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Introduction
Multiple sclerosis (MS) is a chronic inflammatory 
disease of the central nervous system (CNS) charac-
terized by autoimmune damage of myelin sheaths 
and subsequent neuronal loss. The etiology of MS is 
complex and largely unknown and influenced by 
genetic and environmental factors.1,2 One of the 
major environmental risk factors is exposure to 
tobacco smoke, where daily smokers have an esti-
mated odds ratio (OR) of 1.5 for the risk of develop-
ing MS compared to non-smokers.3 This risk is being 
further increased (OR ~ 14) in carriers of the major 
MS risk variants (HLA-DRB1*15:01+/HLA-A*02−), 
that is, three times more than risk of haplotype-
matched non-smokers.4,5 Notably, exposure to 

cigarette smoke has also been associated with MS 
disease progression and severity.1

Even though the mechanisms underpinning the 
impact of smoking in MS remain elusive, lung irri-
tation and inflammation induced by exposure to 
smoke have been proposed to contribute to the 
immunopathogenesis of MS.1 This is supported by a 
growing body of evidence established in the animal 
model of MS, experimental autoimmune encephalo-
myelitis (EAE), presenting the lungs as a site of 
immune cell priming, prior to CNS infiltration and 
induction of disease.6–9 Accordingly, alveolar mac-
rophages, the first phagocytic cell type exposed to 
smoke irritants in the pulmonary milieu, have been 
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shown to contribute to induction of adaptive immu-
nity,10,11 and EAE pathogenesis.7,8 In line with this, 
smokers exhibit an increased number of alveolar 
macrophages.12

Epigenetic mechanisms, such as DNA methylation, 
have been proposed to mediate impact of genetic and 
environmental risk factors in MS. We have previously 
shown that DNA methylation may mediate genetic 
risk of HLA-DRB1*15:01 variant in MS through 
changes in HLA-DRB1 gene expression.13 In addition, 
we have previously found that cigarette smoking not 
only alters blood DNA methylation in MS patients but 
also interacts with the disease in a smoking load-
dependent manner.14 However, so far, little is known 
about the smoking-associated changes locally, in the 
primary exposed lung tissue of MS patients.

In this study, we aimed to examine the molecular 
changes occurring in pulmonary immune cells from 
MS patients in relation to smoking and in comparison 
to healthy individuals.

Material and methods
Full details of experimental procedures are provided 
in Supplementary Methods.

Subjects and bronchoscopy
Description of the cohorts used in this study is sum-
marized in Table 1 and details (including smoking, cell 
proportion, and clinical information) are presented in 
Supplementary Table 1. Briefly, all participants 
included in this study were females, 17 MS patients 
(nine smokers and eight non-smokers), and 22 healthy 
controls (HCs) (10 smokers and 12 non-smokers), 
who underwent bronchoscopy with bronchoalveolar 
lavage (BAL), as previously described.15 Healthy vol-
unteers represent a subset of a previously described 
cohort,16 including only women. The study was 
approved by the Regional Ethical Review Board in 
Stockholm (Reg. Nos. 2012/1782-31/1 and 2012/1161-
31/1) and methods were performed in accordance with 
institutional guidelines on human subject experiments. 
All subjects gave their written informed consent.

Table 1. Characterization of healthy individuals and multiple sclerosis patients included in our study.

Multiple sclerosis (MS) Healthy controls (HCs)

 Non-smokers Smokers Non-smokers Smokers

Subject 8 9 12 10

Age (years) 43.0 [34.8–49.3]a 38.0 [27.0–41.0] 23.5 [22.0–28.5] 28.0 [25.0–37.5]

Cigarettes (day) N/A 10.0 [6.0–15.0] N/A 11.3 [10.0–14.4]

Pack (years) N/A 16.0 [8.0–23.0]b N/A 6.3 [5.5–9.5]

FEV1 (% predicted) 101.5 [95.0–119.3] 106.0 [97.0–112.0] 104.0 [98.0–108.5] 102.5 [90.3–109.3]

FVC (% predicted) 108.0 [90.3–125.0] 114.0 [107.0–126.0] 112.0 [101.8–117.8] 108.0 [101.5–111.0]

FEV/FVC (%) 83.5 [80.0–84.0] 82.0 [71.0–84.0] 82.5 [80.8–84.3] 80.5 [76.5–84.5]

BALF cell 
concentration (×106/L)

121.6 [96.3–147.1]a 371.1 [206.8–476.5]c 75.0 [64.1–97.3] 325.8 [226.3–371.3]d

BAL recovery (%) 59.0 [57.5–72.0]a 54.0 [54.0–66.0] 77.5 [73.3–80.0] 63.5 [58.0–67.8]d

BAL macrophages (%) 93.9 [87.9–95.3] 95.6 [94.4–96.6] 90.0 [85.0–93.9] 95.8 [93.7–97.1]d

BAL lymphocytes (%) 4.8 [3.8–9.8] 3.0 [2.4–4.4] 8.4 [5.3–11.7] 2.7 [1.9–5.3]d

BAL neutrophils (%) 0.9 [0.8–1.3] 0.6 [0.2–0.8] 0.9 [0.4–2.2] 0.8 [0.5–1.2]

BAL eosinophils (%) 0 [0–0] 0.2 [0–0.4]c 0 [0–0.3] 0 [0–0.4]

BAL basophils (%) 0 [0–0.05] 0 [0–0] 0 [0–0] 0 [0–0]

BAL mast cells/10 
fields of vision

0 [0–1.8] 0 [0–4.0] 0.5 [0–4.5] 2.0 [1.0–3.5]

BAL CD4/CD8 ratio 4.4 [1.2–4.9] 1.4 [0.8–1.9] 1.8 [1.4–2.7] 1.3 [1.0–2.6]

MS: multiple sclerosis; HCs: healthy controls; N/A: not applicable; FEV1: forced expiratory volume in 1 s; FVC: forced vital 
capacity; BALF: bronchoalveolar lavage fluid; BAL: bronchoalveolar lavage.
Characteristics of female individuals included in our cohort. Data represent n or median (25th–75th percentile). Pack (years): 
(cigarettes smoked per day/20) × years of smoking. Mast cells were counted in 16× magnification.
Statistics calculated using Mann–Whitney U test.
aP < 0.05 MS-NS versus HC-NS.
bP < 0.05 MS-S versus HC-S.
cP < 0.05 MS-S versus MS-NS.
dP < 0.05 HC-S versus HC-NS (NS and S indicating non-smoker and smoker, respectively).
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DNA and RNA extraction
Total RNA and genomic DNA were extracted from 
BAL cells using Allprep DNA/RNA/miRNA univer-
sal kit (Qiagen) and quantified by Qubit 3 fluorome-
ter. RNA integrity number (RIN) values were obtained 
using the RNA 6000 nano chip and the Agilent 
Bioanalyzer (Agilent Technologies). Samples from 
MS and controls were processed simultaneously and 
randomized in downstream analyses.

DNA methylation analysis
Genomic DNA from BAL cells was processed as pre-
viously described,16 using the Infinium 
HumanMethylationEPIC BeadChip Kit (Illumina). 
MS and HC samples were randomized according to 
smoking status, age, gender, and cell proportion and 
processed together with technical replicates in one 
run. We assessed DNA methylation (5mC), DNA 
hydroxymethylation (5hmC), and bulk DNA modifi-
cations (total 5mC + 5hmC) by performing in parallel 
bisulfite (BS) and oxidative BS treatments of genomic 
DNA, respectively. Briefly, BS β-values represent 
total 5mC + 5hmC, while oxBS β-values reflect 5mC. 
Hydroxymethylation values were generated by sub-
tracting normalized oxBS from BS β-values, as previ-
ously described.16 BS and oxBS samples from each 
individual were processed together and run on the 
same array. Raw IDAT files were processed as previ-
ously described (Supplementary Figure 1).16 Only 
probes (734,078) and samples (n = 39) shared between 
BS and oxBS datasets were included in subsequent 
analyses. We used limma to fit a linear model to each 
methylation M-value (transformed β-value) and 
empirical Bayes to calculate test statistics for group 
comparisons, adjusting for covariates (age and mac-
rophage fraction). Multiple testing correction was 
performed by adjusting the false discovery rate (FDR) 
and was based on all included probes (n = 734,078) 
for each group comparison. Probes were considered 
significantly differentially methylated between 
groups when the Benjamini–Hochberg-adjusted 
(BH-Padj) < 0.05. Statistical analysis of enriched and 
depleted differential methylation was performed 
using Pearson’s Chi-square test on contingency tables 
of count data, and P values were adjusted for multiple 
testing (n = 8) using Bonferroni.

Gene expression analysis
cDNA libraries were prepared by poly-A capture of 
150 ng purified total RNA from each individual, using 
a modified version of SMART-seq2 to adjust for bulk 
input,17 and subsequently sequenced at 125 bp paired-
end on an Illumina HiSeq 2500. RNA-sequencing 

reads were subjected to quality filtering, adapter trim-
ming using in Trim Galore with default parameter set-
tings, and aligned to the transcriptome using the 
pseudoalignment-based Kallisto algorithm. For 
downstream analysis, only females and groups includ-
ing a minimum of seven samples with an RIN value 
above seven were included. Genes with >10 normal-
ized read counts were kept. A total of 15 samples from 
non-smoker individuals passed these criteria, that is, 
seven MS and eight HC, which were used for differ-
ential expression analysis using DESeq2 package in 
R. We adjusted for the covariate age and considered 
transcripts with unadjusted P value < 0.05 suitable for 
gene ontology (GO) analysis.

GO analyses
GO analyses were performed using ingenuity path-
way analysis (IPA; Qiagen) of the annotated differen-
tially methylated and expressed genes, using unbiased 
parameters for all criteria and right-tailed Fisher’s 
exact test P values  < 0.05 were considered statisti-
cally significant. We confirmed IPA results using 
over-representation analysis (ORA).18 Visualization 
of genes and GO terms was performed using STRING 
database version 10.5 and REVIGO tool.19

Data availability
DNA methylation data from this study is available in 
Gene Expression Omnibus (GEO) database (under 
accession number GSE151017) and the RNA-
sequencing data are available upon request.

Results

Smoking-associated DNA methylation changes in 
BAL cells from MS patients
We characterized total BS, 5mC and 5hmC changes 
in BAL cells of female MS patients (n = 17), and HC 
(n = 22) (Table 1, Supplementary Table 1) using 
Illumina HumanMethylationEPIC arrays. We exam-
ined the impact of smoking (S) compared to non-
smoking (NS) within each group (MS-S vs. MS-NS 
and HC-S vs. HC-NS) and compared MS patients to 
HCs for both smokers and non-smokers, separately 
(MS-NS vs. HC-NS and HC-S vs. MS-S). Analysis 
identified 1376 BS, 131 5mC, and 4 5hmC differen-
tially methylated positions (DMPs) associated with 
smoking in MS patients (MS-S vs. MS-NS) after 
correction for confounders (Benjamini–Hochberg-
adjusted (BH-Padj) < 0.05) (Figure 1). The 10 most 
significant DMPs are listed in Table 2 (full data are 
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Figure 1. Smoking-associated methylation changes in bronchoalveolar cells from multiple sclerosis (MS) patients 
and healthy controls (HC). (a) Volcano plots illustrating, from top to bottom, differences in DNA methylation between 
smokers and non-smokers in HC (HC-S vs. HS-NS, blue) and in MS patients (MS-S vs. MS-NS, red) and between MS 
patients and HC, distinguishing non-smokers (MS-NS vs. HC-NS, green) and smokers (MS-S vs. HC-S, orange). Hyper- 
and hypomethylated CpGs with BH-Padj < 0.05 are indicated in dark colors, while lighter colors represent CpGs with 
unadjusted P value < 0.001. (b) Heatmaps were generated using the 1000 most significant differentially methylated CpGs 
between the conditions (the scale represents z-score transformed β-values). Full data are provided in Supplementary 
Table 2.

shown in Supplementary Table 2). DMP analysis in 
healthy individuals yielded higher number of smok-
ing-associated DMPs, with 1821 BS-DMPs, 234 

5mC-DMPs, and one 5hmC-DMP identified between 
smokers and non-smokers (BH-Padj < 0.05). Notably, 
about one-third of the BS-DMPs (491/1376) and 
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5mC-DMPs (41/131) found associated to smoking 
in MS overlapped with DMPs identified in HC, with 
comparable effect size represented by Δβ values 
(Supplementary Figure 2). Overall, the effect size at 
overlapping and non-overlapping BS-DMPs dis-
played strong correlation (r = 0.8, P < 2.2E–16) 
between MS and HC, with, as expected, magnitude 
of change mirroring statistical differences, that 
is,|ΔβMS| >|ΔβHC| at smoking-associated BS-DMPs 
identified in MS and not in HC and vice versa 

(Supplementary Figure 2). Overlapping DMPs 
between MS and HC maps to well-known smok-
ing-associated CpGs, such as AHRR, RARA, or 
HIVEP3.16,20,21 Around half of the 5mC-DMPs 
(64/131 in MS and 138/234 in HC) are overlapped 
with BS-DMPs in each group (Supplementary 
Figure 2). No significant DMPs were associated 
with MS compared to controls in the smoker or 
non-smoker groups after correction for multiple 
testing (Figure 1).

Table 2. Top 10 significant smoking-associated DMPs of BS methyl (5mC + 5hmC), true 5mC (oxBS), and 5hmC in MS 
patients (MS-S vs. MS-NS).

Probe P value Adj. P 
value

Chr Position Gene Δβ Island_
Rel

Feature Enhancer

BS

 cg12703333 1.1E−10 4.3E–05 chr10 76962548 0.30 OpenSea IGR  

 cg09020840 1.2E−10 4.3E–05 chr17 73087391 SLC16A5 0.21 S_Shelf 5ʹUTR  

 cg22145459 4.3E−10 1.0E–04 chr6 31693656 C6orf25 –0.26 S_Shore 3ʹUTR  

 cg11823253 5.7E−10 1.0E–04 chr1 213154553 VASH2 0.15 OpenSea Body  

 cg01034754 2.1E−09 2.6E–04 chr10 30720817 0.22 N_Shore IGR  

 cg06275684 2.3E–09 2.6E–04 chr12 65074198 RASSF3 0.24 OpenSea Body *

 cg24439401 2.4E–09 2.6E–04 chr3 16282260 0.15 OpenSea IGR  

 cg26744946 4.6E–09 3.9E–04 chr8 145065833 GRINA 0.16 S_Shore Body  

 cg11650372 4.7E–09 3.9E–04 chr21 35171932 ITSN1 0.29 OpenSea Body  

 cg07249224 6.0E–09 3.9E–04 chr16 30101680 TBX6 0.25 N_Shore Body  

5mC

 cg10655682 1.6E–08 5.8E–03 chr19 4567177 –0.34 S_Shore IGR *

 cg24699021 2.2E–08 5.8E–03 chr5 172305986 ERGIC1 –0.41 OpenSea Body  

 cg22145459 3.2E–08 5.8E–03 chr6 31693656 C6orf25 –0.26 S_Shore 3ʹUTR  

 cg20472746 3.7E–08 5.8E–03 chr13 42039334 C13orf15 –0.19 OpenSea Body  

 cg14223856 4.0E–08 5.8E–03 chr9 139508740 –0.35 OpenSea IGR  

 cg07457727 6.6E–08 8.0E–03 chr8 131451983 –0.29 N_Shelf IGR  

 cg01668352 8.6E–08 8.0E–03 chr12 64482597 SRGAP1 –0.23 OpenSea Body  

 cg24790419 8.8E–08 8.0E–03 chr19 18385930 KIAA1683 –0.24 OpenSea TSS1500  

 cg01233673 1.2E–07 9.5E–03 chr18 33517119 0.19 OpenSea IGR  

 cg25468274 1.3E–07 9.5E–03 chr1 31280338 –0.22 Island IGR  

5hmC

 cg18513023 6.1E–08 2.9E–02 chr6 44009266 0.13 OpenSea IGR *

 cg13297582 1.0E–07 2.9E–02 chr18 13288627 LDLRAD4 0.08 OpenSea 5ʹUTR  

 cg19800026 1.5E–07 2.9E–02 chr5 14492945 TRIO 0.21 OpenSea Body  

 cg22944934 1.6E–07 2.9E–02 chr6 31621765 BAT3 0.17 S_Shore TSS1500  

 cg14341968 9.6E–07 1.4E–01 chr9 136075868 0.04 S_Shore IGR  

 cg26650480 1.2E–06 1.4E–01 chr20 4796176 RASSF2 0.11 OpenSea 5ʹUTR  

 cg09655482 1.3E–06 1.4E–01 chr10 27131072 ABI1 0.11 OpenSea Body  

 cg03964696 1.6E–06 1.5E–01 chr2 74734085 PCGF1 0.21 N_Shore Body  

 cg22502837 2.2E–06 1.8E–01 chr12 56137111 GDF11 0.03 Island 1stExon  
 cg19629631 4.3E–06 3.1E–01 chr7 2060116 MAD1 L1 0.12 Island Body *

DMPs: differentially methylated positions; BS: bisulfate; MS: multiple sclerosis; S: smoker; NS: non-smoker; IGR: intergenic 
region; Probe: Illumina probe ID; Adj. P value: Benjamini–Hochberg corrected P value (FDR); Chr: chromosome; Gene: UCSC 
gene name; Δβ: difference in mean β-values between smokers and non-smokers; Island_Rel: relation to CpG Island; Feature: gene 
feature; Enhancer: identified enhancer in FANTOM5 consortium; *annotated as enhancer.
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One BS-DMP mapping to the AHRR/EXOC3 locus 
(cg25648203, BH-Padj < 0.05) overlapped with smok-
ing-associated DMPs previously reported in whole 
blood from MS patients.14 Interestingly, cg25648203 
displayed increased effect size in BAL cells compared 
to blood (ΔβBAL = −0.251 vs. Δβblood = −0.052; 
Supplementary Table 3). Comprehensive comparison 
of the impact of smoking in blood and BAL revealed 
that overall BAL cells displayed larger magnitude of 
changes compared to blood (Supplementary Figure 3). 
Increased effect size in BAL cells compared to blood 
was visible at all probes shared by BAL and blood 
(n = 382,277) (median BAL vs. blood: 0.12 vs. 0.03 
and −0.13 vs. −0.03, for hypermethylated and hypo-
methylated sites, respectively) and was particularly 
apparent at hypomethylated BS-DMPs in blood 
(n = 41, FDR < 0.05) (median BAL vs. blood: −0.45 
vs. −0.28). Expectedly, significant positive correla-
tion of effect size was observed between significant 
blood DMPs (n = 50, FDR < 0.05) and the corre-
sponding CpGs in BAL. On the contrary, no signifi-
cant correlation was observed between BS-DMPs in 
BAL (BH-Padj < 0.05) and the corresponding CpGs in 
blood (n = 507), suggesting that the primarily exposed 
BAL macrophages display a unique signature that 
might be diluted in blood tissue. Unsurprisingly, these 
BAL BS-DMPs displayed larger effect size in BAL 

compared to blood (P < 2.2E-16) at both hypomethyl-
ated (median BAL vs. blood: −0.99 vs. −0.03,) and 
hypermethylated (median BAL vs. blood: 0.85 vs. 
0.03) sites (Supplementary Figure 3).

Altogether, these findings indicate that overall BAL 
cells from MS patients and HC individuals display 
highly similar methylome. Smoking exerts a promi-
nent impact on the methylome of BAL cells in both 
MS patients and HCs.

Gene-related smoking-associated differences 
between MS patients and healthy individuals
To determine genome-wide differences in DNA meth-
ylation smoking profiles between MS and HC in BAL 
cells, we stratified the significant BS-DMPs accord-
ing to gene-related features and performed enrichment/
depletion analysis. In both MS and HC groups, smok-
ing-associated BS-DMPs were significantly enriched 
in gene bodies (Bonferroni-adjusted chi-square 
Padj = 7.5 × 10−18 and Padj = 1.1 × 10−8, respectively) 
while depleted at TSS200 (200 bp-segment upstream 
the transcription starting site; Padj = 1.0 × 10−10 and 
Padj = 1.3 × 10−13, respectively) and first Exon 
(Padj = 6.0 × 10−05 and Padj = 8.8 × 10−7, respectively), 
compared to the probes distribution of the EPIC array 
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Figure 2. Distribution of smoking-associated hyper- and hypomethylated CpGs in multiple sclerosis (MS) patients 
and healthy controls (HCs) across gene features. Horizontal bar plots representing relative frequencies of hyper- and 
hypomethylated BS-DMPs associated with smoking in MS and HC, shown as percentage (%) across gene features 
(TSS1500, TSS200, 1stExon, 5ʹUTR, Body, 3ʹUTR, ExonBnd, and IGR). Enrichment/depletion analysis was performed 
using chi-square test on frequencies, with P values adjusted for multiple testing (Bonferroni).
*Bonferroni-Padj < 0.05 compared to smoking-associated BS-DMP profile in HC
**Bonferroni-Padj  compared to smoking-associated BS-DMP profile in HC.
Enriched features are represented by a positive symbol (+) and depleted features are represented by a negative symbol (−).
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Figure 3. Functional annotations of genes comprising smoking-associated CpGs in multiple sclerosis (MS) patients  
and healthy controls (HCs). (a) Enriched categories of Diseases and Biological Functions related to BS-DMP genes  
(BH-Padj < 0.05) associated with smoking in MS and HC, depicted in red and blue colors, respectively. Of note, terms  
linked to Cancer were excluded from the visualization. (b) Shared canonical pathways related to BS-DMP  
(BH-Padj  < 0.05) associated with smoking in MS patients (red) and HC individuals (blue). (c) Top canonical pathways 
related to BS-DMP (BH-Padj  < 0.05) genes associated with smoking in MS patient (left panel) or HC (right panel), 
specifically. Radar chart (middle) indicates the overlap between all specific terms and the dotted line representing the 
significance threshold. Significant enrichment for BS-DMP genes (BH-Padj < 0.05) identified in MS patients or in HC 
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correction obtained with ingenuity pathway analysis. Full data are presented in Supplementary Table 4.
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(734,078) (Supplementary Figure 4). However, sig-
nificant depletion of BS-DMPs in TSS1500 was 
observed in MS patients (Padj = 0.0037 and Padj = 0.25 
for MS and HC, respectively). Differences between 
MS and HC were minor, that is, showing fewer DMPs 
in intergenic regions (IGRs) in MS compared to con-
trols (Padj = 0.017, Supplementary Figure 4). To 
address whether this finding was due to varying 
hyper- or hypo-methylation changes across features, 
we further stratified the BS-DMPs into hyper- and 
hypomethylated sites (Figure 2). Analysis of smok-
ing-associated hypermethylated BS-DMPs showed 
no significant difference between the smoking-associ-
ated signatures of MS patients and HC. In contrast, 
hypomethylated BS-DMPs were found enriched in 
gene bodies (Padj = 0.0013) and depleted in IGR and 
TSS1500 (Padj = 0.0096 and Padj = 0.017, respectively) 
in MS patients compared to HC.

Common and distinct smoking signatures in MS 
patients and healthy individuals
To gain insight into the functional relevance of 
changes associated with smoking in MS patients, we 
performed GO analyses of the 827 annotated genes 
associated with smoking (1376 BS-DMPs, 
BH-Padj < 0.05) in MS patients (MS-S vs. MS-NS) as 
well as of the 1036 genes (1821 BS-DMPs, 
BH-Padj < 0.05) altered after smoking in healthy indi-
viduals (HC-S vs. HC-NS). Findings from IPA 
uncovered a strong smoking-associated signature 
shared by smokers in both groups compared to 
respective non-smokers (Supplementary Table 4). 
Enrichment analysis for Biological Functions and 
Diseases showed that, despite limited overlap on the 
DMP level, most categories are represented in both 
MS and HC with the top significant terms (outside 
cancer-related terms) connected to cellular move-
ment, organization of the cytoskeleton, and immune 
trafficking (Figure 3(a)). Subtle smoking-related dif-
ferences between MS and HC groups include more 
pronounced enrichment for terms related to the nerv-
ous system/neurological diseases, cell death/survival, 
and gene expression in MS patients and lipid metabo-
lism and cell cycle in HC (Supplementary Table 4). 
Both groups also shared smoking-associated gene 
enrichment of Canonical Pathways involved in cel-
lular adhesion and migration such as integrin, actin 
cytoskeleton, and paxillin signaling (Figure 3(b)). 
Examination of pathways that are specifically 
enriched in either MS or HC group after smoking 
revealed a striking “neuronal” signature in MS 
patients, with synaptogenesis signaling pathway as 
the most enriched process, contrasting with the top 
canonical immune-related pathways altered 

by smoking in HC (Figure 3(c)). This finding was 
further supported by IPA of non-overlapping DMP 
genes that were found altered by smoking in MS 
patients but not in HC (n = 462 genes, BH-Padj < 0.05, 
Figure 3(c)). “Synaptic” process implicated a net-
work of functionally interconnected genes encoding 
leukocyte adhesion molecules (e.g. NRXN2, CDH2, 
and TLN1), clathrin-associated molecules (AP2S1, 
AP2A1, and ITSN1), glutamate and nicotinic cholin-
ergic receptor subunits (i.e. GRINA, GRIN2D, and 
CHRNA4), as well as downstream signaling mole-
cules such as protein kinases A, RhoGTases (e.g. 
RAC1 and TIAM1), among others (Figure 3(d)). GO 
analysis of 5mC or 5hmC candidate DMPs (unad-
justed P < 0.001) confirmed enrichment of canonical 
pathways related to cellular motility and immune 
processes in relation to smoking in both groups, 
while stronger enrichment of nervous-related terms 
could be observed in MS-S vs. MS-NS (Figure 3(e), 
Supplementary Table 4). These alterations are shared 
by overlapping and non-overlapping BS, 5mC, or 
5hmC DMPs (Supplementary Figure 5).

Altogether, these data suggest that in addition to alter-
ing biological processes that are common to healthy 
individuals, for example, cytoskeleton rearrangement 
and cellular movement, smoking induces minor dis-
tinct changes in MS patients.

Subtle changes between MS patients and healthy 
individuals implicate altered transcriptional 
machinery and enhanced cellular motility
In order to elucidate MS-specific changes, we focused 
on the functional relevance of DNA methylation 
changes in MS patients in comparison to healthy indi-
viduals (MS-NS vs. HC-NS and MS-S vs. HC-S). 
This approach is undeniably exploratory as no signifi-
cant changes could be detected between MS patients 
and HC individuals, disregarding the smoking status, 
after correction for multiple testing (Figure 1). 
Nevertheless, GO analyses conducted on candidate 
BS-DMPs (unadjusted P < 0.001) uncovered com-
mon MS-associated alterations in both smokers and 
non-smokers, which converged to three major pro-
cesses: cytoskeleton dynamics and cellular mobility, 
RNA expression, and neuronal processes (Figure 4(a) 
and (b)). These functions were also significantly 
enriched in genes harboring 5mC and 5hmC changes 
(unadjusted P < 0.001) (Supplementary Table 4). To 
further decipher these findings, we conducted tran-
scriptome analysis (RNA-sequencing) in BAL cell 
samples. Sufficient amount and quality of RNA was 
found in non-smoker MS (n = 7) and HC (n = 8). 
Analysis identified that a total of 487 transcripts were 
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differentially expressed in MS patients compared to 
HC at a unadjusted P value < 0.05 (Figure 4(c), 
Supplementary Table 5). None of these genes 
remained significantly associated after adjustment for 
multiple testing (BH-padj < 0.05), confirming that 
BAL cells from MS patients display only tenuous dif-
ferences compared to healthy individuals in our 
cohort. Nevertheless, GO analyses on putative candi-
date genes (unadjusted P < 0.05) revealed prominent 
changes of the transcriptional and translational 
machinery with reduced activity of eukaryotic trans-
lation initiation factor EIF2 signaling as the top 
Canonical Pathways altered in MS patients compared 
to controls (Figure 4(d)). Analysis of Biological 
Functions and Diseases further corroborated this 
finding with enrichment of mRNA decay and reduced 
protein expression (Figure 4(e)). Alteration of global 
transcription was driven by slight downregulation 
(logFC > −1) of a plethora of ribosomal subunits 
along with EIF2/F4 and Argonaute 1 (AGO1) genes 
(Supplementary Table 4). In addition, GO findings 
implicated an increased activity of cellular processes 
related to cell movement of monocytes, leukocyte 
extravasion, recruitment of antigen presenting cells, 
and disinhibition of matrix metalloproteases (MMPs) 
(Figure 4(e)). Gene network associated to these pro-
cesses involved potent dysregulation (logFC > 1) of 
immune mediators such as chemokines (CCL23, 
CCL20, and ACKR3), osteopontin (SPP1), toll-like 
receptor 4 (TLR4), HLA class II transactivator 
(CIITA), defensin (DEFB1), amyloid β precursor 
(APP), as well as cell adhesion and migration mole-
cules (NINJ1, SERPINE1, UNC5B, THBS2, and sev-
eral MMP genes) (Figure 4(f)).

Overall, methylome and transcriptome analyses sug-
gest that BAL cells from MS patients display very 
subtle (not reaching the significance threshold after 
statistical adjustment) but concordant changes con-
nected to reduced transcriptional/translational 
machinery and enhanced cellular motility.

Discussion
We examined the molecular changes occurring in 
BAL cells from MS patients, distinguishing smokers 
from non-smokers and in comparison with healthy 
individuals. Overall, BAL cells from MS patients 
exhibited very similar changes compared to HC indi-
viduals. Genome-wide methylome analysis revealed a 
potent impact of cigarette smoking on BAL cells from 
MS patients, with a signature that strongly resembles 
the one found in healthy individuals. In addition to 
these shared changes, smoking in MS patients is asso-
ciated with modest epigenetic changes affecting genes 

that are seemingly related to nervous processes. 
Findings from combined methylome and transcrip-
tome data suggest that BAL cells from MS patients 
exhibit tenuous alterations converging to reduced 
transcriptional/translational machinery and increased 
cellular motility.

The most prominent changes were detected in relation 
to smoking. Notably, BS-DMPs are also known 
smoking-associated DMPs in healthy individuals,21 
for example, several sites annotated to the aryl hydro-
carbon receptor repressor (AHRR) gene. AHRR 
expression induced by carcinogenic polycyclic aro-
matic hydrocarbons, which are increased in the lung 
tissue of smokers,22 associates with AHRR DNA 
methylation in blood,14,23 lung tissue,24 and BAL 
cells.16 Some of the identified BS-DMPs in MS BAL 
cells were also found significantly associated with 
smoking in blood from MS patients.14 Interestingly, 
smoking exerted a stronger impact in BAL cells com-
pared to blood at most overlapping DMPs, for exam-
ple, at AHRR/EXOC3 locus. This is consistent with a 
study examining AHRR locus in BAL macrophage 
and peripheral leukocytes from healthy individuals23 
and suggests that the greater amplitude of changes 
observed in the primarily affected lung tissue reflects 
its proximity to smoke exposure. Smoking-associated 
effects on DNA methylation at AHRR in MS patients 
could be of high relevance, since the presence of MS 
disease can modify the smoking-associated effects on 
DNA methylation at this gene.14

Interestingly, functional annotation of the smoking-
associated DMPs found in MS revealed a significant 
enrichment of pathways connected to neuronal pro-
cesses such as axonal guidance and synaptic plastic-
ity, a seemingly peculiar pattern in BAL immune 
cells. These pathways indeed overlap with the molec-
ular alterations identified in neurons from MS 
patients, post-mortem.25 Of note, most of them have 
been shown to participate in immune processes out-
side of the nervous system. For instance, glutamate 
N-methyl-D-aspartate (NMDA) receptor (GRINA, 
GRIN2D), which are constitutively expressed by 
immune cells, can mediate lung injury caused by oxi-
dative stress,26,27 and are required for myeloid cells to 
shape T cell response in the context of MS-like dis-
ease EAE.28 Nicotinic AChR subunit encoded by 
CHRNA4 exhibits a strong non-neuronal expression 
pattern correlating with genes involved in the nico-
tine metabolism,29 and genetic variation in CHRNA4 
has been associated with smoking-related dis-
eases.30,31 Consistent with this, GO analysis of 5mC 
or 5hmC changes replicated findings from BS-DMPs, 
with enrichment of functions pertaining to cellular 
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movement, intracellular trafficking and immune pro-
cesses as well as neuronal processes. This can be 
exemplified with 5hmC-DMPs (Padj < 0.05) mapping 
to BAG6 (BAT3) and LDLRAD4 promoters. BAG6 
encodes a pro-apoptotic gene and LDLRAD4 encodes 
a transforming growth factor (TGF)-β signaling 
inhibitor dysregulated upon exposure to a constituent 
of cigarette smoke.32 Interestingly, the positive cor-
relation between BS-Δβ and 5mC-Δβ or 5hmC-Δβ 
(Supplementary Figure 5) suggests that BS-based 
differences primarily reflect strong changes in either 
5mC or 5hmC or small differences in both modifica-
tions. On the contrary, the anti-correlated 5mC and 
5hmC changes at CpGs (P < 0.001) that were not 
identified as BS-DMPs implies that a minor fraction 
of smoking-associated changes, likely arising from 
inflammation-induced oxidation, might escape detec-
tion using BS-based methodology, as previously 
reported.16 While the mechanisms underlying this 
incongruous pattern in BAL cells and its functional 
consequences remain to be explored, it is noteworthy 
that a similar signature was found in blood immune 
cells from progressive MS patients and not in patients 
in the early relapsing-remitting phase of disease.33 
Knowing that smoking not only increases the risk to 
develop MS but also affects its progression and 
severity, one can speculate that the differences 
observed in BAL cells from MS smokers compared 
to non-smokers might contribute to unfavorable evo-
lution of disease. In line with this hypothesis, smok-
ing-associated DNA methylation changes hold a 
strong predictive value for poorer cognitive perfor-
mance, brain structural integrity and psychophysical 
health.34

We further sought to characterize the intrinsic pro-
file of BAL cells from MS patients compared to 
HCs. Both methylome and transcriptome profiling 
in non-smokers resulted in limited changes between 
MS and HC individuals, insofar as no DMPs or tran-
scripts passed significance after adjustment for mul-
tiple testing. This could be driven by minor 
biological differences between MS and HC non-
smokers or due to the lack of power to detect such 
changes in a relatively small and heterogeneous 
cohort. Nevertheless, GO analyses of the affected 
genes at a nominal significance threshold unraveled 
coherent changes reflecting hampered transcrip-
tional and translational processes and enhanced 
migratory ability in BAL cells of MS patients, the 
latter being driven by upregulation of several pro-
inflammatory genes, MS-associated genes (e.g. 
osteopontin), and adhesion/migration molecules 
such as MMPs and Ninjurin 1. Despite the undeni-
able lack of power in our study and the necessary 

caution in drawing conclusions from alterations 
observed primarily at the GO level, the results 
obtained in human BAL cells in the context of MS 
corroborate the molecular signature found in animal 
studies of EAE.6 In EAE animals, lung-mobilized 
immune cells attain enhanced mobility through 
intense gene reprogramming in the lungs, marked 
by downregulation of their activation program and 
upregulation of cellular locomotion transcripts, 
with a pivotal role of Ninjurin 1. By shedding light 
on potentially similar mechanisms in lung immune 
cells from MS patients, our study provides transla-
tional insight into putative pulmonary mechanisms 
favoring immune cell encephalitogenicity in MS.

Thus, our findings indicate that while BAL cells from 
MS patients display comparable molecular changes 
compared to healthy individuals, slight changes 
could be detected between the groups in the absence 
or presence of smoke exposure. The findings support 
the hypothesis of a relationship between the lungs 
and the CNS in the context of autoimmunity and 
might contribute to a better understanding of MS 
pathology. This is particularly important in light of 
the potential of lifestyle interventions in the preven-
tion and mitigation of smoking in general and in MS 
more specifically.
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