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Periodic visual stimulation can evoke the steady-state visual potential (SSVEP) in the

brain. Owing to its superior characteristics, the SSVEP has been widely used in neural

engineering and cognitive neuroscience studies. However, the underlying mechanisms of

the SSVEP are not well understood. In this study, we introduced a brain reconfiguration

methodology to explore the possible mechanisms of the SSVEP. The EEG data from five

periodic stimuli consistently indicated that the periodic visual stimulation could induce

resting-state brain network reconfiguration and that the responses evoked by the stimuli

were correlated to the network reconfiguration indexes. For each stimulus frequency,

larger response amplitudes corresponded to higher reconfiguration indexes from the

resting-state network to a stimulus-evoked network. These findings demonstrate that

an external periodic visual stimulation can induce the modification of intrinsic oscillatory

activities by reconfiguring resting-state activity at a network level, which could facilitate

the responses evoked by the stimulus. These findings provide new insights into the

response mechanisms of periodic visual stimulation.

Keywords: periodic visual stimulus, steady-state visual evoked potentials (SSVEP), network reconfiguration, graph

theoretical analysis, brain network, functional connectivity, EEG

1. INTRODUCTION

Rhythmic brain activity is a key mechanism in information transmission within and between
brain circuits, and plays an important role in neural processing and behavior (Engel et al., 2001;
Thut et al., 2012). This activity can be modulated by external brain stimulation approaches, which
could provide a paradigm to manipulate the intrinsic oscillatory properties of driven networks in a
controlled manner via an input-driven mechanism (Ozer et al., 2009; Uzuntarla et al., 2012, 2015;
Herrmann et al., 2016; Guo et al., 2017; Grossman et al., 2017). To date, several typical noninvasive
stimulation methods, i.e., deep brain stimulation (DBS), transcranial magnetic stimulation (TMS),
transcranial alternating current stimulation (tACS), and periodic visual stimulation, have been
shown to shape brain activity; these methods have received increasing interest in recent studies
and are utilized increasingly in basic and clinical research (Alagapan et al., 2016; Ruhnau et al.,
2016; Kelley et al., 2018). These brain stimulation methods could generate the selective engagement
of endogenous (intrinsic) oscillations, effectively allowing them to serve as potential means of
manipulating and controlling cognition and treating neurobiological disorders (Fox et al., 2014;
Helfrich et al., 2014; Parkin et al., 2015).
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Among these stimulationmethods, periodic visual stimulation
is non-invasive and can probe frequency-specific brain activity,
allowing wide use in cognitive neuroscience, neural engineering,
and clinical studies (Vialatte et al., 2010; Zhang et al., 2014;
Zhang Y. et al., 2016; Zhang Y.S. et al., 2016, 2017; Sharon
and Nir, 2017). This method can evoke robust components
that have the same fundamental frequency of the stimulus as
well as its harmonics. This kind of stimulation usually serves
as a frequency tag or an encoder for various user commands.
For example, in the BCI field, the BCI paradigms based on
periodic visual stimulation have received increasing attentions
(Wang et al., 2016; Jiao et al., 2017; Zhang Y. et al., 2017),
and the applications include wheelchair control (Li et al., 2013),
BCI spellers (Li et al., 2016), detecting number processing and
mental calculation in patients (Li et al., 2015), etc. In addition
to adopting it as a research tool, research communities are
also interested in the brain mechanism underlying the evoked
responses to periodic visual stimulation (Thorpe et al., 2007;
Capilla et al., 2011; Roberts and Robinson, 2012). These studies
have included assessments of the source location (Srinivasan
et al., 2006) and the evoked response generation mechanisms
(Capilla et al., 2011) and computational modeling simulations
(Roberts and Robinson, 2012; Herrmann et al., 2016). In our
previous studies, we explored the mechanisms of the SSVEP
from the aspect of brain networks. We found that the stimulus-
evoked brain network topological properties were significantly
correlated with the evoked responses (Zhang et al., 2013b,
2015). In another study, with a resting-state dataset, we found
a significant association between evoked responses and resting-
state brain network topology at stimulus frequencies (Zhang
et al., 2013a).

There is accumulating evidence that the resting state may
provide a window to understand cognition and neurobiological
disorders of the brain. This type of advantage has made
resting-state brain networks a hot topic in current neuroscience
studies. During the resting state, no task is performed, but
the brain shows a level of spontaneous activity that reflect
the potential processing abilities of neural systems (Raichle
et al., 2001; Deco et al., 2013). Studies indicate that whole-
brain resting-state network architecture provides a basis for task-
evoked network architecture (Cole et al., 2014). Interestingly,
the task performance of a subject can be predicted by
resting-state brain network properties or the reconfiguration
from the resting-state brain network to the task-state brain
network (Schultz and Cole, 2016). In recent years, discovering
the dynamic reorganization of functional brain networks has
received increasing attention, and studies indicate that cognitive
behaviors are related to the reconfiguration of brain network
architecture (Bassett et al., 2011; Krienen et al., 2014; Braun
et al., 2015; Shine et al., 2016; Finc et al., 2017; Hearne et al.,
2017). For instance, in a cognitive reasoning task (Hearne
et al., 2017), task engagement was accompanied by a significant
reconfiguration in functional brain modules, and increasing
reasoning complexity led to a merging of resting-state modules.
In addition, higher reasoning accuracy was associated with larger
increases in global network efficiency within the reconfigured
task modules.

Inspired by these works on brain reconfigurations, here,
we explored the effect of the reconfigurations between resting-
state and stimulus-evoked networks on evoked responses. In
the current study, we tested the hypothesis that the updates
from the resting state to stimulus-evoked state could facilitate
the generation of the responses. According to the previous
two studies using network analysis (Zhang et al., 2013a,b),
we expected that larger brain network reconfigurations would
benefit larger responses.

2. MATERIALS AND METHODS

2.1. EEG Datasets
The datasets were collected from 21 healthy subjects with normal
or corrected-to-normal vision. Prior to the experiment, the
purpose and procedure of the experiment were explained to each
subject, and each subject was asked to read and sign an informed
consent. The study was approved by the Human Research and
Ethics Committee at the University of Electronic Science and
Technology of China. EEG data were collected with 64 Ag-
AgCl electrodes using an extended 10–20 system (Brain Products
GmbH, Germany), and sampled at 1,000 Hz with an 0.01–
100 Hz bandpass filter and a 50 Hz notch filter. The reference
electrode was FCz, and the ground electrode was AFz. The
impedance was kept below 10 k� for all electrodes during the
experiment. Horizontal and vertical electrooculograms (EOGs)
were simultaneously recorded during the experiment.

During the experiment, 2 min of eyes-closed resting-state data
were first collected for each subject. In each following session,
one frequency was randomly selected from the frequency set (7.5,
12, 15, 20, and 30 Hz) to generate the periodic visual stimulus
to collect SSVEP data for 1 min. The frequency sequence was
randomized across subjects. There was a rest period of 2–3
min between two successive sessions. The visual stimulus was
displayed on a laptop with a 13-inch monitor with a refresh rate
of 60 Hz. The subjects were seated in a comfortable armchair
approximately 60 cm away from the center of the monitor.
Subjects were requested to gaze binocularly at each flickering
stimulus.

2.2. Data Processing
2.2.1. Data Preprocessing
Two channels, i.e., TP9 and TP10 were discarded in the
subsequent analysis due to insufficient contact with the scalp and
excessive artifact. All EEG data were bandpass filtered between 1
and 100 Hz, and then resampled to 250 Hz. For each subject, the
first seven non-overlapping artifact-free 10-s-long epochs were
selected from the resting-state data, and the first three to five
non-overlapping and artifact-free 4-s-long epochs were selected
from the periodic stimulation data. The criteria for the data to
be artifact-free were that the data did not include signals from
eye blinks, eye movements or muscle activity and the signal
amplitude did not exceed 100 µV. After obtaining the data
epochs, all data were re-referenced to the zero reference using
the reference electrode standardization technique (REST) (http://
www.neuro.uestc.edu.cn/rest/; Yao, 2001).
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2.2.2. SSVEP Data Processing
To measure the brain responses to the periodic stimulation, we
directly calculated the amplitude of the frequency using a fast
Fourier transform (FFT) (Srinivasan et al., 2006). To eliminate
the possible effect of backgrounds across subjects, we expressed
the evoked responses as the signal-to-noise ratios (SNRs) (Zhang
et al., 2013b). The SNR was computed as the ratio of the power at
the stimulus frequency [P(f )] divided by the mean power of the
1 Hz band centered on the stimulus frequency but excluding the
stimulus frequency itself, as defined in formula (1).

SNR =
P(f )

1
10

5
∑

i=1

[

P(f − 0.1× i)+ P(f + 0.1× i)
] (1)

For each stimulus frequency, the SNRs for the nine electrodes
(P3, Pz, P4, PO3, POz, PO4, O1, Oz, O2) were calculated in each
epoch. Then, these SNRs were further averaged across the epochs
and electrodes to yield the final SNRs for each subject as the
evoked responses.

2.2.3. Resting-State and Stimulus-Evoked Networks

Construction
Because we wanted to investigate the reconfigurations between
the resting-state and stimulus-evoked networks, we calculated
the brain networks under these two conditions at the same
frequencies. For the five stimulus frequencies, we calculated
five frequency-specific networks for resting state data and
stimulus-evoked data independently. The volume conduction
can influence EEG network construction, so to reduce this effect,
we only chose nineteen standard electrodes, i.e., Fp1, Fp2, F7,
F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and
O2, as the nodes used to construct the networks. Based on the
aim of creating a network at a specific frequency, the coherence
was utilized to measure the functional connectivity between pairs
of electrodes. Coherence represents the linear relationship at a
specific frequency between two signals x(t) and y(t), which is
defined as (Nunez et al., 1997):

C(f ) =

∣

∣Cxy(f )
∣

∣

2

Cxx(f )Cyy(f )
(2)

where Cxy(f ) is the cross-spectrum between x(t) and y(t), and
Cxx(f ) and Cyy(f ) are the respective auto-spectra.

For each subject, five coherence matrices corresponding to the
five frequencies could be calculated for each data epoch under the
resting-state condition. Similarly, five coherence matrices could
be calculated for each data epoch under the visual stimulation
condition. For each condition, the coherence matrices of each
frequency were averaged across epochs to yield the brain network
connectivity matrices for subsequent analyses.

2.2.4. Networks Topology Measurements
In this study, several network measurements were used to
measure the network topology properties. The first measurement
was the mean functional connectivity, which is defined as the
mean connectivity strength between all the connected pairs of

electrodes in each network. Other measurements were the four
topological properties, i.e., clustering coefficient, characteristic
path length, global efficiency, and local efficiency. In this study,
we focused on the weighted network obtained with coherence.

In weighted networks, the weights indicate the connection
strength and reflect a difference in the capacity and intensity
of the connections between nodes. Thus, they may be a more
valid approach for brain network modeling. Furthermore, using
weighted networks is useful in reducing the influence of weak
and potentially non-significant connections (Zhang et al., 2011).
In the following section, we simply describe the formulas used
to calculate the four properties. In a weighted network (N-by-
N), the clustering coefficient is calculated as follows (Watts and
Strogatz, 1998; Onnela et al., 2005):

C =
1

N

∑

i∈N

∑

i,h∈N

(wi,jwi,hwj,h)
1/3

ki(ki − 1)
(3)

where wij is the weight between nodes i and j in the network, and
ki is the degree of node i.

When Lij is denoted as the shortest path length between
two nodes, then the characteristic path length of a network is
calculated as follows (Newman, 2003):

L =
1

1
N(N−1)

N
∑

i=1

N
∑

i6=j

1/Li,j
(4)

The global efficiency is computed as (Latora and Marchiori,
2001):

Eglobal =
1

N(N − 1)

N
∑

i=1

N
∑

i6=j

1/Li,j (5)

With the formula 5 above, we can also compute the local
efficiency of node i as the following:

Ei−local =
1

NGi

NGi
∑

i∈Gi

EglobalGi (6)

where NGi is the number of nodes in Gi, and Gi denotes the
subgraph composed of the set of nodes that are the direct
neighbors of node i (Latora and Marchiori, 2001; Achard and
Bullmore, 2007). Then, the local efficiency of netwrok G is the
average of the local efficiencies of all nodes in graph G,

Elocal =
1

N

N
∑

i∈G

Ei−local(Gi) (7)

These topological properties were calculated by using the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010). More details
on the descriptions of the network topology properties could be
found in the reference (Rubinov and Sporns, 2010).
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2.2.5. Network Reconfiguration Measurement
To measure the network reconfiguration from the resting state to
the stimulus-evoked state, we first used the Riemannian distance
to calculate the distance between the resting-state network
and the stimulus-evoked network. The networks are covariance
matrices that belong to a smooth Riemannian manifold of
symmetric positive definite (SPD) matrices (Barachant et al.,
2012; Xie et al., 2017). Riemannian distance that takes into
account the space is more appropriate than correlation analysis
in an Euclidean space. The Riemannian distance between two
networks, such C1 and C2, is defined as (Kalunga et al., 2016):

β(C1,C2) =

(

N
∑

i=1

log2λi

)1/2

(8)

where λi , i = 1, 2, · · · ,N are the eigenvalues of C1
−1C2.

In addition, we defined two other metrics to evaluate the
network reconfigurations between the resting-state network
and stimulus-evoked network, i.e., the difference in the mean
functional connectivity of two kinds of networks (mean
connectivity alteration) and the differences in the four topological
properties.

In the present study, we investigated the possible relationships
between the evoked SSVEP responses and the network
reconfiguration measurements by conducting across-subject

Pearson’s correlation analysis between the SNRs and each
reconfiguration metric.

3. RESULTS

3.1. The Brain Network Reconfiguration
Driven by the Periodic Stimulation
As periodic stimulation can alter the intrinsic oscillatory
properties of driven networks, we first assessed the changes in
functional connection strengths from the resting-state to the
stimulus-evoked state induced by the stimulus. The strength
differences of each connection in both networks were computed
first, and then the differences of each connection were averaged
across subjects to yield a network topology of weighted updates.
As shown in Figure 1, most of the weights in the stimulus-evoked
networks were increased compared to those in the resting-
state networks, and there were fewer decreased weights in the
high frequencies than in the low frequencies. Furthermore, we
explored the connections that showed significant correlations
with SNRs for each stimulus frequency. As seen in Figure 2, we
found that the main connections existed between the parietal–
occipital and frontal regions, and a small fraction of these
connections showed decreased weights. These patterns may be
consistent with the fact that the main sources of the SSVEP
are the parietal–occipital and frontal regions (Vialatte et al.,

FIGURE 1 | The averaged changes in functional connection weights across subjects between the resting-state and stimulus-evoked networks for the five stimulus

frequencies. (A) 7.5 Hz; (B) 12Hz; (C) 15 Hz; (D) 20 Hz; (E) 30 Hz. The red lines indicate increased weights and the blue lines indicate decreased weights.
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FIGURE 2 | The reorganized connections that showed significant correlations with the SNRs for the five stimulus frequencies. The red and blue lines indicate the

connections with increased and decreased weights (p < 0.05), respectively. (A) 7.5 Hz; (B) 12 Hz; (C) 15 Hz; (D) 20 Hz; (E) 30 Hz.

2010), and main connectivities exist between them (Zhang et al.,
2013a,b, 2015).

3.2. The Variability in SSVEP Responses
Across Subjects
Periodic stimulation can evoke SSVEP responses, which are
indicated by SNRs. The SNRs of all subjects at each frequency
are shown in Figure 3. We found that the responses exhibited
substantial intersubject variability, and different patterns existed
under different frequencies. In the subsequent analysis, we
wanted to know whether the variability among subjects was
related to the brain network reconfiguration, as in studies in
which cognitive behaviors were related to the reconfiguration of
brain network architecture (Braun et al., 2015; Schultz and Cole,
2016; Hearne et al., 2017).

3.3. The Relationship Between SNRs and
the Network Reconfiguration
Measurements
As stated above, periodic stimulation led to a reconfiguration
between resting-state and stimulus-evoked networks. Here, we
first present the network reconfiguration index as defined in the
previous section to evaluate the changes for each subject and
then investigate the relationships between these changes and the
SNRs. We found that the SNRs of the evoked responses were
positively correlated with the Riemannian distances, as shown in
Figure 4. A larger distance corresponded to a relatively stronger

reconfiguration between the two networks. Consequently, we
can infer that larger updates between the two networks facilitate
larger SSVEP responses.

Furthermore, we investigated the relationships between the
SNRs and other network reconfiguration indexes. We obtained
the similar results, which are as shown in Figures 5, 6 and
Table 1. For each frequency, larger SSVEP SNRs corresponded
to larger updates in the mean functional connectivity and the
four topological properties. Therefore, the stimulus changed not
only the strength of the functional connections but also the
topological structure of the functional networks. Furthermore,
we observed a negative correlation between the SNRs and the
differences in characteristic path length, whereas there were
positive correlations between the SNRs and the differences in
the clustering coefficient, global efficiency, and local efficiency,
as shown in Figure 6 and Table 1. Compared to the resting-state
network, larger SSVEP responses corresponded to more efficient
SSVEP brain network reconfigurations in the stimulus-evoked
network. The results indicate that periodic visual stimulation
evoked brain network reconfiguration, and the resulting more
efficient brain networks indeed facilitate the corresponding
SSVEP generation.

4. DISCUSSION

Periodic visual stimulation is a powerful tool in clinical
neuroscience, cognitive neuroscience, and neural engineering
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FIGURE 3 | The intersubject variability of the SNRs at each frequency. (A) 7.5 Hz; (B) 12 Hz; (C) 15 Hz; (D) 20 Hz; (E) 30 Hz.

(Vialatte et al., 2010). The evoked response, i.e., the SSVEP,
is used as a frequency tag to study the spatial and temporal
characteristics of the brain activities during a task. In recent
years, the mechanisms of the SSVEP have received much
attention (Thorpe et al., 2007; Zhang et al., 2013a,b, 2015;
Herrmann et al., 2016), although they are not well-understood.
Previous studies have indicated that adaptive reconfigurations
of large-scale functional networks occur when humans are
performing higher cognitive tasks (Bassett et al., 2011; Krienen
et al., 2014; Braun et al., 2015; Hearne et al., 2017; Kaufmann
et al., 2017). Here, we examined the reconfigurations of
brain networks at specific frequencies induced by periodic
visual stimulation and the relationship between the changes
in brain connectivity and the responses evoked by the
stimulus.

In a previous study, under the resting-state condition,
the SSVEP responses of each frequency were negatively
correlated with the mean functional connectivity, clustering
coefficient, global efficiency, and local efficiency but positively
correlated with characteristic path length (Zhang et al.,
2013a). In another study, however, we found that the SSVEP
responses were positively correlated with the mean functional
connectivity, clustering coefficient, and global and local
efficiencies but negatively correlated with the characteristic
path length (Zhang et al., 2013b). These two studies separately
examined the relationship between the SSVEP and the two
kinds of networks. Inspired by the studies on brain network
reconfiguration mentioned above, here, we investigated whether
the reconfiguration of the networks constructed at a stimulus
frequency occurred under the stimulus condition compared to
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FIGURE 4 | Pearson’s correlations between the SNRs and the distances between the resting-state and stimulus-evoked networks for the five stimulus frequencies.

(A) 7.5 Hz; (B) 12 Hz; (C) 15 Hz; (D) 20 Hz; (E) 30 Hz. The red lines indicate the fitted linear trend. The r denotes correlation coefficients, and p denotes the

significance level of the correlation coefficients.

FIGURE 5 | Pearson’s correlations between the SNRs and the differences in the mean functional connectivity of the two types of networks for the five stimulus

frequencies. (A) 7.5 Hz; (B) 12 Hz; (C) 15 Hz; (D) 20 Hz; (E) 30 Hz. The red lines indicate the fitted linear trend. The r denotes correlation coefficients, and p denotes

the significance level of the correlation coefficients.

the resting-state condition and whether the stimulus-induced
network reconfiguration was associated with the evoked
responses. Interestingly, there were significant changes between
the intrinsic resting-state network and the stimulus-evoked
network, and larger reconfigurations from the resting-state
network were associated with higher evoked responses for all
five stimulus frequencies. Specifically, the SSVEP responses were

significantly positively correlated with the distances between
the resting-state network and the stimulus-evoked network and
the network reconfiguration metrics, i.e., the differences in the
mean functional connectivity and the differences in the four
topological properties.

In this study, no external cognitive task was performed by
the subjects, but they were required to fix their attention on a
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FIGURE 6 | Pearson’s correlations between the SNRs and the alterations in the four topological properties between the two types of networks at 7.5 Hz.

(A) clustering coefficient; (B) characteristic path length; (C) global efficiency; (D) local efficiency. The red lines indicate the fitted linear trend. The r denotes correlation

coefficients, and p denotes the significance level of the correlation coefficients.

TABLE 1 | The relationship between the SNRs and alterations in the four topological properties between the two types of networks at 12, 15, 20, and 30 Hz, respectively.

Frequency (Hz) Clustering coefficient Characteristic path Global efficiency Local efficiency

r p r p r p r p

12 0.56 0.007 −0.64 0.002 0.56 0.007 0.56 0.008

15 0.64 0.002 −0.66 0.001 0.65 0.001 0.65 0.001

20 0.88 <0.001 −0.83 <0.001 0.89 <0.001 0.89 <0.001

30 0.71 <0.001 −0.64 0.002 0.71 <0.001 0.71 <0.001

r denotes correlation coefficients, and p denotes the significance level of the correlation coefficients.

flickering stimulus. Because previous studies have revealed that
attention canmodulate the SSVEP (Ding et al., 2006;Müller et al.,
2006), we therefore infer, based on our findings, that the attended
stimulus drives the adaptive reconfiguration of the network
connectivity to yield robust SSVEP responses. Larger changes in
functional brain networks reflect the dynamic optimization of
the networks for stimulus-driven input processing and output
response enhancement (Schultz and Cole, 2016). As seen in
Figure 6 and Table 1, we found that the stimulus not only
changed the strength of the functional connections of the
frequency-specific networks but also led to the reorganization
of the network’s topology. The reconfiguration patterns might
facilitate the global integration of information and provide a
substrate for processing stimulus-driven inputs (Bola and Sabel,
2015; Alavash et al., 2016). In fact, this type of reorganization
has been postulated by the global workspace theory (Dehaene
and Changeux, 2011; Finc et al., 2017), and is by a number

of neuroimaging studies (Palva et al., 2010; Bassett et al., 2011;
Doron et al., 2012; Ekman et al., 2012; Bola and Sabel, 2015;
Alavash et al., 2016).

A limitation of this work is that we only used five frequencies
to investigate the mechanisms of SSVEP using the brain
reconfigurationmethodology. Owing to display the visual stimuli
on the computer monitor using the conventional frame-based
“on/off” stimulation method, we obtained small number of
frequencies. We should verify the findings on large set of
frequencies in our future study with LED stimulator. Another
limitation of this work is that we did not adopt cognitive tasks
during EEG recordings for all the subjects. For the SSVEP, it has
been widely used in various cognitive tasks. In next stage, we need
to validate of the results on the experiments with cognitive tasks
performed by healthy subjects and patients.

The periodic visual stimulation can also evoke harmonic
frequency components. In our previous studies, we found that
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the harmonic responses were also related to the topological
properties of stimulus-evoked brain networks. It will be
an interesting work to further investigate the network
reconfiguration on the harmonics as the fundamental frequency.
For the harmonics, we inferred that the similar relationships may
exist between the harmonic responses and the corresponding
network reconfiguration as those for the fundamental frequency.
Besides, in current study, only one frequency was adopted
in each session during the EEG recording. In some SSVEP-
based BCI systems (Hwang et al., 2013), dual-frequency
stimulation was used. It is necessary to carry out the experiments
with double periodic visual stimulus to investigate the brain
response mechanisms based on network analysis and brain
reconfiguration methodology. We will carry out those researches
in our future researches.

The biological implications of the main findings of this
study are meaningful. First, the results shed light on new
mechanisms of the SSVEP based on the reconfiguration of
brain network topological architecture, which combines the
resting state and stimulus-evoked state. Second, periodic
visual stimulation can serve as frequency tag tool to
modulate intrinsic oscillatory brain activity. Through the
perspective of the brain network reconfigurations, it will
be possible to further probe the mechanisms of cognition
and pathological brain dynamics in cognitive and clinical
investigations (Vialatte et al., 2010; Parkin et al., 2015). In
recent years, investigations into the dynamics of functional
connectivity patterns have received growing interest (Doron
et al., 2012; Bola and Sabel, 2015; Alavash et al., 2016; Shine
et al., 2016; Finc et al., 2017). Here, the static brain network
was constructed based on averaged coherence connectivity
matrices, which disregard the dynamic organization in

functional brain networks over time. In future studies, we
will investigate how the dynamic responses evoked during the
stimulation period relate to dynamic changes in brain network
topologies.

5. CONCLUSION

In the present study, we investigated brain network
reconfigurations using periodic visual stimulation at five
frequencies. The results revealed that the stimulation changed
not only the strength of the functional connections but also
the topological arrangements of the functional networks. The
evoked SSVEP responses were significantly correlated to network
reconfiguration metrics. Taken together, our findings, on one
hand, can shed light on the mechanisms of the SSVEP and, on
the other hand, may open new approaches to probe frequency-
specific brain activity within network reconfiguration and graph
theory analysis.
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