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Chemokines play an important role in normal bone physiology and the pathophysiology 
of many bone diseases. The recent increased focus on the individual roles of this class 
of proteins in the context of bone has shown that members of the two major chemokine 
subfamilies—CC and CXC—support or promote the formation of new bone and the 
remodeling of existing bone in response to a myriad of stimuli. These chemotactic
molecules are crucial in orchestrating appropriate cellular homing, osteoblastogenesis, 
and osteoclastogenesis during normal bone repair. Bone healing is a complex cascade 
of carefully regulated processes, including inflammation, progenitor cell recruitment,
differentiation, and remodeling. The extensive role of chemokines in these processes 
and the known links between environmental contaminants and chemokine expression/
activity leaves ample opportunity for disruption of bone healing by environmental
factors. However, despite increased clinical awareness, the potential impact of many 
of these environmental factors on bone-related chemokines is still ill defined. A great 
deal of focus has been placed on environmental exposure to various endocrine
disruptors (bisphenol A, phthalate esters, etc.), volatile organic compounds, dioxins, 
and heavy metals, though mainly in other tissues. Awareness of the impact of other less 
well-studied bone toxicants, such as fluoride, mold and fungal toxins, asbestos, and 
chlorine, is also reviewed. In many cases, the literature on these toxins in osteogenic 
models is lacking. However, research focused on their effects in other tissues and
cell lines provides clues for where future resources could be best utilized. This review 
aims to serve as a current and exhaustive resource detailing the known links between 
several classes of high-interest environmental pollutants and their interaction with the 
chemokines relevant to bone healing.
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introdUCtion

Chemokines play an important role in normal bone physiology and the pathophysiology of many 
bone diseases. The recent increased focus on the individual roles of this class of proteins in the 
context of bone has shown that members of the two major chemokine subfamilies—CC and CXC—
promote the formation of new bone and the remodeling of existing bone in response to a myriad 
of stimuli. These chemotactic molecules are crucial in orchestrating appropriate cellular homing, 
osteoblastogenesis, and osteoclastogenesis during normal bone repair. A recent review by Gilchrist 
and Stern provided a comprehensive assessment of the role key chemokines and receptors play in 
the regulation of bone healing (1). Several of these chemokines have received growing attention 
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taBle 1 | endocrine disruptors: chemokine changes.

substance Chemokine(s) involved effect(s) Cell/tissue type reference

BPA CXCL2
CXCL4
CXCL12
CXCL14
CCL20

↓ Mouse mammary gland Fischer et al. (5)

CXCL12 ↑ Human BG-1 Hall and Korach (6)

Human MCF-7 and T47D Habauzit et al. (7)

Human ECC-1 and T47D Gertz et al. (8)

BPAF CXCL12 ↑ Human T47D Li et al. (9)

DEHP CXCL1
CXCL2
CXCL3
CXCL6
CCL3

↑ Human THP-1 Nishioka et al. (10)

CCL2 ↓ Mouse hypothalamus tissue Win-Shwe et al. (11)

DINP CCL2 ↓ Mouse hypothalamus tissue Win-Shwe et al. (11)

PFAS CCL2 No changes observed Human serum Stein et al. (12)
CCL3

Known effects of endocrine disruptors on chemokines (BPA, bisphenol A; BPAF, bisphenol AF; DEHP, di-(2-ethylhexyl)-phthalate; DINP, di-isononyl-phthalate; PFAS, perfluoroalkyl 
substance).
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in recent literature and their mechanisms of action have been 
further defined.

Organizations and initiatives such as Physicians for Social 
Responsibility and the Collaborative on Health and the Environment 
recognize that environmental contaminants such as endocrine-
disrupting chemicals (EDCs) are of serious concern with regard 
to bone health1 (2). A great deal of focus has been placed on envi-
ronmental exposure to various endocrine disruptors (bisphenol 
A, phthalate esters, etc.), volatile organic compounds (VOCs), 
dioxins, and heavy metals. Awareness of the impact of other less 
well-studied bone toxicants, such as fluoride, mold and fungal 
toxins, asbestos, and chlorine, is also growing.

Bone healing is a complex cascade of carefully regulated 
processes, including inflammation, progenitor cell recruitment, 
differentiation, and remodeling. The extensive role of chemokines 
in these processes and the known links between environmental 
contaminants and chemokine expression and activity leaves 
ample opportunity for disruption of bone healing by environ-
mental factors. However, despite increased clinical awareness, 
the potential impact of many of these environmental factors on 
bone-related chemokines is still ill defined. This review aims to 
serve as a current and exhaustive resource detailing the known 
links between several classes of high-interest environmental 
pollutants and their interaction with the chemokines relevant to 
bone healing. Areas where the literature is lacking and further 
research is prudent are also highlighted.

1 Haas A. Make No Bones About It: Environmental Contaminants Impact Bone 
Formation and the Immune System. Available from: http://www.psr.org/chapters/
boston/health-and-environment/make-no-bones-about-it.html.

endoCrine disrUptors

Endocrine-disrupting chemicals are of specific concern due to 
their exogenous influence over the endocrine system. These 
compounds exert their effects independent of biofeedback loops, 
leading to potentially harmful consequences. EDCs can be either 
natural or synthetic in origin. Natural EDCs consisting of organi-
cally produced compounds are out of the scope of this review and 
will not be discussed. Synthetic EDCs are commonly designed 
with another purpose in mind (e.g., pesticides or plasticizers), 
only to have their endocrine effects subsequently discovered. 
These effects have been observed as developmental anomalies in 
both invertebrate and aquatic species (3, 4). A summary of endo-
crine disruptors and their effects on bone-related chemokines is 
shown in Table 1.

Bisphenol a
Bisphenol A (BPA) is a chemical compound that has been used in 
commercial plastics and epoxy resins since the 1950s. The wide-
spread use of BPA in manufacturing has led to its ubiquitous pres-
ence in industrialized environments (13). The primary method of 
exposure in humans is through the diet, mainly through drinking 
water in industrialized regions, as well as from food and drink 
storage or use containers (14). Specifically, BPA can leach into 
foods from the plastics or resins used during the manufacturing 
of such containers (e.g., water bottles, food cans, etc.). Up to 90% 
of the US population has detectable blood levels of BPA, which 
has been a growing public health concern (15). Thus far, chronic 
exposure has been linked to cancer, metabolic disorders, and a 
range of reproductive and cardiovascular diseases (16, 17).
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Bisphenol A functions as an endocrine disruptor through 
binding to ERα and ERβ with roughly 1/1,000th the affinity of 
estradiol (18, 19). Because estradiol can attenuate osteoclastogen-
esis and induce osteoblast differentiation (20, 21), Hwang et al. 
recently examined the effects of BPA on osteoclast formation and 
osteoblast differentiation in vitro (22). The authors found that BPA 
directly inhibited both osteoclastogenesis and osteoblastogenesis, 
and increased apoptosis in both types of progenitors. BPA sup-
pressed RANK expression in differentiating osteoclasts and 
RunX2 and Osterix expression in preosteoblasts. Wnt/β-catenin 
signaling and bone nodule formation was also reduced. These 
authors demonstrate that BPA promotes apoptosis of osteoclasts 
and osteoblasts through MAPK cascades and death receptor 
pathways in a dose-dependent manner (22).

Despite the effects of BPA on osteoblasts and osteoclasts, 
our search criteria yielded no studies examining BPA-induced 
chemokine expression changes in osteogenic models. However, 
given its endocrine-disrupting status, several studies have 
examined its impact on chemokines in reproductive tissues 
such as mouse mammary, breast cancer, and ovarian cancer 
cells (5–8). Significant decreases in CXCL2, CXCL4, CXCL14, 
and CCL20 have been observed in these various tissues with 
results that suggest BPA may act through pathways independent 
of estrogen. Additionally, the related compound, Bisphenol AF 
(BPAF), has demonstrated upregulation of CXCL12 in T47D 
ERα-positive cancer cell lines (23). Considering the critical role 
of the CXCL12/CXCR4 axis on bone regeneration, the known 
effects of BPA and BPAF on tissues other than bone make clear 
the importance of evaluating their effects in the context of bone 
healing.

phthalate esters
Phthalate esters comprise another group of EDCs that are used 
to increase the flexibility of polymers, such as polyvinyl chloride 
(PVC)-based products (e.g., toys, food wraps, medical devices, 
and flooring). Similar to BPA, humans are exposed to phthalates 
through ingestion, inhalation, and physical contact on a daily 
basis (24, 25). Two particular phthalates, di-(2-ethylhexyl) 
phthalate (DEHP) and di-isononyl phthalate (DINP), have been 
examined in the context of the chemokine expression and bone 
formation (10, 11).

DEHP is cytotoxic to neonatal rat calvarial osteoblasts at 
high doses (1,000  µM), while inducing proliferation at low 
doses (10 µM) (26). In that system, osteogenic differentiation 
was inhibited at high doses of DEHP, with reduced RunX2 and 
ALP expression and decreased collagen and mineralization 
staining (26).

Inflammation is an important early step in the bone heal-
ing cascade. Chemokines play a critical role in recruitment of 
macrophages and progenitor cells to the site of injury, where 
they remove necrotic tissue and initiate the regenerative process. 
However, this process is tightly regulated, and chronic inflamma-
tory diseases are associated with systemic bone loss (27). Even 
subclinical inflammation has been shown to increase fracture 
risk and alter bone remodeling (28). Nishioka et al. examined the 
effects of DEHP on the production of inflammatory cytokines 
in activated macrophage-like THP-1 cells. A 3-h exposure to 

200  µM DEHP significantly induced CXCL1, CXCL2, CXCL3, 
CXCL6, and CCL3 transcripts (10). PTH induces CXCL1 expres-
sion in osteoblasts, which then attracts osteoclasts via CXCR2 
(29). Interestingly, CXCL1 acts as a chemoattractant for osteo-
clast precursors without promoting osteoclastic differentiation, 
acting as a “primer” for additional factors (29). That said, it is 
reasonable to speculate that increased CXCL1 expression by 
macrophages recruited during bone repair could also prove 
chemotactic for osteoclasts. Further research should examine 
whether DEHP influences CXCL1 secretion in osteoblasts in a 
similar manner.

Human osteoblasts express CCL2, which is an important 
chemoattractant for monocytes and macrophages (30). 
Additionally, CCL2 is critical for osteoclastogenesis, and its 
absence results in inhibition of osteoclast formation (31). 
In  studies examining the hypothalami of DEHP- and DINP-
treated male mice, Win-Shwe et  al. observed decreases in 
CCL2 and TNF-α expression in the DINP-exposed groups (11). 
Considering the important role that CCL2 plays on osteoclas-
togenesis, further investigation to the effects of DINP in bone 
models should be explored.

perfluoroalkyl substances (pFass)
Perfluoroalkyl substances have been widely used as protective 
coatings in water- and stain-resistant clothing, furnishings, and 
non-stick home goods for over 60  years (32). These chemicals 
have been classified as EDCs based on their hormonal and 
metabolic actions (33, 34). PFASs are ubiquitous in the environ-
ment, and detectable amounts are found in humans worldwide 
(35). Examination of the U.S. National Health and Nutritional 
Examination Survey (NHANES) from 1999 to 2008 showed that 
four PFASs were found in 95% of the U.S. population: perfluo-
rooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), 
perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic 
acid (PFNA) (36, 37). No research has been conducted to examine 
the effects of PFASs on chemokine production. However, there 
is evidence justifying further investigation into the mechanisms 
of PFAS action in osteogenic models. In a representative sample 
of the U.S. population collected from the NHANES 2009–2010, 
serum PFAS levels were inversely correlated with bone mineral 
density (BMD) of the femur and lumbar spine (32). Most of the 
associations were limited to women, despite men having higher 
serum PFAS levels. In general, postmenopausal women had 
stronger associations with lower BMD than their premenopausal 
counterparts. Osteoporosis was associated with exposure to 
PFOA, PFNA, and PFHxS in women (32).

organotins
Organotins are environmental contaminants considered to be 
obesogens because they activate peroxisome proliferator-acti-
vated receptor γ (PPARγ), the primary regulator of adipogenesis 
(38, 39). These compounds are broadly used as pesticides, cata-
lytic agents, plastic stabilizers, and antifouling agents (40). The 
actions of organotins on skeletal development have been exam-
ined in animal models (41, 42). Tsukamoto et al. demonstrated 
that mouse fetuses exposed to tributyltin chloride (TBT) showed 
reduced calcification of the supraoccipital bone (41). In vitro, TBT 
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taBle 2 | Volatile organic compounds (VoCs): chemokine changes.

substance Chemokine(s) involved effect(s) Cell/tissue type reference

Benzene CXCL12 ↑ 1 h after exposure to 1,4-benzoquinone Human mesenchymal stem cell Zolghadr et al. (53)

↓ 24 h after exposure to hydroquinone

CXCL8
CCL3
CCL5
CCL11
CCL2

↑ Human PBMC and plasma Gillis et al. (54)

Chlorobenzene CCL2 ↑ Indoor-relevant concentrations Human PBMC and A549 Lehmann et al. (55)

Human A549 Fischader et al. (56)

↓ High concentrations Human A549 Fischader et al. (56)

m-Xylene and styrene CCL2 ↑ Indoor-relevant concentrations Human A549 Fischader et al. (56)

↓ High concentrations

Other aliphatic compounds CXCL8
CCL2

No change Human A549 Fischader et al. (56)

Known effects of VOCs on chemokines. Other aliphatic compounds refer to: n-non-ane, n-decane, n-undecan, n-dodecane, n-tridecane, and methylcyclopentane.

4

Smith et al. Environmental Factors Influencing Bone Chemokines

Frontiers in Endocrinology | www.frontiersin.org February 2017 | Volume 8 | Article 22

dose-dependently inhibited differentiation of primary rat calva-
rial osteoblasts, with reduced ALP activity, mineral deposition 
rate, and osteocalcin expression levels.

Despite these data, few studies have been published examining 
the effects of organotins on chemokine expression. Schutte et al. 
examined chemokine expression after implanting an organotin-
stabilized PVC cage implant in Sprague-Dawley rats (43). They 
demonstrated a long-term (56  days postimplantation) 10-fold 
increase of CCL3, a pro-inflammatory chemokine responsible 
for increasing osteoclast motility (44). CCL2 demonstrated a 
significant increase on postoperative day 1, but then returned to 
normal levels. Given the endocrine activity associated with these 
compounds and their known effects on skeletal development, the 
mechanisms by which this class of compounds affects osteogen-
esis should be clarified.

Volatile orGaniC CoMpoUnds

In much of the industrialized world, individuals spend most of 
their time indoors. Indoor organic contaminants are classified 
by their volatility, dubbing them VOCs. These compounds are 
released from paints, adhesives, construction materials, cleaners, 
tobacco smoke, and carpets (45, 46). Because of the numerous 
sources found indoors, many of these compounds are present at 
concentrations significantly higher than outside (47). Elevated 
concentrations of VOCs are associated with asthma and respira-
tory diseases in children and adults (48–52). Table 2 summarizes 
the effects of the VOCs described below on chemokines involved 
in bone repair.

Benzene
Benzene is a colorless, flammable organic liquid that can volatize 
to vapors at room temperatures. Used as an industrial chemical 
in the manufacturing of other compounds, it is also a compo-
nent of crude oil, gasoline, and cigarette smoke (57, 58). Benzene 

was among the first compounds identified as a Group I known 
human carcinogen by the International Agency for Research on 
Cancer (59). The role of benzene in the development of acute 
myeloid leukemia and other myelodysplastic syndromes is 
well established (60–63). Human exposure to benzene occurs 
through inhalation and dermal absorption as well as ingestion 
of contaminated food and water (64). It is widely agreed that 
the toxicity of benzene results from its metabolism to reactive 
intermediates. In the liver, benzene is metabolized by CYP2E1 
to phenol, which undergoes hydroxylation to hydroquinone, 
catechol, and 1,2,4-benzenetriol (65). Catechol and hydro-
quinone persist in bone marrow, where they are oxidized to 
1,2-benzoquinone and 1,4-benzoquinone by myeloperoxidase 
(54, 66). The mechanism(s) by which these metabolites influence 
carcinogenesis have not been fully clarified (67).

While the effects of benzene and its metabolites on the 
immune and hematopoietic systems are well established, the 
influence of these compounds on bone development and skeletal 
remodeling is less fully understood. Zolghadr et  al. examined 
the effects of benzene, hydroquinone, and 1,4-benzoquinone 
on human-derived mesenchymal stem cells (MSCs) (53). They 
examined cell viability, apoptosis, and expression of genes 
relevant to hematopoiesis and skeletal remodeling. At the low-
est concentrations tested, all three compounds increased cell 
division rate after only 24 h, and the effects were attributed to 
cell cycle control defects (68). Interestingly, RunX2 expression 
was significantly upregulated (up to eightfold) by all three 
chemicals, as was Wnt5a, which is a non-canonical Wnt ligand. 
Simultaneously, Dkk1 expression was induced, which inhibits 
canonical Wnt signaling by interacting with the Wnt co-recep-
tors, LRP-5/6. The authors hypothesized that the increase in Dkk 
expression was a response to induction of RunX2 and canonical 
Wnt signaling.

CXCL12, along with its receptor, CXCR4, plays a critical role 
in mesenchymal and hematopoietic stem cell recruitment, as well 
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as BMP-mediated osteoblastic differentiation (69, 70). A major 
regulator of BMSC growth, CXCL12 expression is thought to 
decrease acutely after osteoblastic lineage commitment (71, 72), 
suggesting that its role is critical in the early stages of osteogen-
esis (69). In human MSC, CXCL12 expression was upregulated 
after short-term (1  h) exposure to 1,4-benzoquinone, but was 
downregulated after 24  h exposure to hydroquinone. The dys-
regulation of the Wnt and CXCL12 signaling pathways could have 
pronounced implications on bone regeneration. Further research 
needs to be conducted to define the upstream mechanisms regu-
lating the effects of benzene metabolites on the CXCL12/CXCR4 
axis.

Chlorobenzene
Chlorobenzene is one of the most widely used chlorinated ben-
zenes (55). It functions as a solvent for many substances, such as 
paints, adhesives, waxes, and polishes, and it is also commonly 
used in the dry-cleaning industry (73). Chlorobenzene inhalation 
can lead to irritation of the eyes and respiratory tract, drowsiness, 
loss of coordination, CNS depression, and loss of consciousness 
(73, 74). Additionally, epidemiological studies suggest that expo-
sure to chlorobenzene is associated with allergic sensitizations 
and Th2-primed T cell immunity (75).

Chlorobenzene has been shown to induce CCL2, a chemokine 
critical for osteoclast formation, production at indoor-relevant 
concentrations in TNF-α-primed alveolar A549 cells (55, 56). 
Additional research has shown that the mechanism through 
which chlorobenzene induces CCL2 is through the NF-kB and 
MAPK pathways (76). Despite the CCL2 connection, however, 
no studies have attempted to correlate exposure with impaired 
osteoclastic differentiation, osteogenesis, or bone healing.

Xylene, styrene, and aliphatic VoCs
Similar to chlorobenzene, m-Xylene and styrene have been 
shown to induce CCL2 production, albeit in A549 cells. Still, 
dose-dependent alterations in osteoclast precursor recruitment 
and differentiation are worth investigating, which could lead to 
impaired bone remodeling and healing.

Fischader et  al. additionally examined the effects of several 
aliphatic compounds (n-non-ane, n-decane, n-undecan, 
n-dodecane, n-tridecane, and methylcyclopentane) on A549 cells 
(56). Neither the single aliphatic compounds nor a mixture of the 
group demonstrated any effect on cytokine/chemokine release.

dioXins and dioXin-liKe CoMpoUnds

Dioxins and dioxin-like compounds (Benzo[a]pyrene, poly-
chlorinated dibenzofurans, non-ortho-substituted, and mono-
ortho-substituted pentachlorobiphenyls) compose a group of 
highly toxic environmental pollutants. Dioxins are formed as 
unintentional by-products of industrial manufacturing, when 
chlorine-based compounds are burned in the presence of hydro-
carbons. Other important sources are waste-burning incinera-
tors and backyard burning. 2,3,7,8-Tetrachlorodibenzo-p-dioxin 
(TCDD) was the major toxic contaminant in Agent Orange, the 
defoliant used extensively during the Vietnam War. Since dioxins 
and dioxin-like compounds are lipophilic, they bioaccumulate 

through the food chain. As such, the major source of dioxin 
exposure is the diet, the bulk coming from meat and dairy 
products, as well as fish. The half-life of TCDD is estimated as 
7–10 years in humans.

TCDD causes a multitude of adverse health effects, including 
immune suppression, cancer (e.g., non-Hodgkin’s lymphoma, 
chronic lymphocytic leukemia, and multiple myeloma), repro-
ductive and developmental toxicity, cognitive function, and skin 
disorders (77–79). It has been shown to inhibit cell migration 
and osteogenic differentiation in  vitro (80), alter normal bone 
phenotype (80–87), and inhibit bone healing in vivo (85, 88, 89). 
TCDD primarily exerts its deleterious effects through the aryl 
hydrocarbon receptor (AhR) pathway (83). Upon activation, this 
receptor acts as a transcription factor to modulate the expres-
sion of a large battery of genes, such as the Cytochrome P450 1 
(CYP1) family, members of which are responsible for the Phase I 
biotransformation of hydrophobic xenobiotics. The Ahr can work 
through genomic (via binding to dioxin response elements in 
promoter/enhancer regions of dioxin-responsive genes) or non-
genomic means. A great deal of evidence suggests Ahr cross-talk 
with NFKB signaling (90, 91), estrogen receptor signaling, and 
hypoxia-inducible factors (92–95).

With regard to immunomodulation, emerging data link AhR 
expression/activation with chronic diseases such as degenerative 
arthritis. Ahr activation promotes secretion of inflammatory 
cytokines, leading to local bone loss, inhibition of osteoblast 
proliferation and differentiation, and causes osteoporosis in 
mice (81, 88). Studies also suggest that the AhR acts as a nega-
tive regulator of stem cell proliferation (96), which may play a 
role on monocyte recruitment during bone remodeling. AhR 
has been shown to induce Th17 cell differentiation through a 
miRNA-mediated process (97–100). Th17 cells play a major role 
in the pathology of rheumatoid arthritis (RA), and the Ahr has 
been implicated in RA development through this mechanism. 
The downstream effects of Ahr-induced immunomodulation 
are excessive osteoclastic differentiation and inflammation (93, 
101–103). AhR activation has also been tied to a diminished 
capacity for bone regeneration and healing (89, 104). The notion 
of excessive osteoclast proliferation by AhR ligands is supported 
by the impaired osteoclastogenesis and increased bone mass that 
is seen in AhR knockout mice (83).

tCdd (2,3,7,8-tetrachlorodibenzo-p-dioxin)
The most toxic and well-studied dioxin and AhR ligand is 
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD was first 
shown to downregulate CXCL12 and CXCR4 expression in breast 
and ovarian cancer cells (23). A study conducted by Casado 
et al. demonstrated diminished CXCL12 migration of LSK cells 
exposed to TCDD with increased cell surface expression of 
CXCR4 (80). However, levels of CXCR4 mRNA were not induced, 
suggesting that AhR activation resulted in either upregulation of 
posttranslation modification or downregulation of degradation 
of the receptor.

Uncleaved osteopontin (OPN) is associated with cell adhe-
sion, facilitating osteoclast attachment to bone matrix (105). On 
the other hand, cleaved OPN is chemotactic for neutrophils and 
leukocytes. OPN knockout bone marrow cells showed reduced 
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taBle 3 | dioxin and dioxin-like compounds: chemokine changes.

substance Chemokine(s) involved effect(s) Cell/tissue type reference

TCDD CXCR4 ↓ Migration

CXCL12 ↑ Mouse HSC Casado et al. (80)

CCL2 ↓

↑ Mouse thymus, liver, kidney, adipose, and cardiac tissue Vogel et al. (107)

CXCL1

CXCL8

CXCL12

CXCL13

CCL1

↑

Mouse peritoneal B1 cells Ishikawa (110)

Human MCF-7 Monteiro et al. (108)

Human synovial tissue Kobayashi et al. (109)

Mouse thymus, liver, kidney, adipose, and cardiac tissue Vogel et al. (107)

Human MCF-7

Human synovial tissue

CCL5 ↓ Mouse CD4+ T-cells Marshall et al. (111)

PCB-126 CXCL8
CXCL13
CCL1
CCL2

↑ Porcine endothelial cells Majkova et al. (115)

Human NHEK Tsuji et al. (116)

PCB-77 Primary human macrophages N’Diaye et al. (117)

BaP Human HaCaT and NHEK, mouse keratinocytes Morino-Koga et al. (118)

BaP CCL5 ↓ Human HaCaT and NHEK, mouse keratinocytes Morino-Koga et al. (118)

CXCL10
CXCL9

No change

Known effects of dioxin and dioxin-like compounds on chemokines (HSC, hematopoietic stem cells, TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; PCB-126, 
3,3′,4,4′,5-pentachlorobiphenyl; PCB-77, 3,3′,4,4′-tetrachlorobiphenyl; BaP, benzo[a]pyrene).
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migratory capacity in  vivo (80), and antibody blockade of the 
binding domain reduced cell migration as well as PTH-induced 
osteoclast bone resorption (106). TCDD exposure reproduced 
the effects of antibody blockade, with a similar inhibition of 
OPN-induced cell migration (80). Our group has shown that 
TCDD inhibits BMP-2-mediated bone regeneration and spine 
fusion in the rat, with only a partial recovery of fusion capacity 
after cessation of exposure for a period of four half-lives (T1/2 for 
TCDD is 19 days in the rat) (89).

Vogel et al. demonstrated upregulation of CCL2 in the liver, 
thymus, kidney, adipose tissue, and heart of C57/BL6 mice 
injected with TCDD (107). Other in vitro studies in cell lines of 
various sources also suggest a direct correlation between CCL2 
and TCDD exposure. Upregulation of CCL1, CXCL1, CXCL13, 
and CXCL8 (IL-8) has been observed as well (91, 108–110), while 
CCL5 was downregulated in mouse CD4+ T-cells ex vivo (111). 
The induction of IL-8 has been proposed to be as a result of NF-kB 
cross-talk through RelB activation (90, 91, 112). The upregula-
tion of IL-8 and CCL2 by TCDD corresponds with findings of 
decreased expression in AhR-KO mice spleen (96). Notably, there 
was a 15-fold increase in CCR2 (the receptor for CCL2) expres-
sion in AhR-KO mice. These mice also demonstrated a >2-fold 
increase in CXCR5 and CCL20 (96). This supports the notion that 
the hyperactivated AhR may act as a negative regulator of BMSC 
proliferation and trafficking.

dioxin-like Compounds
Dioxin-like compounds include other polycyclic aromatic 
hydrocarbons, such as Benzo[a]pyrene (BaP), polychlorinated 
dibenzofurans, and non-ortho-substituted or mono-ortho-
substituted pentachlorobiphenyls (PCBs). Scant evidence can 
be found on the effects of these dioxin-like compounds on 
bone healing or any associated chemokine alterations. PCB-118 
(2,3′,4,4′,5-pentachlorobiphenyl) exposure correlates with lower 
BMD (84) and induction of osteoclastic activity in vivo (113). No 
studies have found any associations with chemokine expression 
changes and PCB-118. Three additional environmental dioxin-
like toxicants, PCB-126 (3,3′,4,4′,5-pentachlorobiphenyl), 
PCB-77 (3,3′,4,4′-tetrachlorobiphenyl), and BaP, have been 
shown to upregulate expression of CCL2 and CXCL13 in both 
in  vitro and in  vivo models, the latter of which contributes to 
osteoblast development (114–119). BaP has also been shown 
to reduce CCL5/RANTES mRNA expression during osteoclast 
formation in human keratinocytes (118). Considering that CCL5 
promotes osteoclast development and chemotaxis (44), further 
work is needed to identify any direct effects of BaP on CCL5 
expression in developing osteoclasts. Table 3 reviews the changes 
in bone repair chemokines by TCDD and the other dioxin-like 
compounds found in current literature.

We previously found that TCDD exposure inhibits spine 
fusion in rats (89). Subsequent work has shown that similar to 
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breast and ovarian cancer cells, TCDD downregulates CXCL12 
and CXCR4 expression in differentiating primary rat BMSC (our 
own unpublished data and Figures 1A,B). Concordant with this, 
BMSC chemotaxis toward CXCL12 was also reduced after TCDD 
treatment (unpublished data and Figure 1C). Since no such stud-
ies have investigated the effects of dioxin-like compounds on the 
CXCR4/CXCL12 axis, we performed similar work to examine the 
effects of these compounds on CXCL12 and CXCR4 expression 
in primary rat BMSC grown in both standard and osteogenic 
conditions.

A select group of dioxins and dioxin-like compounds were 
chosen based on representative classification (dioxin, furan, or 
PCB) as well as the compound’s toxic equivalence within its class 
according to the World Health Organization (120). Northwestern 
University Institutional Animal Care and Use Committee 
(IACUC) approval was obtained prior to animal procedures and 
bone marrow stromal cell harvest. All experimental procedures 
were conducted in accordance with the recommendations of the 
IACUC. Rat BMSC were treated under standard or osteogenic 
conditions with various concentrations determined to activate 
the Ahr without inducing cell death (Table S1 in Supplementary 
Material). Total RNA was isolated using TRIzol (Invitrogen) and 
mRNA expression of CXCL12 and CXCR4 were analyzed using 
qPCR (Figures 1A,B). For chemotaxis assays, cells were counted 
by three blinded, independent reviewers (Figure  1C). Groups 
were compared using ANOVA and unpaired t-tests post hoc, with 
significance of p < 0.05.

CXCR4 expression was significantly decreased in primary rat 
BMSC grown under both standard and osteogenic conditions for 
all but three of the treatment groups (PCB-118, -126, and -156). 
PCB-126 showed a significant decrease of CXCR4 expression only 
under standard conditions. PCB-118 and -156 showed no changes 
in expression in either conditions. CXCL12 was significantly 
reduced for all treatment groups in both conditions. Additionally, 
we evaluated the capacity of BMSC to migrate toward a CXCL12 

gradient after treatment with these compounds. Chemotaxis was 
significantly reduced in cells pretreated with all but PCB-118, 
which was likely a result of a lack of CXCR4 downregulation by 
PCB-118. Interestingly however, PCB-156 had no significant 
impact on CXCR4 expression, yet CXCL12-induced chemotaxis 
was significantly decreased.

There is a growing appreciation for the deleterious effects 
of dioxin-like compounds on bone. As the physiologic role of 
the AhR pathway becomes better understood, so too will AhR-
mediated changes in chemotactic signaling. Further research is 
prudent to better understand the mechanisms of dioxin-induced 
inhibition of bone healing.

Metals

Another major source of chemokine-altering factors is circulat-
ing metal ions. Metal ions such as Mg, Fe, Cu, Zn, Mn, and Co 
are crucial for normal cellular functions but are toxic at elevated 
levels (121). These and other more exotic metals are being more 
keenly studied under the context of the progressive wear of metal 
prosthetic implants as well as other sources of environmental 
exposure.

environmental Metals
Environmental metal pollution has long been a topic of interest 
to toxicologists, given the growth of industry and technology, 
which has led to supraphysiologic metal exposure in humans. Of 
particular interest are metals that are commonly encountered in 
developed or developing nations through food, drinking water, 
air, and soil. Lead, cadmium, strontium, and lithium have all 
been shown to affect levels of chemokines related to bone healing. 
Tungsten, arsenic, iron, boron, and mercury have been shown 
to impact bone homeostasis and healing potential, albeit with 
lacking evidence of alterations in chemokine expression levels 
(Table 4).

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


taBle 4 | environmental metals: chemokine changes.

substance Chemokine(s) involved effect(s) Cell/tissue type reference

Lead CXCL12 ↓ In vivo mouse model Beier et al. (122)

Cadmium CXCL1 ↑ Mouse RAW 264.7 Macrophages Riemschneider et al. (123)

CXCL8 ↑ Human THP-1 Freitas and Fernandes (124)

Lithium CXCL4 ↑ Human mesenchymal stem cell (MSC) Satija et al. (125)

CXCR12 Human PBMC and PMN Kim et al. (126)

CXCL8 ↓ Human MSC Satija et al. (125)

CCL20 Human PBMC and PMN Kim et al. (126)

Strontium CXCL8 ↓ Human primary monocytes Buache et al. (127)

Known effects of environmental metals on chemokines.
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Lead
Despite the discovery of elevated lead levels in the drinking water 
in Flint, Michigan and other areas, the rate of lead toxicity as a 
result of environmental exposure has drastically improved since 
the 1970s. At that time, three-fourths of Americans had blood 
lead levels above 10 μg/dL, which had been the upper limit for 
categorization as lead poisoning (128, 129). Today, lead levels 
above 5  μg/dL warrant concern, according to the 2012 CDC 
update (130). Given the fact that bone acts as the main reposi-
tory for lead (90–95%) and the body burden persists throughout 
life (lead t1/2  =  20  years), an extensive amount of research has 
evaluated its impact on bone health (131). Both basic and clinical 
studies suggest that lead has a significant impact on both bone 
growth/development and mature bone homeostasis. Similarly, 
lead exposure correlates with greater fracture risk and bone 
disease (25, 132, 133). Thus far, a dose-dependent response to 
lead accumulation in bone has been observed, causing osteope-
nia and poor BMD (133–136). However, it has been observed 
that low levels of lead cause increased BMD. The threshold that 
dictates the shift from increasing BMD to decreased BMD is still 
unknown (122, 137).

The only known study to have investigated chemokine fluctua-
tions with exposure to lead is mouse tibia fracture study by Beier 
et  al. This group found a ~50% reduction in CXCL12 mRNA 
expression 10 days postoperative, which was after 52 total days 
of lead exposure (15–18  μg/dL). Treatment with the GSK-3β 
inhibitor, 6-bromoindirubin-3′-oxime (BIO), rescued the inhibi-
tory effect on CXCL12. BIO treatment also increased β-catenin 
staining to control levels (138), suggesting Wnt involvement. 
Indeed, BIO has been shown to induce CXCL12 expression in 
mouse tibial fracture callus (139). The Beier study suggests that 
lead may in part impact fracture repair by reducing CXCL12/
CXCR4-mediated progenitor cell recruitment to the site of injury. 
No other group has attempted to investigate the mechanisms by 
which lead inhibits bone healing or alters chemokine expression.

Cadmium
Cadmium has long been recognized as a health hazard. It was 
originally described in Japan as Itai-Itai “ouch-ouch” disease in 
1955, so named for the pain from osteomalacia and frequent 

long bone fractures, which occur secondarily to the ingestion 
of cadmium-contaminated rice (140). Today, the greatest source 
of cadmium comes from food (cereals/vegetables/potatoes) and 
tobacco smoke (141, 142). The toxicity of cadmium is in part due 
to its resemblance to metals such as calcium, iron, and zinc. Early 
kidney damage and osteoporosis have been the most widely stud-
ied consequences of cadmium exposure (141, 143). Long-term 
environmental exposure has been shown to cause osteoporosis 
with subsequent increases in fragility fractures (144–148).

Cadmium-induced reduction in BMD has been linked to both 
renal proximal tubule damage, osteoblast toxicity, and stimulation 
of osteoclastic bone resorption. Very few studies have attempted 
to uncover the direct mechanisms of cadmium-induced bone loss. 
Thus far, cadmium exposure has been shown to increase RANKL 
production with no change in OPG, increase prostaglandin E2, 
and trigger apoptosis in osteoblasts (149, 150).

In terms of chemokines and chemotaxis, Riemschneider et al. 
reported a twofold increase in secretion of CXCL1 in macrophage 
RAW 264.7 cells with exposure to 10 µM Cadmium. Similarly, they 
found reduced levels of IL-6 and IL-10 (123). Cadmium-mediated 
activation of NF-kB has also been reported, with a subsequent 
increase in IL-8, IL-6, IL-1β, and TNF-α (124). Together, this 
pattern suggests increased recruitment of preosteoclastic cells, 
which may contribute to observed decreases in BMD. Similarly, 
bone regeneration may be negatively affected by a dysregulated 
inflammatory response, since inflammatory signaling has a cru-
cial role in optimal bone healing (151). Furthermore, Papa et al. 
showed that cadmium induced the destruction of the osteoblast 
cytoskeleton actin network, which is critical for cell polarity, 
motility, and chemotaxis (152). The actin depolymerization 
that is seen with cadmium exposure may also affect osteoblastic 
chemotaxis via the CXCL12/CXCR4 axis, which again is crucial 
in early bone formation (153, 154). Further research should be 
directed toward elucidating the mechanisms by which cadmium 
alters the chemotactic responses of osteoblasts/osteoclasts.

Lithium
Lithium has long been used as a psychoactive drug in the treat-
ment of various mood disorders. Recently, lithium has been rec-
ognized with growing concern as an environmental contaminant, 
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due to greatly increased use of lithium ion batteries and alloys 
by industry and consumers. The most significant source of non-
medical human exposure to lithium is thought to be through 
drinking water (155–157).

The effects of lithium on osteogenic differentiation vary 
according to cell system, state of differentiation, medium 
composition, passage number, and cell density (125). Lithium 
has been shown to inhibit Smad 1/5/8 phosphorylation in 
MC3T3-E1 preosteoblasts and murine myoblastic C2C12 cells, 
with a subsequent reduction in BMP-2-induced ALP activ-
ity independent of Wnt signaling (158). On the other hand, 
numerous studies have shown that lithium exposure induces a 
pro-bone formation phenotype, originating from osteoblastic 
activation and osteoclastic inhibition (159–163), with simulta-
neous antiadipogenic effects (125). Generally, Wnt/β-catenin 
pathway activation has been linked to most of the direct effects 
of lithium on bone homeostasis. Lithium inhibits GSK-3β, 
thereby preventing degradation of β-catenin (164). Enhanced 
nuclear β-catenin activity favors osteogenic differentiation 
of BMSC, reduced CXCL12 expression, and increased ALP 
activity in human MSC, although ALP activity was reduced 
relative to controls at higher doses (125). Expression levels of 
the pro-osteoclastic chemokines, IL-7, IL-8, and CCL20 were 
also reduced after hMSC exposure to lithium (125).

In the context of bone healing under chronic environmental 
lithium exposure, dysregulation of Wnt signaling—tight tem-
poral control of which is critical for osteogenesis to proceed 
normally—may disturb the natural exit from the proliferative 
phase and completion of the differentiation program (165). 
Still, it is possible that precisely timed administration of lithium 
may promote osteoblastogenesis and inhibit osteoclastogenesis 
to result in overall improved bone healing (166). Further 
research into dosing and timing of lithium administration 
is required to validate lithium as a novel therapy for bone 
regeneration.

Strontium
Strontium appears to prevent the age-related transition of 
BMSC lineage commitment from osteoblasts to adipocytes via 
NFATc/Maf and Wnt signaling (167). It is also being used as 
a therapeutic agent to prevent postmenapausal osteoporosis  
(168, 169). The only investigation of strontium-mediated 
chemokine changes was conducted by Bauche et  al., in which 
LPS-stimulated monocytes exposed to strontium revealed dimin-
ished levels of IL-8 production. They also found IL-6 and TNF-α 
levels to be reduced, suggesting that strontium may have anti-
inflammatory properties in addition to a potential osteoblastic 
lineage redirection (127).

Iron
Excess iron has been shown to generate reactive oxygen species 
(ROS) via the Fenton reaction (170). In addition to the potential 
ROS-induced cytotoxicity, ROS have been shown to antagonize 
Wnt signaling in osteoblast precursors by utilizing the limited pool 
of β-catenin for FoxO transcription, rather than of T-cell factor-
mediated transcription (171). This may in turn lead to decreased 
bone formation, although this theory has yet to be examined in 

an in vivo model. Other evidence suggests that iron-ROS trigger 
osteoclastic bone resorption (172), which may increase the risk 
of osteoporosis (173). Despite these links to adverse effects on 
bone, modification of chemokine expression by excess iron has 
not been investigated.

Other Environmental Metals
Minimal research has been conducted on the effects of tungsten, 
arsenic, strontium, or mercury on bone; even less attention has 
been paid to chemokine expression changes. Tungsten has been 
shown to inhibit osteoblast differentiation of MSC in vitro (174). 
Arsenic was also shown to inhibit differentiation of osteoblasts, 
which occurred via ERK signaling. In vivo, arsenic exposure 
resulted in decreased BMD and altered bone microstructure in 
the rat (174, 175). Exposure to mercury occurs primarily through 
human consumption of fish (176), which has been shown to cause 
decreased activity of osteoclasts, with little, if any increased activ-
ity of osteoblasts (177). Some studies have suggested that high 
blood levels of mercury may in fact lower the risk of postmeno-
pausal osteoporosis (178, 179). However, we found no studies 
investigating mercury’s effects on chemokine expression. Further 
research is needed to better understand the mechanisms of action 
of these toxicants.

prosthetic Wear particles
Aseptic periprosthetic osteolysis is one of the most common 
causes of long-term prosthetic joint failure. Reports have cited 
failure rates as high as 56% at 6.5 years postoperative (180–182). 
Constant friction through the joint surface of metal-on-metal 
(MoM) and polyethylene-on-metal prostheses generates 
non-biodegradable particulate debris. In addition to polyeth-
ylene particles, metal ions such as titanium (Ti), titanium-6%/ 
aluminum-4%/vanadium (Ti6Al4V) alloy, zirconium (Zr) 
oxide, Zr alloy, cobalt, cobalt chrome alloy, cobalt nickel 
chrome alloy, and cobalt chrome molybdenum (CoCrMo) 
alloy are produced from wear. Elevated concentrations of  
these metals have been measured in periprosthetic tissue, 
serum, urine, and in distant organs (liver, lymph nodes, spleen) 
(183–186).

Metal-on-metal implants became very popular in the late 
1980s, with over one million implanted in the US to date (187). 
Because they are thought to deteriorate more slowly, MoM 
implants are used increasingly in young patients. However, 
elevated serum levels of metal ions, adverse reactions to metal 
debris, aseptic lymphocyte-dominated vasculitis, pseudotumors, 
and metal hypersensitivity are thought to lead to early loosening 
(188–199).

Metal-on-metal implants were initially thought to cause 
an immune reaction solely through the macrophage response; 
however, recent studies suggest that systemic metal ions, 
organometallic protein complexes, and particulate debris 
can also be immunoreactive (200). The mechanisms leading 
to pathologic bone resorption surrounding MoM implants 
are poorly understood. Numerous inflammatory cytokines 
and chemokines have been shown to be upregulated in peri-
implant tissues of these patients, leading to a state of chronic 
inflammation and osteoclast activation/proliferation (201). 
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taBle 5 | prosthetic wear particles: chemokine changes.

substance Chemokine(s) involved effect(s) Cell/tissue type reference

Cobalt CXCL4
CXCR12

↑ Human MG63 and SaOs-2 Drynda et al. (202)

CoNiCrMo alloy

CoCrMo alloy

Titanium CXCR4 Rat tibia tissue Omar et al. (206)

CXCL8
CCL3

Human periprosthetic granuloma tissue Nakashima et al. (216)

CCR4 ↑ Human fibroblasts Trindade et al. (217)

CCL5 Human MG63 Fritz et al. (219)

CCL17
CCL22

Mouse GE-1 and MC3T3-E1 Wachi et al. (220)

Known effects of prosthetic wear particles on chemokines (Co, Cobalt; Ni, Nickel; Cr, Chromium; Mo, Molybdenum).
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Drynda  et  al. sought to clarify how circulating metal ions 
affect the CXCL12/CXCR4 axis and determine the impact 
this may have in BMSC homing/differentiation. Cultures of 
MG-63 (early-stage) and SaOs-2 (late-stage) osteoblast-like 
cells were exposed to Cobalt (Co), CoNiCrMo alloy (Nickel 
containing), or CoCrMo alloy (Nickel free). CXCL12/CXCR4 
protein expression was dose-dependently activated in both cell 
lines with all metal exposures (202). Upregulation of CXCL12 
in preosteoclasts has been associated with increased osteoclastic 
activity in several bone diseases, which may participate in even-
tual periprosthetic osteolysis (203–205). When AMD3100 was 
administered to block the interaction of CXCL12 with CXCR4, 
a partial reduction in TNF-α expression was observed. The 
same group also recovered periprosthetic tissue from patients 
undergoing revision for MoM aseptic loosening and found 
CXCR4 to be upregulated. Others have also reported similar 
increases in CXCR4 and TNF-α in  vivo after exposure to Ti 
ions (206). Although no direct correlation can be drawn from 
either of these studies, it is possible that TNF-α may act as a 
trigger for CXCR4 upregulation.

Ti has been shown to increase CCL17 (TARC), CCL22 (MDC), 
and CCR4 expression (207). Cadosch et al. found that secretion of 
pro-inflammatory TNF-α, IL-6, and IL-1a/β was increased after 
Ti exposure, thereby leading to either direct osteoclast precursor 
activation or indirect activation through RANKL/M-CSF secre-
tion by osteoblasts. RANKL activation also increased osteoclastic 
expression of CCL22 (208, 209), which lead to increased recruit-
ment of CCR4+ osteoclast precursors. Correspondingly, there was 
an increase in CCL17 expression in hFOB 1.19 fetal osteoblastic 
cells and human osteoclasts. CCL17 functions in chemotactic 
recruitment of osteoclast precursors, likely through NF-kB 
activation (207).

Recent studies suggest that CCR4 is expressed in both Th2 
and Th17 cells, and microscopic analysis of periprosthetic tissue 
reveals an observed increase in Th17 cell number (210). These 
periprosthetic Th17 cells may have been recruited and deposited 
through CCL22+ CCL17/CCR4-mediated chemotaxis and 
arrest (210). Furthermore, these deposited Th17 cells promote 

osteolysis through an IL-17-dependent increase in RANKL. 
Collectively, this is suggestive of a Ti-induced vicious cycle of 
osteoclastogenesis and inflammation (207).

Interestingly, the majority of Ti particle-induced osteolysis is 
associated with CXCR2, which is the receptor for IL-8 (211, 212). 
This receptor can be found on macrophages, osteoclasts, osteo-
blasts, and neutrophils (213), where ligand binding promotes 
neutrophil attraction, osteoclastic differentiation, and bone 
resorption (214). Silencing CXCR2 mRNA reduced Ti-induced 
bone resorption rates in a mouse calvarial defect model by 
suppressing osteoclastogenesis indirectly through osteoblastic 
downregulation of RANKL (215). Several other groups have 
observed Ti-induced upregulation of CXCL8 (IL-8), CCL5 
(RANTES), CCL3 (MIP-1α), and CCL2 (MCP-1) as a func-
tion of time-dependent NF-kB activation (216–220). Of these, 
IL-8 and CCL2 are strong chemoattractants for monocytes/
macrophages/osteoclasts and neutrophils (221), which recruit 
bone-resorbing cells to induce periprosthetic osteolysis. Similar 
results were found with cobalt exposure in cultured human 
osteoblasts (222–224). Dalal et al. found that a CoCrMo alloy 
produced the greatest inflammatory response in comparison to 
Ti, Zr oxide, or Zr alloy, with a 100-fold increase (>2,000 pg/
mL) of IL-8, a 30-fold increase of IL-6, and a 15-fold increase of 
TNF-α levels (224).

Metal particle-induced osteolysis is largely due to excessive 
osteoclast/inflammatory cell recruitment, osteoclastic activa-
tion, and inhibition of osteoblast activity. This occurs locally 
through phagocytosis and/or by the metal ions triggering 
toll-like receptors (214). These processes (is this true?) are 
mediated primarily by chemokines (225). Thus far, CXCL12/
CXCR4, CCL17/CCL22/CCR4, IL-8/CXCR2, CCL5, CCL3, 
and CCL2 have all been implicated as mediators of prosthetic 
metal-induced bone destruction (Table  5). More research 
is needed to identify the chemokines responsible for recruit-
ment of osteoclasts and Th17 cells, which in turn contribute 
to osteolysis and aseptic loosening. This understanding would 
provide for targeted approach to early diagnosis and treatment 
of prosthetic-induced loosening.
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otHer enVironMental FaCtors 
oF interest

Fluoride
Fluoride is found naturally and as an additive in tap water. It is 
well known for its ability to reduce the rate of dental caries. In low 
doses, fluoride increases osteoblast proliferation (226) and inhib-
its osteoclastic bone resorption (226, 227). Some clinical evidence 
suggests that fluoride may improve BMD (228), although other 
studies suggest that this more dense bone may in fact be more 
brittle and prone to fracture (226).

With high dose or prolonged exposure time, skeletal fluo-
rosis and other toxic side effects may ensue. Skeletal fluorosis 
occurs secondarily to an increase in bone density, through a 
supraphysiologic increase of the growth of osteophytes. This 
results in symptoms and disability similar to what is observed in 
osteoarthritic patients. A safe level of fluoride in drinking water 
has proven difficult to establish. Many factors, including climate, 
air temperature, patient age, duration of exposure, and dietary 
calcium intake may play a role in the variability of doses reported 
in the literature, as each of these can alter fluoride bioavailability 
(229, 230). In an attempt to maintain safe doses of fluoride in 
drinking water, the EPA established and enforces a maximum 
allowable fluoride concentration of 4  mg/L; however, given 
recent experimental findings, the EPA now suggests maintaining 
fluoride levels at less than 2 mg/L to prevent possible deleterious 
effects.

Rat osteoblasts undergo apoptosis upon exposure to sodium 
fluoride (NaF) at doses of 500  µM and higher (231). At lower 
doses however, fluoride has positive effects on Wnt signaling, 
which leads to upregulation of osteoblastic differentiation mak-
ers, including ALP, COL1A1, osteonectin, and RunX2 in rat 
primary osteoblasts (232). Fluoride was also found to increase 
phosphorylation and inhibition of GSK-3β, resulting in prolonged 
activation of the Wnt pathway. Other groups have found COL1A1 
and COL1A2 mRNA levels to be induced in rat osteoblasts after 
24-h NaF exposure, although by 72 h, expression decreases in a 
dose-dependent fashion (231).

In addition to its direct effects on osteoblasts, fluoride has 
also been linked to anti-osteoclastic activity, with reduced cath-
epsin K, IL-1B, MMP-9, and TRAP activity upon RANKL- and 
M-CSF-induced osteoclastogenesis (233). In IL-1B-induced 
gingival inflammation, NaF was strongly anti-inflammatory, 
downregulating IL-1B, IL-8, and TNF-α expression at doses that 
did not induce apoptosis (234); however, the effects of fluoride 
on inflammation appear to depend on route of administration 
and are tissue specific (235–237). The inflammatory effects for 
fluoride in the context of bone have not been studied.

Fluoride may play a more direct role in calcium metabolism 
and bone turnover. In MC3T3E1 preosteoblasts, low-dose fluo-
ride increased free calcium ion in the cell culture supernatant 
and inhibited PTH and PTHrP expression, with opposite effects 
on Ca++ and PTHrP at high NaF doses. In vivo, the same 
group found that NaF reduced serum calcium levels, and the 
effect of fluoride on PTHrP depended on whether the rats 
received standard or low calcium diet (238). These results 
suggest that high fluoride ingestion causes hypocalcemia by 

upregulating calcitonin through PTH and PTHrP secretion 
(238). Fluoride treatment also increased RANKL and OPG 
expression, hypothetically promoting osteoclast activation. 
Further research regarding chemokine signaling after fluoride 
exposure may explain the dose-dependent effects of fluoride 
on skeletal health.

Molds and Fungal toxins
Fungi and molds are common naturally occurring environmental 
contaminants. Toxic effects related to mold exposure are most 
commonly caused by mycotoxins and the various VOCs they 
produce. A study by Hokeness et al. evaluated the effects of two 
common VOCs ((E)-2-octenal and oct-1-en-3-ol) on BMSC 
viability (239). Both VOCs were cytotoxic, and the effect was 
determined to be secondary to alterations to membrane fluidity. 
The authors postulated that this could lead to breakdown of the 
immune system, but did not comment on the potential impact 
this could have on bone. However, membrane fluidity is known 
to affect osteoblastic differentiation of MSC (240).

The active compound from the mushroom Cordyceps  militaris, 
cordycepin, is used medicinally for anti-inflammatory and 
chemotherapeutic purposes. Both C. militaris extract (CME) 
and isolated cordycepin have been shown to reduce RANKL-
mediated osteoclastogenesis in vitro. In an in vivo murine model, 
cordycepin reduced LPS-induced inflammatory bone loss. 
Further studies will need to be conducted to determine whether 
cordycepin treatment is suitable in humans for the prevention of 
bone loss.

Peripheral blood mononuclear cells from mold-exposed 
workers expressed higher levels of eotaxin, INF-α, IL-1α, IL-12 
p40, IL-12 p70, IP-10, PDGF-AA, TNF-β, and VEGF when 
exposed to a panel of common mold toxins ex vivo relative 
to cells from control patients (241). Asthmatic patients had 
a significant difference in chemokine expression, regardless 
of mold exposure. When exposed to aflatoxin B1 in  vitro, 
polymorphonuclear leukocytes harvested from peripheral 
blood demonstrated decreased IL-8, CXCL1, and CXCL2 (242). 
While these studies demonstrate a link between exposure to 
fungal toxins and chemokines, it is unclear whether this has an 
impact on bone health. Subsequent research will be necessary 
to determine if fungal extracts and toxins are related to bone 
regeneration through chemokine mediation.

asbestos
Asbestos has a well-established role in inflammation and disease 
of respiratory tissues (243). Asbestos-derived ROS have been 
shown to activate TGF-β in lung epithelial tissue (244). CXCR3 
levels have been reported to be decreased in CD4+ T-cells, inhib-
iting chemotaxis and potentially antitumor immunity in patients 
with asbestos-related lung disease (245). Other systemic markers 
of inflammation including IgE, IgA, IL-6, IL-8, and ICAM-1 
have also been found to be elevated in asbestos-exposed persons 
(246). Upregulation of gremlin plays a role in asbestos-induced 
pulmonary fibrosis, which has been linked to decreased BMP and 
increased TGF-β signaling locally (247). No literature connecting 
asbestos to BMP, IL-8, or other chemokine levels in the context 
of bone were found. Further studies will be needed to determine 
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if asbestos affects growth factor signaling in the bone, or has any 
impact on bone-related chemokines.

Chlorine
While chlorinated compounds have been studied, no research 
examining the relationship between chlorine itself and bone-
related chemokines has been conducted. Chlorinated and 
fluorinated hydroxyapatite-based biomaterials are currently 
under development. The addition of chlorine and fluorine to 
these scaffolds creates an acidic environment that simulates 
the osteoclastic conditions necessary for bone resorption and 
remodeling while simultaneously increasing apatite formation 
in vitro (248). Further studies will be necessary to determine if 
chlorine impacts bone healing through chemokine modulation, 
which may enhance or inhibit the osseointegration of chlorinated 
biomaterials.

ConClUsion

Environmental contaminants are ubiquitous in today’s world. Over 
the last several decades, public awareness that consumer goods 
are not necessarily safe has grown exponentially. Unfortunately, 
toxicological research cannot possibly keep pace with the rate 
at which new compounds are introduced into consumer goods, 
and a higher level of attention to the issue is prudent. Relatively 
little consideration has been given to the effects of environmental 
contaminants on bone and other musculoskeletal tissues, with 
even less focus on mechanisms of action. Considering the scale 
and impact of musculoskeletal disease and disorders on global 
health as well as the associated financial burden on the healthcare 
system, the MSK system should be a subject of major mechanistic 
toxicological research efforts.

There is a paucity of literature on the relationship between the 
majority of the environmental compounds reviewed here and 
chemokines relevant to bone. Many of the compounds discussed 
in this review warrant further research. Given their direct effects 
on PPARγ and adipogenic differentiation, organotins are of par-
ticular interest. Another subgroup of EDCs, the phthalate esters, 
have been shown to influence CXCL1 and CCL2 in other tissues. 
Given the known roles of CXCL1 and CCL2 in osteoclastogenesis, 

this could prove a high yield topic of study. The effect of prosthetic 
metals and periprosthetic wear particles may have on chemokines 
and bone regeneration is growing in clinical importance and 
represents another area of future focus. Finally, research on the 
effects of dioxins and dioxin-like compounds on bone-related 
chemokines will also continue to be a critical area of study, as 
their presence in cigarette smoke impacts such a large population.

The important roles that chemokines play in bone homeosta-
sis and repair has become clear. Several therapeutics targeting 
chemokine receptors are now FDA-approved, albeit outside the 
context of MSK disease (1). A much more thorough understand-
ing of the mechanisms by which environmental toxins adversely 
affect bone is critical to developing more effective, targeted 
approaches to mitigate these effects.
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