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ABSTRACT: Phenanthriplatin (PtPPH) is a monovalent platinum(II)-based
complex with a large cytotoxicity against cancer cells. Although the aqua-activated
drug has been assumed to be the precursor for DNA damage, it is still under debate
whether the way in which that metallodrug attacks to DNA is dominated by a direct
binding to a guanine base or rather by an intercalated intermediate product. Aiming to
capture the mechanism of action of PtPPH, the present contribution used theoretical
tools to systematically assess the sequence of all possible mechanisms on drug
activation and reactivity, for example, hydrolysis, intercalation, and covalent damage to
DNA. Ab initio quantum mechanical (QM) methods, hybrid QM/QM′ schemes, and
independent gradient model approaches are implemented in an unbiased protocol.
The performed simulations show that the cascade of reactions is articulated in three
well-defined stages: (i) an early and fast intercalation of the complex between the
DNA bases, (ii) a subsequent hydrolysis reaction that leads to the aqua-activated form,
and (iii) a final formation of the covalent bond between PtPPH and DNA at a guanine
site. The permanent damage to DNA is consequently driven by that latter bond to DNA but with a simultaneous π−π intercalation
of the phenanthridine into nucleobases. The impact of the DNA sequence and the lateral backbone was also discussed to provide a
more complete picture of the forces that anchor the drug into the double helix.

■ INTRODUCTION
After the discovery of the biological activity of cisplatin,1 great
efforts have been made for the development of structurally
similar bifunctional Pt(II) complexes to overcome the severe
side effects2,3 and the tumor resistance over long-term
treatments.3 Nowadays, besides cisplatin, only carboplatin
and oxaliplatin are approved for clinical use worldwide.4,5

Other three platinum-based compounds (nedaplatin, lobapla-
tin, and heptaplatin) are approved in some countries only.5

The accepted mechanism of action of bifunctional platinum
drugs involves the activation of the drug inside the cell by
releasing a leaving ligand(s) and the reaction of the aqua-
activated drug with DNA.6 This is followed by the formation of
intra- and inter-strand cross-links which induce a distortion of
the canonical DNA double helix which ultimately produces the
cell death.7 Unfortunately, platinum drugs can also interact
with other targets, such as metallo-proteins, responsible for the
high side effects of these drugs.8,9

Monofunctional Pt(II) compounds might circumvent such
limitations and improve the efficacy of the treatments.5 Among
them, phenanthriplatin [cis-Pt(NH3)2(phenanthridine)Cl]

+

(hereafter labeled as PtPPH) has been demonstrated to be
active against 60 human cancer cell lines in vitro with a
cytotoxicity even larger than that of the parent cisplatin.10 The
proposed mechanism of action of these compounds differs
from that reported for classical platinum-based drugs11−14 as
PtPPH is able to bind to DNA to produce a single covalent

bond. This type of adduct is not able to bend or unwind the
double helix of the DNA; rather, it blocks the action of RNA
and DNA polymerases with subsequent triggering of the
processes which ultimately lead to apoptosis. Moreover,
contrary to cisplatin, which specifically binds to the guanine
base at the N7 position, PtPPH can react with both guanosine
at the N7 site as well as with methyladenine at the N7 and N1
sites in a similar rate.15

To understand the molecular factors at play in such unique
biological action, several theoretical studies focused on
bifunctional16−37 and monofunctional38−42 Pt(II) complexes
have been carried out. Nevertheless, as far as PtPPH is
concerned, the mechanism of action is still under debate.
In a recent contribution aimed at replicating the

experimental conditions and the mechanisms of reactions
between PtPPH and DNA bases,38 we highlighted the
possibility of formation of π−π interactions prior to the
formation of the final covalent adduct. Recently, the DNA−
PtPPH interaction was revised by Lippard and co-workers43 on
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the basis of the analysis of the time-dependent extensions of
single λ-DNA molecules treated with the cis- and trans-isomers
of PtPPH. The latter results suggested that the mechanism of
binding involves a fast intercalation step which leads producing
a stretching of the DNA, followed by a second slower reaction
which is assigned to the covalent bond formation with the N7
atom of a purine base. It is remarkable that the mechanism is
largely sensitive to the stereochemistry at the metal center as
only the cis-isomer has the proper conformation to produce
irreversible DNA elongation upon covalent bond formation. In
the same work, a preliminary molecular docking of cis- and
trans-PtPPH was performed. Although such a computational
approach provides first clues about the intercalation phenom-
ena, more refined models must be implemented if biological
conclusions are looked for. In this framework, Dabbish39,44 et
al. have recently used density functional theory (DFT)
calculations and classical molecular dynamics simulations to
assess the hydrolysis, interaction with guanine (G), reactivity
with N-acetyl methionine, and intercalation to DNA. However,
this study has been exclusively focused on the reaction of the
aqua-activated complex of PtPPH when analyzing the
interaction with nucleobases so that it remains unknown the
reactivity of the parent chloro complex.
The literature provides examples where intercalation is much

faster than hydrolysis and subsequent covalent binding to
DNA bases.45−48 If one brings such pieces of evidence to
monovalent PtPPH, the chloro complex might be accumulated
into the DNA double helix by “pure” intercalation at an early
stage of the attack prior hydrolysis. This contribution aims to
elucidate if this hypothesis also applies in the PtPPH case by
assessing the impact of aqua-activation in the interaction of
PtPPH with nucleobases. We designed a series of model
systems of increasing complexity that are large enough to
capture main interactions in DNA, for example, interbase
hydrogen bonds (HBs) and π−π stacking interactions, while
allowing to use quantum mechanical (QM) levels of theory.

■ MODELS AND METHODS
Chemical Systems. The intercalation ability of the

phenanthridine ligand (PPH) is first considered. As illustrated
in the top panel of Figure 1, two minimal cluster models were
built up to specifically account for the interaction of PPH with
one or two free DNA bases, defined as types 1 and 2,
respectively. Bases were used in the methylated forms, for
example, 9-methyl-adenine (mA) and 9-methyl-guanine (mG).
A larger DNA model (type 3) was next designed with a
complete two-base-pair fragment, which also includes the

lateral sugar-phosphate backbone. Guanine−cytosine (G−C)
and adenine−thymine (A−T) positions were based on the
standard double-stranded B-DNA form in the (5′ → 3′)
CAACTAGCCGGT sequence.49,50 The sugar-phosphate back-
bone was protonated in order to obtain a neutral structure as
recommended for mimicking these fragments with DFT
methods.51,52

Similar DNA models were used for the chloro and aqua
complexes with a single base interacting with different sides of
the phenanthridine plane (types 4 and 5, bottom panel in
Figure 1). In models labeled as type 6, two bases interact
simultaneously with the phenanthridine ring. In these models,
the interactions of Pt complexes were studied with two
orientations of mA, (i) with the N1 atom (N1−mA) and (ii)
with the N7 atom (N7−mA).
The type 7 counterpart includes two base pairs (G−C and

A−T) which are connected by the deoxyribose phosphate
linker. The latter models were employed to study the
properties of PtPPH bound covalently to the N7 atom of G
and A bases. Two possible orientations of the metal fragment
have been studied, the first where the PPH ligand remains
intercalated between the DNA bases (inside conformation,
ins) and the second where this ligand is not intercalated and
points away from the bases (outer conformation, out). The
impact of the border base pairs in the intercalation mechanism
has been tackled by defining several sequences, for example,
A−T/A−T, A−T/G−C, and G−C/G−C intercalations sites,
which have been used in earlier theoretical53−56 and
experimental48,57 contributions.

Computational Methods. DFT calculations were carried
out using the B3LYP functional.58−60 Dispersion correction
has been included employing the Grimme’s pair-wise additive
method, DFT-D3.61 Previous works showed that the B3LYP-
D3 method provides reliable results for structures, thermo-
chemistry, and kinetic activation parameters for Pt(II)
complexes.38,39,62−65 The Def2SVP basis set66,67 for all atoms
was employed with relative effective core potential for the
platinum atom. The solvent has been introduced as polarizable
continuum (PCM).68 Frequency calculations were conducted
for all located stationary points to confirm their nature of
minima or transition states.
The more complete type 3 and 7 models are characterized

by large electronic and geometrical degrees of freedom. A
hybrid QM/QM′ scheme was used in these models as
implemented in the ONIOM approach.69,70 The high layer
(QM) included the intercalated platinum complexes, and two
adjacent base pairs (four bases) were treated with the DFT
level of theory described in the previous section. The low layer
(QM′) was modeled with the semiempirical PM6 method.71

This QM/QM′ regime has been successfully used in the
related biological system.72−75 To avoid unrealistic conforma-
tions, partial optimization was performed in three steps: first,
the geometry was left to change without constraints; then, in a
second stage, the positions of the all skeleton atoms
(phosphate and deoxyribose) were frozen; in the third stage,
the QM part was isolated, and with the optimized DFT level of
theory described above, the coordinates of the four carbon
atoms of the skeleton linked to the bases were frozen. All
calculations were carried out with the Gaussian16 program.76

Data Analysis. The interaction energy (IE) for two-body
systems, for example, model types 1, 4, and 5, is defined
through the regular eq 1

Figure 1. Types of clusters investigated: the top panel for the ligand
and the bottom panel for the whole drug. In green yellow, top base
and DNA; orange for the second base; in light blue, carbons; in blue,
nitrogen; in gray, platinum atom.
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E E EIE ( )cluster PtPPH B1= − + (1)

where Ecluster is the total energy for the clusters, EPtPPH is the
energy of the isolated PtPPH drug, and EB1 represents the
energy of the single DNA base. As shown in Figure 1, model
type 1 accounts for the raw ligand PPH instead of the whole
PtPPH so that in this case, the EPtPPH term corresponds to the
energy of the ligand. For the sake of clarity, hereafter, we
decided to light notation by specifying in all cases EPtPPH. As far
as model types 2 and 6 are concerned, the IE is consistently
defined by eq 2

E E E E

E E E

IE ( )

( )
cluster PtPPH B1 B2

B1B2 B1 B2

= − + +

− − − (2)

where EB1B2 is the energy of the dimer formed by the two
bases. Formally, the last term in eq 2 measures the mutual
interaction of the two border bases. Because of the effect of the
intercalated drug and the concomitant expansion into the base
pair step distance, such energy results negligible in all cases
(∼0.3 kcal mol−1). In the case of types 3 and 7, the computed
IE depends on the energy of the two two base pairs, which is
defined as E2bp in eq 3

E E EIE ( )cluster PtPPH 2bp= − + (3)

All IEs have been corrected (IECorr) by adding the basis set
superposition error using the counterpoise method by Boys
and Bernardi.77 All energies used along with the discussion are
given after such correction.
The quantitative study of the DNA−drug interaction is

completed with a qualitative analysis performed by means of
the recently developed independent gradient model (IGM)
method, which is the natural evolution of traditional non-
covalent interaction descriptors.78,79 IGM computes a new δg
parameter that measures the difference between a non-
interacting model (the IGM), represented by a virtual upper
limit of the electron density gradient (|∇ρIGM|), and the real
system, represented by the true electron density gradient
(|∇ρ|). IGM analysis is implemented in our protocol to further
identify the inter-fragment interactions that govern the stability
of resulting drug−DNA clusters.

■ RESULTS AND DISCUSSION
As stated above, most of the recent computational efforts have
been devoted to simulate the attack of the activated PtPPH
toward DNA. Herein, all available mechanisms are inves-
tigated. We initially discuss the interaction of the used raw
ligand in this metallodrug with a minimal DNA model, which
is gradually completed with larger chemical motifs. Chemical
systems are divided as follows: (i) PPH ligand versus DNA
models, (ii) the whole PtPPH metallodrug with isolated DNA
bases, (iii) the PtPPH intercalation mode into a DNA double
helix, (iv) the release of the chloride ligand upon hydrolysis,
and (v) intercalation of PtPPH covalently bound to G and A
N7. The main text summarized our theoretical outcomes. The
reader is referred to the Supporting Information for additional
numeric results and structural data.
Interaction of PPH Ligand DNA. The intercalation ability

of an isolated PPH ligand is first delineated. To this end, the
π−π interaction between the aromatic moieties of the ligand
with one or two DNA bases is predicted by using model types
1 and 2, respectively (Figure 1, top panel). These results are
summarized in Figure 2 and Table 1 (see also Table S1). As

expected, in the absence of any other perturbative entity, all
located structures correspond to a parallel orientation between
bases and PPH due to π−π interactions. IGM analysis localizes
such non-covalent interactions as two sharp spikes at low-δginter

values (see also Figure S1a,b).
According to the energies listed in Table 1, cluster types 1

and 2 show a slightly stronger interaction (∼1 kcal mol−1)
when mG is present in the cluster. This conclusion is also
supported by all possible orientations (Figure S2). It should be
noted that the computed IECorr for PPH-base lies in the same
range compared to energies reported for the base−base

Figure 2. Minimum energy structures with the color-filled δginter

surfaces (isovalue 0.0055 a.u.) and relative IECorr for type 1 clusters
(a) PPH−mA and (b) PPH−mG (top view); type 2 (c) mA−PPH−
mA, (d) mAG−PPH−mA, and (e) mG−PPH−mG; type 3 (f) A−
PPH−A, (g) G−PPH−A, and (h) G−PPH−G. CH−H interactions
are highlighted in blue, and CH−O interactions are highlighted in red.
IECorr in kcal mol−1.

Table 1. IECorr (kcal mol−1) for Cluster Types 1−3
Calculated in Water in Figure 1a

cluster type sequence IECorr

1 PPH−mA −8.3
PPH−mG −9.2

2 mA−PPH−mA −17.0
mG−PPH−mA −18.0
mG−PPH−mG −18.2

3 A−PPH−A −26.7
G−PPH−A −27.0
G−PPH−G −26.7

aMore details are reported in Table S1.
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interactions80−82 so that this ligand is assembled in DNA at
least as efficient as natural bases.
In type 3 clusters, PPH was intercalated into two base pairs

connected by the sugar-phosphate linker (Figure 2). Of course,
a larger π−π interaction is detected in cluster type 3 compared
to the single-base models, which in turn yields to more
negative IECorr values. Figure 2 (see also Figure S1c)
demonstrates that the presence of the two further bases,
thymine and cytosine, and the presence of the backbone
interact with PPH through π−π, CH−H (Figure 2 highlighted
in blue), and CH−O (Figure 2 highlighted in red) interactions.
Consistent results were recently obtained by Gil and co-
workers for a series of phenanthroline derivatives.83

The observed IECorr differences were minimal and suggest
that PPH has a similar stacking preference for both mA- and
mG-rich regions. In addition, theory foresees that while the
energetic contribution of the π−π interaction was about −9
kcal mol−1 per base, the presence of the complete DNA base
pairs and the lateral backbone (type 3) leads to an additional
energetic contribution of −9 kcal mol−1. Consequently,
although minimal models (i.e., isolated bases) arise as useful
models to individually establish the contribution of stacking to
the intercalation binding mode, all macroscopic conclusions
should be extracted from the complete fragment.
PtPPH Interaction with Isolated DNA Bases. We

adopted a similar computational strategy for addressing the
intercalation ability of the whole chloro- and aqua-activated
PtPPH complexes. Let us start with the intercalation ability
with the single bases, for example, model types 4 and 5 (Figure
1). Listed energies in Table 2 (see also Table S2) show that
the inactive PtPPH, that is, the form with a chloride ligand
coordinated to the metallic center, leads to stronger
interactions with type 5 clusters than with type 4 structures
(Figure 3).
According to our model definition and axis criteria, this

outcome indicates that the non-activated drug stacks in a
similar way when mA is present thanks to the formation of
NH2−Cl (in type 3) and NH2−NH3 (in type 4 and Figure S3)
HB. A decrease in IECorr value was observed in the type 4
model when two molecules of mG are present thanks to the
formation of HBs between NH3 and the O/N7 atom of mG
(Figures 3i and S3b). An opposite behavior is observed for the
aqua-PtPPH form as the most favorable structure is observed

for the stacking at the bottom plane (type 4) thanks to the
stronger HB between H2O and mA or mG (Figures 3 and S4).
In both models, the most intense interactions are reached with
the mG base.

Table 2. IECorr (kcal mol−1) Obtained in Water for the Clusters Containing PtPPH and Aqua-PtPPHa

type PtPPH IECorr aqua-PtPPH IECorr

4 PtPPH−N1−mA −11.6 PtPPH−N1−mA −30.4
PtPPH−N7−mA −12.5 PtPPH−N7−mA −30.0
PtPPH−N7−mG −10.8 PtPPH−N7−mG −34.6

5 mA−N1−PtPPH −12.2 mA−N1−PtPPH −14.3
mA−N7−PtPPH −13.3 mA−N7−PtPPH −17.5
mG−N7−PtPPH −21.3 mG−N7−PtPPH −23.2

6 mA−N1−PtPPH−N1−mA −29.6 mA−N1−PtPPH−N1−mA −47.1
mA−N7−PtPPH−N1−mA −28.4 mA−N7−PtPPH−N1−mA −46.2
mG−N7−PtPPH−N1−mA −33.7 mG−N7−PtPPH−N1−mA −48.9
mA−N1−PtPPH−N7−mA −30.5 mA−N1−PtPPH−N7−mA −46.9
mA−N7−PtPPH−N7−mA −28.9 mA−N7−PtPPH−N7−mA −46.2
mG−N7−PtPPH−N7−mA −34.1 mG−N7−PtPPH−N7−mA −48.1
mA−N1−PtPPH−N7−mG −29.5 mA−N1−PtPPH−N7−mG −51.7
mA−N7−PtPPH−N7−mG −27.1 mA−N7−PtPPH−N7−mG −47.3
mG−N7−PtPPH−N7−mG −31.0 mG−N7−PtPPH−N7−mG −53.0

aModels are defined in Figures 2, 3, S6, and S7.

Figure 3. Minimum energy structures with the color-filled δginter

surfaces (isovalue 0.0055 a.u.) for type 4 clusters (a) NH3−PtPPH−
Cl−N1−mA, (b) NH3−PtPPH−Cl−N7−mA, (c) NH3−PtPPH−
Cl−N7−mG, (d) NH3−PtPPH−H2O−N1−mA, (e) NH3−PtPPH−
H2O−N7−mA, and (f) NH3−PtPPH−H2O−N7−mG. Type 5 (g)
mA−N1−NH3−PtPPH−Cl, (h) mA−N7−NH3−PtPPH−Cl, (i)
mG−N7−NH3−PtPPH−Cl, (l) mA−N1−NH3−PtPPH−H2O, (m)
mA−N7−NH3−PtPPH−H2O, and (n) mG−N7−NH3−PtPPH−
H2O. HBs are circled in magenta. IECorr in kcal mol−1.
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Contrary to the raw PPH ligand, the whole PtPPH drugs are
suggested to have preference for guanine regions. This
conclusion is consistent with both models. The dissimilarity
in the top/bottom preference is due to a combined effect of
the HBs with the coordinated water molecule and the DNA
base and the increased charge of the drug after activation
(chloride is a negative ligand, while water acts as a neutral
group), which is confirmed through the IGM analysis (Figures
S3 and S4).
The results derived from model types 4 and 5 highlight the

impact of the activation in the stacking phenomena. In model
type 6, the platinum complexes are sandwiched between two
bases so that we observe the accumulation of non-covalent
interactions at both top and bottom planes (Figures S5 and
S6). In such a more complex scenario, the energetic pattern
previously obtained with model types 4 and 5 is still retained.
Energies depicted in Table 2 (see also Table S2) confirm that
the strongest interactions are found if mG−N7 is located at the
bottom (chloride form) and top (aqua-activated drug) planes.
Again, the activated form leads to a more stable intercalation,
as confirmed by IECorr and the non-covalent contacts detected
by IGM (Figures S7 and S8).
The systematic analysis of the PPH complexes with mG and

mA shows that (i) mG has a slightly stronger interaction with
PPH with respect to mA; (ii) HBs strongly stabilize the
clusters formed with PtPPH with respect to those with the
PPH ligand, where only the π−π interactions are present; (iii)
the charge of the complex has a notable effect on the IEcorr;
(iv) the presence of mG in cluster types 4−6 results in more
negative IE when it can interact with H2O or NH3.
PtPPH Intercalation into the Double Helix. A step

further toward a more realistic model is made by considering
the intercalation of PtPPH and aqua-PtPPH into two base
pairs connected by the sugar-phosphate linker (type 7, Figure
S9). A comparison of energies listed in Tables 2 and 3 shows

that the lateral backbone stabilizes the formed drug−DNA
adduct by ca. 5−10 kcal mol−1. This series of non-covalent
interactions is also resolved by IGM (see Figures S9 and S10).
The intercalation of the parent PtPPH (chloride form) results
in a π−π stacking concomitant with the formation of non-
covalent bonds between the NH3 and chloride ligands with the
N7−G and N7−A atoms, respectively, while the replacement
of the Cl ligand with H2O leads to larger number of HBs
(Figures S9 and S10) with a consequent decrease in the IECorr
values depicted in Table 3 (see also Table S3).

The intercalation into DNA produces a local extension
between adjacent base pairs, a parameter that might be used to
monitor the impact of the drug in the double-helix
architecture.84,85 This induced expansion has been determined
by determining the distance between the N7 atoms belonging
two successive G or A bases in type 7 clusters (dN7−N7). The
DNA structure without the complex is used as a reference
value. The optimized models exhibit a 35−50% increase in the
dN7−N7 distance upon PtPPH intercalation, which agrees with
the experimentally measured structure and confirms the
accuracy of our computational protocol to reproduce DNA
damage.43 This step-by-step modeling protocol allows us to
determine that the presence of the lateral backbone does not
reduce the intercalation ability of the drug but enables a more
stable interaction with DNA by means of additional non-
covalent contacts.

Activation upon Hydrolysis. Pt-based drugs are injected
as chloride derivatives so that their activation is a critical step
in their biological activity.6 The natural gradient of chloride,
which is present at a very high concentration in blood (Cl− =
116 mM) but drastically decays inside the cell (Cl− = 4 mM),
eventually promotes the hydrolysis processes in the intra-
cellular medium.86

Aiming to determine whether activation occurs before or
after intercalation, the type 6 model and the more complete
type 7 model are employed to compute the energetic profile
along with the release of the chloride ligand. The impact of
stacking is predicted by including two additional models for
PtPPH as a free entity, in which the drug is treated as a fully
free/solvated PtPPH in water or located in the external region
of DNA without intercalation (labeled as “out” conformation
as a counterpart of the intercalated “ins” adducts). The
structures of the reagents (RA), transition states (TS), and
products (PA) are shown in Figure 4. For all TSs, the single-
imaginary frequency confirms that obtained structures
correspond to the rupture of the Pt−Cl bond and the
simultaneous formation of the Pt−OH2 link.
The calculated free-energy profiles (ΔG) are also plotted in

Figure 4. The activation energy for the free PtPPH entity (ΔG‡

= 24.1 kcal mol−1, Table S4) agrees with previous computa-
tional predictions by using implicit (PCM) and hybrid
implicit/explicit water models.38 A close inspection of this
figure shows that the intercalated PtPPH drugs undergo
hydrolysis with a significant lower activation barrier (ΔG‡ =
18.7 kcal mol−1). Stacking of the PPH ligand and the
additional contacts with the lateral backbone stabilize the TS
associated to the chloride release, which in turn favors
hydrolysis. Additionally, intercalation leads to a more
thermodynamically stable product with respect to free
PtPPH in water solution (Figure 4 and Table S4).

Covalent Binding to DNA. One remaining crucial issue
needs to be addressed: the formation of the covalent bond with
DNA at the reactive site in G and A bases, the so-called N7
positions. We used the activated drugs for assessing the
structures of such a final step. The optimized structures are
shown in Figure 5, which illustrates the combined intercalated/
bound to DNA if the PPH ligand is stacked between base pairs,
defined as “ins” conformation (see the hydrolysis section) in
the top panel; the alternative activation without intercalation,
where the drug remains “out” of DNA during activation, is also
given in the bottom panel.
When PtPPH is bound to the GA dimers (Figure 5), the

intercalated form (ins) results to be more stable than the non-

Table 3. IECorr (kcal mol−1) and the Increase in the Distance
between the N7 Atoms of Two Successive Bases (ΔdN7−N7,
in Percentage) as Defined in Type 7 Clusters

sequence IECorr ΔdN7−N7
PtPPH

A−N7−PtPPH−N7−A −32.7 40
A−N7−PtPPH−N7−G −37.4 46
G−N7−PtPPH−N7−A −42.8 48
G−N7−PtPPH−N7−G −38.9 35

Aqua-PtPPH
A−N7−PtPPH−N7−A −59.3 50
A−N7−PtPPH−N7−G −60.8 40
G−N7−PtPPH−N7−A −59.0 48
G−N7−PtPPH−N7−G −59.5 36
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intercalated one (out) as shown by the calculated ΔGins (=Gin
− Gout) equal to −1.1, −5.1, and −13.4 kcal mol−1 for the (b−
c) adducts, respectively. On the contrary, in the case of
coordination to the guanine N7 in the GG dimer, a positive
ΔGins is found (9.0 kcal mol−1). Such dissimilarity correlates
with the number of detected intra-molecular HBs: two HBs
(NH3···O−G and NH3···N7−G) are observed in the out
structure, although only one HB (NH3···O−G) is present in
the ins counterpart (Figure 5a).
The analysis of the ΔdN7−N7 for the adducts in Figure 5

shows that when PPH is either intercalated or external to the
bases, the lengthening (dN7−N7) is clearly lower (23−30% for
the ins and 22−14% for the out) than that calculated for the
type 7 clusters. These energetic and structural results agree
with the coordination model of PtPPH where the DNA
presents an irreversible lengthening in the final product.

■ CONCLUSIONS AND OUTLOOK
PtPPH is a promising metallodrug based on a monovalent
Pt(II) center. The attack to DNA is the ultimate step in the
observed biological action. However, the cascade of reactions
involved the interaction with the double-helix structure
remains unclear. In this work, computational methods are
used to assess the intercalation ability of the drug in the parent
form as well as its aqua-activated drug. Several DNA models of
increasing complexity are designed to delineate the impact of
base pairs and the lateral backbone during reaction.
Our simulations with single-base models demonstrate that

the used phenanthridine ligand (PPH) for decorating Pt(II) is
fully compatible for stacking between DNA bases, with a π−π
IEcorr similar to the natural bases. The coordination to the
metallic center does not affect to such stacking ability. More
elaborated DNA fragments, with a full sequence of two base
pairs, show that PtPPH is able to intercalate into DNA as the
stacking with PPH is the ligand, while additional contacts
between the drug and the lateral DNA backbone further
stabilize the adduct. The study reveals a preference for
interacting with guanine-rich regions, which might be exploited
for targeting specific genetic sequences. The study of the
hydrolysis mechanism reveals that intercalated PtPPH shifts
the equilibrium toward the aqua-activated drug form. The
transition state associated to the release of the chloride ligand
and the entrance of a water molecule into the sphere is also
favored if a free PtPPH drug is considered as a reference.
Stacking and interactions with the backbone consequently
accelerate the hydrolysis of the drug.
The performed calculations help to complete the under-

standing of the mechanism of action of PtPPH, which might be
articulated in three steps: (i) an initial intercalation of the
complex between DNA bases, (ii) a quick hydrolysis reaction,
and (iii) a final covalent binding to DNA. Although larger
genetic sequences can be used in the future to refined studies
of PtPPH,87−91 the performed calculations provide better
insight into the chemical reactions that govern its biological
action.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00430.

Optimized structures of the clusters not reported in the
main article; IGM analysis results; IEs; and structures of

Figure 4. Computed free-energy profiles of the hydrolysis reactions:
PtPPH with a hybrid explicit/implicit solution model (green line),
intercalated to two free mG bases (red line, cluster type 6), and
intercalated to a DNA dimer (GG) (blue line). The activation ΔG‡

[ΔG‡ = (GTS − GRA)] and reaction ΔGr free energies are reported in
Table S4.

Figure 5. Minimum energy structures of the final products of the
reaction of PtPPH with GA and GG dimers obtained by QM/QM′
calculations: (a) G−N7···NH3−PtPPH−N7−G, (b) A−N7···NH3−
PtPPH−N7−G, (c) G−N7···NH3−PtPPH−N7−A, and (d) A−N7···
NH3−PtPPH−N7−A with the complex in the intercalated and non-
intercalated configurations. ΔGins (kcal mol−1) are also reported.
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the reagents, transition states, and products of the
hydrolysis reactions along with the thermodynamic and
kinetic parameters (PDF)
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(81) Šponer, J.; Florián, J.; Ng, H. L.; Šponer, J. E.; Špacková, N.
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