements to patterns of activity elicited during tfMRI-based
experimental paradigms in individual subjects. We show additional evidence that it is indeed possible to pre-
dict task activity maps from patterns of rstMRI FC, as previously reported!!-!#2*. However, we emphasized
early on that observing higher intra-subject prediction scores compared to inter-subject scores was not a useful
observation we believed provided informative predictions—they needed perform better than what any naive
group averaging could predict on the cortical surface. Our investigation showed that group averaging provided
a surprisingly strong baseline for whole-cortex predictions. Results justify selecting group averaging offered
by Group Mean as a suitable baseline model. This was because it provides substantially higher scores than its
alternative Group Z-Stat; group Z-statistics were shown to consistently, regardless of sample size, perform below
Group Mean under nearly all contrast targets. We therefore evaluated all results against the highest performing
baseline—Group Mean.

Given this appropriate group-averaged baseline model, an examination of previous methods in our bench-
mark show they did not demonstrate satisfactory whole-cortex prediction scores with a considerable number of
contrast targets being outperformed by the baseline. To remedy this problem, i.e. to jump over the baseline, we
introduced a simple modification to the fitting procedure: a vertex-wise selection of hyper-parameters. Accord-
ing to our benchmarks, models fit in this manner provide the most powerful means to tackle the problem of
predicting tftMRI GLM maps from rsfMRI data we are aware of. Nevertheless, they also still highlight that in
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many cases, given the diversity of contrast targets examined, the best performing model we introduced are still
modest in their prediction ability with even 100 training samples (subjects).

The considerable variability in prediction scores visible across the 47 contrast maps for all models motivated
us to give a better empirical characterization of how this is reflected in model performance. An inspection of
the cortical surface areas that have an explainable variance on a vertex-wise level reveals a consistent pattern:
primary-sensory regions show little explainable inter-subject variance (R?) whereas association cortical regions
show considerably better predictability. So far, no method appears to be able to explain inter-subject variance
within primary sensory regions, as evidenced by strong negative predictive R scores in those locations, Figs. 5
and 6. Additionally, we also observe these patterns by investigating how the strength of regularization was
inversely related to how well the model performs. Both measures, Z and R? shown in Fig. 6, reveal where infor-
mation about rsfMRI is actually predictive for task activity maps. Together, these observations reinforce earlier
work noting association cortex areas hold distributed networks while primary-sensorimotor areas are much
more stereotypical across subjects resulting in worse predictions. Simply put, the closer elicited activity are to
these regions—the most salient example being the MATH-STORY contrast—the better these predictions are.
Although, many predictions may be better by a statistically significant margin above a baseline model like Fig. 9
highlight, their utility may still be limited.

Ultimately, our work aims to find which predictions are informative so we could use it to formulate hypoth-
eses asking what behavior or cognitive factors may influence it. That is, the correspondence between rest and
task states and how that might reveal information about individual subjects. Seeking to ground this work into
a behaviorally relevant context, we considered the question of whether prediction scores of individual subjects
provided a means of summarizing rest-task dependence that could inform behaviorally relevant neuroscientific
questions given our best performing models. Indeed, the strength of correlation between prediction scores of a
given contrast and its corresponding behavioral task accuracy suggests that this prediction score may be taken as
a relative measure of dependence between rest and task activity. However, this is not without caveat that places
us back to comparing against Group averaged models from the beginning; it is only the case when predictions
are considerably above baseline performance we see the utility of performing these model fits. Considerable
correlation between the naive model’s prediction of Group Mean and individual behavioral performance was
present for 2 of the 3 contrasts we examined in this way. This fact reinforces our motivation from the outset
of this problem: to create and utilize a method to perform above naive, baseline models. Results shown in our
behavior evaluations reiterate this importance. Ultimately, the MATH-STORY fit provided the only meaningful
difference compared to the other contrasts examined.

Our vertex-wise evaluation based on predictive R? reveals that considerable performance improvement is still
needed to explain variance within primary sensorimotor regions. On speculating how to further improve the meth-
ods, we suspect that further significant gains in performance may be obtained from projecting individual FC data
into common/shared response spaces via shared response modeling or hyperalignment'*°->?, This could provide a
means for capturing a substantial amount inter-subject variance. Additionally, separate evaluations reveal that the
closer the extracted features are to task-related activity, the better cortex-wise prediction scores are, Fig. S10. We
would therefore expect that the use of naturalistic stimuli over rsfMRI could substantially aid over the use of rsfMRI
data and would additionally provide the means for additional shared response modeling approach assumptions>.

Limitation. First and foremost, should rsfMRI fluctuation amplitudes depend on other factors completely
unrelated to cortical computations that generate the spatial dependencies we observe with connectome finger-
printing, this would show up in these prediction results. It would additionally confuse interpretation of behavior
factors®. Even after application of spatial normalization transformations, considerable anatomical inter-subject
variability is preserved despite liberal smoothing application. Additionally, echoplanar imaging (EPI) distortions
due to BO inhomogeneities and other individual specific factors, e.g., coil loading or other RF scaling issues,
physiological, motion contaminants, and dependence of individual vascular factors to cortical orientation to BO
would reveal intra-subject dependencies between a rsfMRI and tfMRI acquisition. Regarding the dependence of
individual vasculature, large signal biases on BOLD amplitude due to cortical orientations was shown to exist for
3T HCP data®. This observation would undoubtedly create additional intra-subject dependencies between meas-
urements that remain after normalization irrespective of any functional organization structure due to underlying
neurophysiology or patterns of cortical computations. Therefore, a large degree of dependence will remain after
applying normalization transformations and will not necessarily imply that intra-subject prediction scores are
necessarily meaningful alone. Disentangling those factors remains to be explored in detail for future work.

Second, the overall test-retest reliability of tfMRI is poor making individual difference research for fMRI
difficult with most common task paradigms, especially considering the limited number of task trials GLMs
were computed over for HCP data®”. We would therefore like to emphasize that considerable noise is present in
estimates of first-level task effects we sought to predict. In this examination, no model considerations of it was
incorporated into any design or analysis decisions.

Last, activity summarized by a task GLM model is a useful measure only insofar as our a priori beliefs about
how the task should be parameterized. Encoding models of the task that do not rely on strong assumptions of
BOLD response may provide more powerful ways to summarize the kind of dependence we wished to character-
ize and remains an exciting avenue to explore beyond GLM maps*®.

Summary

Our closer examination using Human Connectome Project (HCP) data reveals that a majority of published
models evaluated within our benchmark under current methods with many contrast targets examined did
not perform better than naive, baseline models when only rsfMRI features and whole-cortex prediction were
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considered. This paper aims to remedy this issue and make a convincing case for utilizing methods to describe
individual factors beyond merely remarking on individual differences. We propose single-vertex fitted methods
that achieve a significant performance boost above baseline performance on the majority of contrast targets.
Additionally, we provide benchmarks of comparable methods in published literature and include a variety of
models with feature properties worth investigating, Table 1. We provide further empirical characterization of top
performing methods by an examination of showing where predictions performed well spatially. This explains
why predictions of only a modest number of contrasts is possible above a naive baseline. Ultimately, we show
that a model’s prediction score can be taken as a relative measure of dependency between rest and task. These
predictions results show a compelling behavioral correspondence to a subject’s task performance committed
during a tfMRI acquisition albeit with notable caveats. We hope that further improvements to this methodol-
ogy will enable better understanding of rest-task correspondence informing individual behavioral measures.
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