
BIOMARKERS

review
articles

Impact of Circulating Tumor DNA–Based
Detection of Molecular Residual Disease on the
Conduct and Design of Clinical Trials for
Solid Tumors
Pashtoon M. Kasi, MD, MS1; Gordon Fehringer, PhD2; Hiroya Taniguchi, MD, PhD3; Naureen Starling, MD, MBBS4;

Yoshiaki Nakamura, MD, PhD3; Daisuke Kotani, PhD3; Thomas Powles, MD, MBBS5; Bob T. Li, MD, PhD, MPH6; Lajos Pusztai, MD, PhD7;

Vasily N. Aushev, PhD2; Ekaterina Kalashnikova, PhD2; Shruti Sharma, PhD2; Meenakshi Malhotra, PhD2; Zachary P. Demko, PhD2;

Alexey Aleshin, MD2; Angel Rodriguez, MD2; Paul R. Billings, MD, PhD2; Axel Grothey, MD8; Julien Taieb, MD, PhD9;

David Cunningham, MD4; Takayuki Yoshino, MD, PhD3; and Scott Kopetz, MD, PhD10

abstract

PURPOSE Earlier detection of cancer recurrence using circulating tumor DNA (ctDNA) to detect molecular
residual disease (MRD) has the potential to dramatically affect cancer management. We review evidence
supporting the use of ctDNA as a biomarker for detection of MRD and highlight the potential impact that ctDNA
testing could have on the conduct of clinical trials.

METHODS We searched the literature using MEDLINE (via PubMed) for articles from January 1, 2000, focusing
on studies that assessed ctDNA as a predictor of cancer recurrence. Broadly focused searches on ctDNA and
cancer were also performed to provide additional background information. www.clinialtrials.gov was searched to
identify trials that incorporate ctDNA testing.

RESULTS Numerous studies across different cancer types indicate that ctDNA-based MRD detection predicts
recurrence with high sensitivity and specificity, and with lead times that precede standard imaging by up to
12 months. Recently, ctDNA testing has started being used to enroll MRD-positive patients at high risk of
recurrence into trials, promising gains in statistical power that allow clinical utility to be demonstrated with
smaller cohorts. Trials where ctDNA testing based-MRD detection is used to stratify patients into low or high-risk
categories for treatment assignment are also ongoing. In addition, there is increasing evidence supporting the
use of ctDNA dynamics or clearance as a surrogate end point, which could significantly reduce trial duration.

CONCLUSION ctDNA-based trial enrichment across many cancers seems likely to become increasingly common
for cost- and time-reduction benefits. Trial efficiency could also benefit from using ctDNA as a surrogate end
point, leading to accelerated approval of new therapeutics. A clear demonstration of efficacy from trials that use
ctDNA-based MRD detection to assign treatment could transform clinical practice.
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INTRODUCTION

The presence of extracellular DNA in blood, referred to
as cell-free DNA (cfDNA), was first reported in 1948.1

The first reports of tumor-specific mutations in cfDNA
were published in 1994, when KRAS and NRAS
mutations were observed in patients with pancreatic
cancer and acute myelogenous leukemia.2,3 Recent
work indicates that for many cancers, there are genetic
variants present in cfDNA that broadly overlap with
variants found in tumor tissue.4 This tumor-derived
fraction of cfDNA is commonly referred to as circu-
lating tumor DNA (ctDNA). Over the past decade, the
advent of next-generation sequencing (NGS) and
other advances in methods for ctDNA detection
contributed to a surge in research evaluating ctDNA as

a cancer biomarker. The association of ctDNA with
clinical variables has now been investigated in many
cancers and it is well established that ctDNA levels are
associated with stage, response to therapy, prognosis,
and tumor burden.4,5

A significant new development in clinical cancer re-
search is using ctDNA for detection of molecular re-
sidual disease (MRD) and molecular relapse. We use
MRD (also referred to as molecular minimal residual
disease) here to mean any molecular evidence of
disease, typically when detected shortly after surgery
or definitive treatment, whereas molecular relapse,
treated here as a subset of MRD, is used to describe
molecular evidence of disease found later, during
treatment or surveillance. Numerous studies across
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different cancer types indicate that ctDNA-based MRD
detection predicts recurrence with high sensitivity and
specificity, preceding standard imaging by months.6-12

Reliable detection of MRD has substantial implications for
clinical trial design. Identifying patients at high risk of re-
currence through ctDNA testing can lead to substantial
reductions in trial sample size, as enriching trials with
patients likely to recur increases statistical power. Another
potential role for ctDNA is as a surrogate end point for
treatment response in settings where conventional re-
sponse biomarkers are unavailable (eg, the adjuvant set-
ting). This could provide an early indication of treatment
efficacy relative to conventional measures such as
progression-free survival and overall survival (OS). These
gains in trial efficiency can reduce study costs leading to
expedited approval of new therapies. ctDNA-based testing
also provides the opportunity to conduct trials where MRD

status guides treatment. These trials could determine
whether MRD-positive patients benefit from early thera-
peutic interventions.

In this review, we elaborate on evidence supporting dif-
ferent approaches to using ctDNA in clinical trial design
and discuss the utility of ctDNA-based MRD detection for
increasing trial efficiency and guiding treatment across
neoadjuvant and adjuvant settings.

ctDNA DETECTION

ctDNA concentrations are often low (, 0.1% of cfDNA),4,13

particularly in early-stage cancers, and thus, methods with
high analytic sensitivity are required for successful ctDNA
detection. Detectionmethods include digital polymerase chain
reaction,14-16 multiplex polymerase chain reaction–based
NGS,8 and hybrid capture–based NGS.17 High costs of
whole-genome and exome sequencing have discouraged

CONTEXT

Key Objective
Circulating tumor DNA (ctDNA) detection indicates the presence of molecular residual disease (MRD), identifying recurrence

earlier than standard approaches. Key roles for ctDNA-based MRD detection in the design of clinical trials in adjuvant and
neoadjuvant settings are examined.

Knowledge Generated
Globally, hundreds of clinical trials seek to show the benefit of therapeutic interventions. ctDNA-based MRD detection is

increasingly being used to select patients at high risk for recurrence into clinical trials, as it can greatly reduce sample size
and trial costs. Moreover, using ctDNA as a surrogate end point can result in substantial reductions in trial duration,
expediting the introduction of new therapeutics into the clinic. The results from trials that investigate early therapeutic
interventions after MRD detection could substantially affect clinical practice.

Relevance
ctDNA-based MRD detection could have a major impact on the conduct of clinical trials and ultimately on the management of

disease in patients with cancer.

TABLE 1. ctDNA Detection Techniques

Technique Description Target
Examples (tumor-informed or

tumor-naive)

dPCR Separating DNA molecules into different reactions enabling high-
throughput analysis

Single locus or multiple
assays

dPCR14 (either)
ddPCR19 (either)
BEAMing16,(either)

Multiplex
PCR

PCR amplification of multiple targets before NGS analysis Targeted sequencing TAm-seq20 (either)
Enhanced Tam-seq (either)
Safe-seq21 (tumor-informed)
Signatera8 (tumor-informed)
TARDIS22

Hybrid
capture

Regions of interest are hybridized to target-specific biotinylated probes and
captured for NGS analysis

Targeted sequencing CAPP-seq23 (either)
TEC-seq17 (tumor-informed)
Guardant36024,25 (tumor-naive)
FoundationOne Liquid26 (tumor-

naive)

WGS Plasma WGS of genomic alterations Whole genome PARE27 (tumor-naive)

Abbreviations: ctDNA, circulating tumor DNA; ddPCR, droplet digital polymerase chain reaction; dPCR, digital polymerase chain reaction; NGS, next-
generation sequencing; WGS, whole-genome sequencing.
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efforts toward plasma-based detection of many types of so-
matic variants; however, whole-genome approaches for
identifying genomic rearrangements in plasma have been
used successfully in clinical research.18 Table 1 provides
descriptions of ctDNAdetectionmethods. Detailed reviews are
provided elsewhere.18,28

Considerable attention has been given to broadly appli-
cable assay strategies to enhance ctDNA detection accu-
racy. This includes assaying many variants instead of a
single variant to increase the probability of finding de-
tectable variants in plasma samples.17,29 A study that
tracked multiple ctDNA variants in patients with stage I-III
non–small-cell lung cancer following definitive treatment
reported that a 94% detection rate with multiple markers
dropped to 58% using the same platform with only a single
marker.29 Recently, there has been a shift toward using
personalized, tumor-informed approaches, where a pa-
tient’s tumor biopsy results determine variants to be tracked
in the plasma. These are suggested to have greater sen-
sitivity than tumor-naive multigene panels, as the latter are
reported to only detect an average of 2-5 variants per
patient, despite using large panels (eg, 128 genes).17,22,29

Although multigene panels provide improved sensitivity
relative to a single marker, a tumor-naive panel may not
cover variants found in some patients. By contrast, prior
knowledge from assessment of variants in tumor tissue
allows tracking of a greater number of variants (often with
relatively high frequency that permits more reliable de-
tection), enhancing sensitivity.22 Knowledge of the tumor
variant profile also ensures assays can be focused on
variants present in plasma, whereas tumor-naive ap-
proaches assay many regions unlikely to contain a relevant
variant, increasing false-positive results. False positives are
a major clinical concern and a barrier to adoption if an
intervention (eg, more imaging or systemic chemotherapy)
is to follow a positive test.

Although tumor-informed approaches can reduce the pro-
portion of false-positive tests, the probability of a false-positive
result will still increase with the number of variants assayed.
To combat this loss in specificity, some tumor-informed
methods require at least two variants to be present in both
tumor and plasma, substantially reducing false-positive re-
sults. Currently used tumor-informed approaches track dif-
ferent numbers of variants, ranging from 16 to as many as
115.6,22 It is as yet unclear how this difference in method-
ology, and other differences such as error models and assay
design, influences specificity (and other accuracymeasures).

Despite the benefits of using multiple variants and/or
tumor-informed methods, costs of assaying multiple
markers and availability of tumor tissue are potential bar-
riers to using these approaches in some studies. Fur-
thermore, the need to sequence tumor tissue for designing
ctDNA assays can result in longer turnaround times for
tumor-informed approaches (although this only affects the
initial ctDNA test). Using presurgical material or designing

assays promptly upon receipt of tumor material can
ameliorate this concern.30 A summary of differences be-
tween tumor-informed and tumor-naive approaches is
provided in Appendix Table A1.

Much of the focus of ctDNA testing involves detection of
somatic mutations. However, aberrant changes in DNA
methylation are widespread in tumor tissue and also re-
flected in plasma.31 The results from several studies in-
dicate that DNA methylation holds promise for MRD
detection.32-35 Current approaches generally examine
methylation at a few cancer-related markers (eg, SEPT9,
BCAT1, and IKZF1, in colorectal cancer [CRC]).32-34 Low
costs and efficiency are cited as advantages of these
assays.35,36 However, current results indicate that sensi-
tivity for detecting MRD is lower than observed for
mutation-based methods (eg, , 65% for either SEPT9 or
BCAT1 and IKZF134,37 v 80%-100% for somatic
mutations38-41), although results for specificity are similar
(80%-92%34,37 v 90%-100%6,39,41). These comparisons
are hindered by small sample sizes and lack of uniformity
in timing and frequency of ctDNA testing across studies,
particularly in methylation studies. More research is
needed to demonstrate the utility of methylation-based
MRD testing.

Methylation approaches have also been used in tandem
with testing of somatic mutations. A recent study, using a
tumor-naive approach, reported that adding a pre-
determined methylation cancer signature to somatic
genomic mutations increased sensitivity of detecting
recurrence.42 More research is needed to further eval-
uate the combination of epigenomic and genomic
markers in MRD testing. Of interest is whether the ad-
dition of genomic variants will improve the accuracy of
tumor-naive approaches to levels comparable to tumor-
informed approaches, and the impact on accuracy of
adding methylation markers to current tumor-informed
methods.

A significant challenge to maintaining specificity of ctDNA
testing is confounding by clonal hematopoiesis of indeter-
minate potential (CHIP). CHIP mutations originate from
hematopoietic progenitor cells.43,44 Recent studies have
reported 14% of patients with early-stage lung cancer and
25% of patients with late-stage solid tumors harbor CHIP
mutations.45,46 Because of the difference in methodology
used to detect and define CHIP variants between these
studies, a comparison of results does not permit inferences
about CHIP mutation frequency by cancer type and stage.
However, the high frequency of CHIP variants observed in
both studies underlines how misclassifying CHIP variants as
ctDNA variants may reduce specificity for MRD detection.
Approaches to address this misclassification include se-
quencing paired peripheral blood mononuclear cells for
in silico filtering of variants common to peripheral blood
mononuclear cells and ctDNA, and using tumor-informed
methods to identify clonal tumor variants.8,47

Impact of ctDNA-Based MRD Detection on Clinical Trials
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Many other factors can influence the accuracy of ctDNA
detection, including tumor shedding, tumor location,
weight, and recent surgery. We summarize these in
Table 2.

MRD-BASED PATIENT ENROLLMENT IN CLINICAL TRIALS

There is substantial evidence that ctDNA-based MRD
detection can stratify patients into high-risk and low-risk
groups, which allows for more efficient trials through tar-
geting high-risk patients for enrollment. Numerous retro-
spective studies across multiple cancer types have reported
that ctDNA-based MRD detection is sensitive and specific
for recurrence in both postoperative and serial testing
scenarios (for some cancers, the latter can improve sen-
sitivity of ctDNA testing relative to the postoperative setting,
which we discuss further below.)

ctDNA-based MRD detection using serial testing predicted
recurrence with 82%-100% sensitivity6,38-41 and 89%-100%
specificity6,39,41 for CRC in the adjuvant setting, 79%-100%
sensitivity and 100% specificity for breast cancer in the
neoadjuvant or adjuvant setting,7,56-58 and 90% sensitivity
and 88% specificity for pancreatic cancer in the adjuvant
setting.59 Additional studies report ctDNA detected recur-
rence at 71% sensitivity and 100% specificity for esophageal
cancer for a single ctDNA test performed after neoadjuvant
therapy,9 and 94% sensitivity for non–small-cell lung cancer
with a single test after local treatment (specificity was not
reported).29 These studies used limited numbers of patients
and require confirmation from large well-annotated cohorts.
Still, because of the rapidly expanding body of evidence
surrounding ctDNA-based MRD detection for CRC, a re-
cently convened National Cancer Institute task force re-
leased a consensus statement concluding that the presence

of ctDNA was strongly associated with a high risk of disease
recurrence in CRC, with the results suggesting ctDNA was a
robust marker for MRD.60 Currently, several ongoing trials
are using ctDNA status to determine enrollment.

Restricting trial enrollment to those at high risk for recur-
rence is of clear benefit to patients. For example, patients
with stage II CRC do not receive adjuvant chemotherapy,
although 20% will experience recurrence.61 Enrollment on
the basis of ctDNA-positivity ensures that only patients with
a high probability of recurrence are included in the trial,
whereas low-risk patients who are unlikely to benefit are
spared from potential treatment-related side effects.
Moreover, from a clinical perspective, most experts would
agree on the value of offering systemic therapy for patients
with low-risk stage II CRC with initial intent of observation
and surveillance, given the 100% recurrence for ctDNA-
positive patients noted across multiple studies.6,62

Improvement in clinical trial efficiency using ctDNA-based
enrollment is highlighted in Figure 1A, where a scenario of
clinical trial enrollment of ctDNA-positive stage III patients
with CRC in the adjuvant setting is presented. We assume
19% of patients are ctDNA-positive, of which 75% will
experience recurrence. The comparison group represents
patients enrolled irrespective of ctDNA status, with a re-
currence rate of 27%. Since the recurrence rate drives
statistical power, smaller sample sizes are possible for
ctDNA-positive cohorts. This results in a 6-fold reduction in
enrollment and a 68% reduction in per patient costs after
accounting for treatment and ctDNA screening.

Recent phase III adjuvant clinical trials that have enrolled
thousands of patients further highlight the benefit of
enriching trials with high-risk patients. For example, the

TABLE 2. Factors Influencing Accuracy of ctDNA Detection
Factor Influencing Detection Impact on ctDNA Measurement and Implication for Trial Design

Tumor shedding4,8,9,48,49 Depends on tumor type, morphology, individual tumor biology, and extent of disease—some tumors (brain, thyroid, and
renal cell carcinoma) shed less DNA, reducing the ability to detect MRD

Can influence enrollment in enrichment trials, utility as surrogate end points, and choice of cancer type to study in trials

Tumor location50 Refers to location of metastases (eg, brain metastases shed less DNA and thus are difficult to detect)

Surgery51 Increases total cfDNA and can affect sensitivity of ctDNA detection
Timing of ctDNA measurement must be taken into consideration (eg, drawing blood 4-6 weeks after surgery to ensure

reliable ctDNA measurement)

Active treatment
(chemotherapy)52

Increases total cfDNA and can affect sensitivity of ctDNA detection
Readouts from serial ctDNA tests must be carefully timed to ensure reliable treatment monitoring

Patient weight53 Increases total cfDNA and can affect sensitivity of ctDNA detection
Should not influence internal validity of trial because of random assignment, and later investigation of unusual ctDNA

results can inform future studies

Pregnancy54 Increases total cfDNA and can affect sensitivity of ctDNA detection
Pregnancy may influence initial enrollment into trial because of toxicities from treatment, otherwise random assignment

should prevent influence on internal validity

Infection55 Increases total cfDNA and can affect sensitivity of ctDNA detection
Should not influence internal validity of trial because of random assignment, and later investigation of unusual ctDNA

results can inform future studies

Abbreviations: cfDNA, cell-free DNA; ctDNA, circulating tumor DNA; MRD, molecular residual disease.
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PALLAS study enrolled 5,706 patients with early-stage hor-
mone receptor–positive and human epidermal growth factor
receptor 2–negative breast cancer in a trial with a planned 10
years of follow-up, to determine whether a CDK4/6 inhibitor
added over a 2-year period to a minimum of 5-year standard-
of-care (SOC) endocrine therapy improves disease-free
survival (DFS). Similarly, the APHINITY study randomly
assigned 4,805 patients with human epidermal growth factor
receptor 2–positive breast cancer to investigate the addition
of pertuzumab to chemotherapy plus trastuzumab. Both
trials could have substantially reduced sample size and costs
if reliable biomarkers to identify patients at high-risk for re-
currence were available at enrollment (Fig 1B). Moreover, 5
years after the PALLAS study began enrolling patients, the
second interim analysis did not demonstrate future trial ef-
ficacy. The APHINITY trial reported significantly lower in-
vasive DFS with an absolute benefit at 6 years of 2.8%.65

However, the modest improvement in invasive DFS, a re-
ported lack of benefit in node-negative patients, treatment
toxicities, and the cost of running a lengthy trial with a large
sample size underscore the importance of enrolling patients
at high risk of recurrence into trials.65,66

Different ctDNA testing strategies may be used for trial
enrichment. Often, a single postoperative test is used to
immediately randomly assign patients into treatment arms.
Other trials require alternative MRD testing strategies. Serial
testing, often performed in the surveillance setting, can
detect cancers that occur after definitive treatment. An
added benefit is improvement in sensitivity for detecting
recurrence for some cancers, as additional ctDNA tests,
likely coupled with increased tumor shedding over time, will
increase MRD detection. The IMvigor011 trial provides an
example of this approach where ctDNA testing will be used
to enroll patients up to 20 weeks after cystectomy (Table 3).

A paradigm shift is the extended serial testing that is
possible with ctDNA. For example, up to 30% of patients
with breast cancer relapse after definitive treatment, often
years after their original diagnosis. In this setting, it is
preferable to perform periodic ctDNA testing over an ex-
tended time period to assemble an enriched cohort.

At present, several registered trials are underway where
ctDNA-positivity informs enrollment (Table 3, Appendix
Table A2). Two of these, the MEDOCC-CrEATE CRC trial
and the DARE breast cancer trial, conducted in the ad-
juvant and molecular recurrence settings, respectively,
have published enrollment goals and size of the screened
population needed to achieve these goals. Power calcu-
lations for MEDOCC-CrEATE indicated a sample size of 60
ctDNA-positive patients, which could be obtained from
testing 1,320 patients, was sufficient for analysis of re-
currence rates.67 The DARE trial estimated that 100 of
1,000 screened patients were needed to satisfy study
power requirements for comparing recurrence across
treatments. As screened populations are representative of
sample size requirements for all-comers studies, these

trials point to a 10- to 20-fold sample size reduction for
ctDNA-based enrichment trials, consistent with scenarios
described in Figure 1, and further support the using ctDNA-
based enrichment studies to improve trial efficiency.

MRD-BASED TREATMENT ASSIGNMENT IN CLINICAL TRIALS

A biomarker that detects recurrence before standard
methods could have a major impact on outcome by
identifying disease earlier when response to treatment is
more likely. Studies that monitored ctDNA status during
treatment or tested ctDNA postoperatively have shown that
MRD detection in the adjuvant setting generally precedes
SOC identified recurrence (Table 4). Stage I-III CRC studies
reported ctDNA-detected median lead times of 1.8-
11.5 months.6,39,62,68 For patients with breast cancer, lead
times of 8.9-11 months were reported.7,57 Median lead
times of 2.3-8.9 months were observed for lung, esopha-
geal, gastric, and bladder cancer (Table 4).8-11,29,70,71 Some
caution is warranted in interpreting the results as lead times
are influenced by intervals between ctDNA testing and
imaging, which vary across studies.

Currently, there are numerous randomized clinical trials
testing the hypothesis that ctDNA-based MRD detection
identifies patients at high risk of recurrence who may then
benefit from early therapeutic interventions (Table 3, Ap-
pendix Table A2). Table 3 and Appendix Table A2 list trials
where ctDNA status is used to assign adjuvant treatment.

Several of these trials, including CIRCULATE, GALAXY with
ALTAIR and VEGA, and c-TRAK-TN (Table 3), use a
marker-by-treatment interaction design where ctDNA-
positive patients are assigned to investigational therapy
versus control (or escalation v de-escalation therapy),
whereas ctDNA-negative patients receive SOC. This design
permits comparison of the intervention on ctDNA-positive
patients while ensuring that the ctDNA-negative group is
noninferior to the intervention group (Fig 2A).

GALAXY and the related ALTAIR and VEGA studies provide
a good illustration of such trial designs in the context of a
large multicenter trial, encompassing both de-escalation
(VEGA) and escalation (ALTAIR) trials and an observational
study (GALAXY) that serves to screen patients for MRD,
leading to their assignment to one of the two trials. These
trials fall under the umbrella of CIRCULATE-IDEA (Inter-
national Duration Evaluation of Adjuvant Chemotherapy
Colon Cancer Prospective Pooled Analysis), a collaborative
effort conducted by groups in Japan, the United States,
Europe, and Australia to perform integrated analysis of data
from ongoing randomized phase III studies.

The ALTAIR study is evaluating efficacy and safety of pre-
emptive treatment with Trifluridine/tipiracil (FTD/TPI) com-
pared with standard of care (SOC). Patients who test ctDNA-
positive after undergoing curative resection in GALAXY will
be recruited into ALTAIR and randomly assigned to treat-
ment or control. VEGA tests noninferiority of observation
versus adjuvant CAPOX. These trials incorporate a crossover

Impact of ctDNA-Based MRD Detection on Clinical Trials
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FIG 1. (A) Potential reduction in sample size and costs for stage III CRC trial through enrichment with ctDNA testing. In this scenario, an 8-fold reduction in
enrollment size and a 75% reduction in per patient costs after accounting for treatment and ctDNA screening can be achieved (for sample size estimates, we
assumed an event rate of 0.75 in ctDNA-positive patients in the control arm and a 0.25 relative risk reduction in the treatment arm.)6 (B) Decrease in sample
size as related to relapse rate for disease in the control group at varying drug efficiencies. Enrollment through ctDNA testing has a dramatic impact on sample
size, since the event rate is greatly increased if ctDNA-positive patients are selected. The plot shows potential decreases in sample size that could have been
achieved for ongoing clinical trials had ctDNA testing been used for enrichment. The PALLAS and APHINITY studies were described in the text. We also show
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atezolizumab versus observation in patients with high-risk muscle-invasive bladder cancer, which originally enrolled 800 patients. Sample size estimates
were obtained from the original study (the original sample size estimates for the PALLAS and APHINITY studies were smaller than the number eventually
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that the observation arm event rate was changed to reflect recurrence in ctDNA-positive patients (0.6 for PALLAS and APHINITY on the basis of risk
reduction estimates for patients receiving endocrine therapy63 and 0.85 for ctDNA-positive patients with urothelial carcinoma in the IMvigor010 observation
arm64). Closed triangle and circle represent the original sample size estimates and open triangle and circle represent sample size estimates for enriched
studies. ARR, absolute risk reduction; CRC, colorectal cancer; ctDNA, circulating tumor DNA; SOC, standard of care.
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TABLE 3. Clinical Trials Using ctDNA-Based MRD Detection to Select Patients, Guide Treatment, or as a Surrogate End Point
Title/ID/Disease/Phase Agent Assay Primary End Point ctDNA Utilization Sample Size

MERMAID-1
NCT04385368
NSCLC stage II, III
Phase: III

Durvalumab Archer DFS Inclusion criteria: ctDNA-positive after surgery
Details: Randomly assigned to durvalumab and SOC, or SOC

332

NCT04367311
NSCLC stage I, (tumors ≥ 4 cm), IIA, IIB,

selected IIIA
Phase: II

Atezolizumab, docetaxel,
cisplatin, pemetrexed

CAPP-seq Percent with undetectable
ctDNA at defined time periods

Inclusion criteria: ctDNA-positive after surgery
Details: Addition of atezolizumab to chemotherapy
Surrogate end point: ctDNA clearance

100

IMvigor011
NCT04660344
Muscle-invasive bladder cancer
Phase: III

Atezolizumab Signatera DFS Inclusion criteria: ctDNA-positive after cystectomy
Details: Randomly assigned to atezolizumab or placebo

495

LEADER
NCT03285412
Breast cancer (ER-positive)

Ribociclib, endocrine therapy Signatera ctDNA clearance (12 months) Inclusion Criteria: ctDNA-positive after surgery
Surrogate end point: ctDNA clearance
Details: Randomly assign to ribociclib and SOC, or SOC

120

DARE
NCT04567420
ER+/HER2-negative
Breast cancer stage II, III
Phase: II

Palbociclib/fulvestrant, adjuvant
therapy

Signatera ctDNA positivity rate from
screening,

RFS

Inclusion criteria: ctDNA-positive during ctDNA screening (4-6 month
screening intervals)

Details: Randomly assign to palbociclib/fulvestrant v adjuvant therapy

100

NCT04585477
NSCLC stage I-III
Phase: II

Durvalumab AVENIO Change in ctDNA after two
cycles of durvalumab

Assign treatment: ctDNA detection after definitive treatment used to
assign adjuvant therapy

Details: ctDNA-positive receives treatment; ctDNA-negative receives
SOC and no treatment

80

COBRA
NCT04068103
Colon cancer stage IIA
Phase: II, III

Oxaliplatin, capecitabine,
leucovorin, leucovorin-
calcium, fluorouracil

Lunar 1,
Guardant
Health

ctDNA clearance (phase II),
RFS (phase III)

Assign treatment: Postoperative ctDNA detection used to assign
adjuvant therapy

Details: ctDNA-positive receives treatment, ctDNA-negative
observation, Active comparator is observation

Surrogate end point: ctDNA clearance

1,408

CIRCULATE
NCT04089631
Colon cancer stage II
Phase: III

Capecitabine Gene panel
(NGS)

DFS Assign treatment: Postoperative ctDNA detection used to assign
adjuvant therapy

Details: ctDNA-positive randomly assigned to capecitabine or
observation, ctDNA-negative assigned to follow-up or off study

4,812

CIRCULATE
NCT04120701
Colon cancer stage II
Phase: III

mFOLFOX6 ddPCR DFS in ctDNA-positive patients Assign treatment: Postoperative ctDNA detection used to assign
adjuvant therapy

Details: ctDNA-positive patients randomly assigned to chemotherapy
or follow-up—ctDNA-negative patients randomly assigned to
follow-up within the trial or follow-up outside the trial

554

GALAXY, ALTAIR, VEGA
(UMIN000039205, NCT04457297,
jRCT1031200006)

CRC stage II-IV or relapsed disease
amenable to radical resection

Phase: III

FTD/TP1, CAPOX Signatera ctDNA detection Assign treatment: ctDNA detection after standard therapy used to
assign adjuvant treatment

Details: ctDNA-positive randomly assigned to FTD/TP1 or SOC in
ALTAIR, ctDNA-negative assigned to observation in VEGA, VEGA
observation is comparator for ALTAIR

ALTAIR: 240
VEGA: 1,240

(Continued on following page)
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TABLE 3. Clinical Trials Using ctDNA-Based MRD Detection to Select Patients, Guide Treatment, or as a Surrogate End Point (Continued)
Title/ID/Disease/Phase Agent Assay Primary End Point ctDNA Utilization Sample Size

BESPOKE
NCT04264702
CRC, stage II, III
Phase: II

Adjuvant therapy
recommended by treating
clinician

Signatera Treatment decisions on the
basis of ctDNA status

Details: Treating clinician may recommend adjuvant chemotherapy or
observation on the basis of ctDNA status

1,000

DYNAMIC II
ACTRN12615000381583
Colon cancer stage II
Phase: III

Fluoropyrimidine- or oxaliplatin-
based therapy

Tumor-
informed
ddPCR

No. of patients
treated with chemotherapy
RFS

Assign treatment: Postoperative ctDNA detection used to assign
adjuvant therapy

Details: ctDNA-positive arm receives adjuvant chemotherapy, ctDNA-
negative follow-up, and comparator receives treatment at
physician’s discretion

450

DYNAMIC-III
ACTRN12617001566325
Colon cancer stage III
Phase: II, III

Fluoropyrimidine or
fluoropyrimidine plus
oxaliplatin or FOLFOXIRI

RFS Assign treatment: Postoperative ctDNA detection used to assign
adjuvant therapy

Details: ctDNA-informed arm: escalation for ctDNA-positive, and de-
escalation for ctDNA-negative; SOC arm: blinded to ctDNA status

1,000

PEGASUS
NCT04259944
Colon cancer stage II

and high-risk stage III
Phase: II

CAPOX, capecitabine, FOLFIRI Lunar I,
Guardant
Health

Negative ctDNA cases
(postsurgery and
postadjuvant) later found to
be positive

Assign treatment: Postoperative ctDNA detection used to assign
adjuvant therapy

Details: ctDNA-positive receives CAPOX (3 months), ctDNA-negative
receives capecitabine (6 months) with switch to CAPOX if ctDNA
changes after 1 cycle; at the end of treatment, therapies altered
depending on changes to ctDNA status during trial

140

TRACC Part C
NIHR128529
Colorectal high-risk stage II and stage III

CAPOX Signatera DFS Assign treatment: Postoperative ctDNA detection used to assign
adjuvant therapy

Details: ctDNA-informed arm—escalation for ctDNA-positive, and de-
escalation for ctDNA-negative; SOC arm receives ACT

1,620

c-TRAK-TN
NCT03145961
Triple-negative breast cancer early stage
Phase: II

Pembrolizumab Tumor-
informed
ddPCR

Surveillance: ctDNA positivity
(12 and 24 months);
Treatment: ctDNA clearance

Assign treatment: Serial ctDNA testing at 3-month intervals in
neoadjuvant and adjuvant setting to assign treatment.

Details: ctDNA-positive (≤ 12 months) randomly assigned to
treatment or observation, and ctDNA-negative receives no
intervention

208

TOMBOLA
NCT04138628
Metastatic bladder cancer
Phase: II

Atezolizumab Tumor-
informed
ddPCR

CR (defined by ctDNA-negative
status and imaging)

Assign treatment: Postcystectomy ctDNA to assign treatment
Details: Atezolizumab administered early at the time of MRD as

indicated by positive ctDNA test

282

NCT03803553
CRC stage III CRC metastatic
Phase: II

FOLFIRI, nivolumab,
encorafenib/binimetinib/
cetuximab

LUNAR,
Guardant
Health

DFS, ctDNA clearance rate Assign treatment: ctDNA assessment of patients with metastases to
assign treatment

Details: ctDNA-positive randomly assigned to FOLFIRI or observation,
ctDNA-negative assigned to observation; also included are
nonrandomized arms for ctDNA-positive MSI-H treated with
nivolumab and ctDNA-positive plus BRAF mutant treated with
encorafenib/binimetinib/cetuximab

500

Abbreviations: ACT, adjuvant chemotherapy; CAPP-seq, cancer personalized profiling by deep sequencing; CR, complete response; CRC, colorectal cancer; ctDNA, circulating tumor DNA; ddPCR,
digital droplet polymerase chain reaction; DFS, disease-free survival; ER, estrogen receptor; FTD/TPI,trifluridine/tipiracil; HER2, human epidermal growth factor receptor 2; ID, study identification; MRD,
molecular residual disease; MSI-H, microsatellite instability-high; NGS, next-generation sequencing; NSCLC, non–small-cell lung cancer; RFS, relapse-free survival; SOC, standard of care.
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TABLE 4. Time From ctDNA Detection to Recurrence

Reference Cancer ctDNA Testing Assay Variant Selection Process

Detection to
Recurrence
(range)

Follow-Up
(range)

Reinert et al6 Colon cancer stages
I-III

Postoperative day 30
(n = 84); serial sampling
every 3 months (n = 75)

Signatera Sixteen variants selected from
tumor tissue for each patient
(highest ranking for allele
frequency and sequence
content); 16 variants assessed in
plasma samples, presence of
two mutations indicates ctDNA-
positive (tumor-informed)

Median: 8.7
(0.8-16.5)
months.

Median: 12.5
(1.4-38.5)
months

Tarazona
et al40

Colon
adenocarcinoma

Postoperative (6-8 weeks after
surgery; n = 69); serial
sampling every 4 months for
up to 5 years (N = 70)

ddPCR Twenty-nine gene panel assessed
in tumor; in plasma used up to
two variants per patient (tumor-
informed)

Median: 11.5
(3-18)
months

Median: 24.7
(1-45.2)
months

Wang et al41 Colorectal
stage I to III

Postoperative (1 month;
N = 58); serial sampling
every 3-6 months (N = 58)

Safe-SeqS Fifteen gene panel assessed in
tumor; in plasma used mutation
with highest allele frequency
(tumor-informed)

Median: 4 (2-
31) months

No recurrence
group

Median: 49 (11-
70) months

Tie et al 62 Colon cancer stage II Postoperative 4 to 10 weeks
(n = 20 with detected
ctDNA); serial sampling
every 3 months up to 2
years (n = 27 who
recurred)

Safe-SeqS Fifteen genes assessed in tumor; in
plasma used the variant with the
highest allele frequency (tumor-
informed)

Median: 167
IQR 81-279

days

Median: 27
months

Ng et al68 CRC, mainly early-
stage

Preoperative/postoperative
(n = 13)

Serial sampling for patients
with recurrence (n = 26)

Multiplex PCR Seven hundred ninety nine cancer-
associated genes assessed in
tumor; up to 15 variants per
patient assessed in plasma
(tumor-informed)

Up to 255
days

965 (786-1,
253) days

Tie et al69 Colon cancer stage
III

Postoperative (4-10 weeks;
N = 96); at completion of
treatment (n = 88)

Safe-SeqS Fifteen CRC genes assessed in
tumor; in plasma used the
variant with the highest allele
frequency (tumor-informed)

Median: 51
(9-470)
days

Median: 28.9
months

Range: 11.6-46
0.4 months

Schøler et al39 CRC stage I-IV Serial samples day 0
(presurgery), 8, 30, and
every 3 months until either
death, patient withdrawal
from the study, or month 36
(n = 27)

ddPCR The assays target 100 patient-
specific SSVs, six recurrent
hotspot SPMs in KRAS, and four
patient-specific SPMs identified
by WES; average of 4.2
mutations per plasma sample
investigated in cohort 1; 1
mutation assessed in plasma of
each patient in cohort 2 (tumor-
informed)

Median: 9.4
(0.4-14.9)
months

Up to 36 months

Coombes et al7 Breast cancer stage
I-III

Every 6 months following
surgery and adjuvant
chemotherapy (N = 49)

Signatera Sixteen variants selected from
tumor tissue for each patient
(highest ranking for allele
frequency and sequence
content); 16 variants assessed in
plasma samples, presence of 2
mutations indicates ctDNA-
positive (tumor-informed)

Median: 8.9
(0.5-24.0)
months

Relapses within
50 months of
surgery

Olsson et al57 Breast cancer
Stage I-III

3-6 blood samples collected
over the clinical course;
approximately 3 to 8, 12,
24, and 36 months after
primary surgery (N = 20)

ddPCR 237 candidate rearrangements, 4-
6 identified in tumor; 4-6
assessed in plasma samples
(tumor-informed)

Median: 11
(0-37)
months

Metastatic
Median: 20 (14-

61) months
Disease-free
Median: 110

(109-116)

(Continued on following page)
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component where VEGA participants who become ctDNA-
positive can enter the ALTAIR trial (Fig 2B).

Trials such as DYNAMIC II, DYNAMIC III, and TRACC Part
C use a marker-based strategy design framework. In these
trials, patients are randomly assigned on the basis of MRD
testing results, with ctDNA-positive patients assigned to
treatment escalation and ctDNA-negative to de-escalation.
An active comparator receives SOC in the absence of in-
formation regarding ctDNA status (Fig 2C).

The TRACC Part C study further illustrates the use of this
design, examining whether postoperative ctDNA guided
therapy (de-escalated chemotherapy for ctDNA-negative
patients and SOC for ctDNA-positive patients) is non-
inferior to SOC chemotherapy in patients not tested for
ctDNA. This highlights the possible role of ctDNA testing in
reducing unnecessary SOC chemotherapy. Indeed,
ctDNA testing may ultimately identify patients who are
cured and do not require further therapy, a potential role

TABLE 4. Time From ctDNA Detection to Recurrence (Continued)

Reference Cancer ctDNA Testing Assay Variant Selection Process

Detection to
Recurrence
(range)

Follow-Up
(range)

Abbosh et al8 Lung cancer stage
I-III

Presurgery and postsurgery
(n = 24)

Signatera In plasma assayed median of 18
SNVs 11 clonal and six subclonal
on the basis of tumor results;
presence of two SNVs
establishes ctDNA positivity
(tumor-informed)

Median: 70
(10-346)
days

Relapse-free
patients
median: 775
(688-945)
days

Chaudhuri
et al29

Lung cancer stage
I-III

After first-line therapy (within 4
months of end of
treatment), every 3-6
months with blood
collections (n = 37)

CAPP-seq One hundred twenty eight genes
assessed pretreatment in
plasma (including known cancer
genes and other genes); variants
detected were assessed in
subsequent samples (tumor-
naive)

5.2 months 36 months from
initial post-
treatment
sample

Azad et al,
20209

Esophageal cancer
stage I to III

Pretreatment, post-CRT
(N = 45)

CAPP-seq Six-hundred and seven genes
assessed in tumor; one or more
assessed in plasma (tumor-
informed and tumor-naive)

114.9 days
Standard error

32.9 days

Up to 5 years

Leal et al70 Gastric cancer stage
IB-IVA

Baseline, after three cycles of
preoperative chemotherapy
(neoadjuvant), postsurgery
(N = 50)

Agilent
SureSelect

Targeted 58 cancer genes in
plasma

Median: 8.9
months

42 months

Christensen
et al11

Muscle-invasive
bladder cancer

Diagnosis (transurethral
resection) after
chemotherapy before
cystectomy and after
cystectomy (serial samples;
N = 68)

Signatera Sixteen variants selected from
tumor tissue for each patient
(with high ranking for variant
allele frequency and sequence
content); 16 variants assessed in
plasma samples; presence of 2
mutations indicates ctDNA-
positive (tumor-informed)

After
cystectomy

Median 96
(–83 to
245) days

21 months after
cystectomy

Yang et al10 Gastric cancer stage
I-III

1 month after surgery, every 3
months for first year, every 6
months thereafter (N = 44)

SeqCap EZ
Library

Targeted 1,021 genes in tumor and
plasma (tumor-informed)

6 months At least 29.1
(5.7-32.3)
months

Groot et al59 Pancreatic Serial sampling (n = 46) ddPCR KRAS mutations 84 days IQR
25-146

15 months

Birkenkamp-
Demtröder
et al71

Bladder cancer after
cystectomy

Serial sampling (n = 26) ddPCR Eighty-four variants in 61 genes
assayed and tumor-guided
personalized assays for plasma
(tumor-informed)

Median: 101
(0-932)
days

506-1,417 days
for patients
who did not
relapse

Tan et al12 Cutaneous
melanoma

Stage III resected

Serial (n = 79) ddPCR Multiple variants assessed in
tumor; one mutation assessed in
plasma (one of BRAF, NRAS,
TERT, or alternative when not
available; tumor-informed)

2 months 17-20 months
depending on
cohort

Abbreviations: CAPP-seq, cancer personalized profiling by deep sequencing; CRC, colorectal cancer; CRT, conformal external beam radiation therapy;
ctDNA, circulating tumor DNA; ddPCR, digital droplet polymerase chain reaction; IQR, interquartile range; SPM, somatic point mutation; SSV, somatic
structural variant; WES, whole exome sequencing.
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supported by high DFS for ctDNA-negative patients in the
adjuvant setting.6,64,69

Benefit from early detection is key to a successful inter-
vention involving treatment assignment through disease
monitoring. However, previous trials investigating intense
monitoring versus SOC have not always shown benefit. Two
randomized clinical trials in early-stage breast cancer that
compared intense monitoring (serial chest X-rays and bone
scans) to SOC failed to show improved survival.72,73 Like-
wise, serial carcinoembryonic antigen measurements and
imaging (CRC74) and CA-125 assessments (ovarian
cancer75) for monitoring patients following definitive

treatment did not demonstrate a mortality benefit. Con-
versely, early salvage radiation on the basis of prostate-
specific androgen testing is SOC for patients meeting
specific risk-benefit criteria following definitive treatment.76

Furthermore, two recent randomized trials in prostate
cancer demonstrated that early systemic therapy for rising
prostate-specific androgen levels, in the absence of clini-
cally detectable disease, can improve metastasis-free
survival and has led to US Food and Drug Administration
(FDA) approval of apalutamide and enzalutamide for this
indication.77,78 MRD-directed therapy has also long been
part of the treatment armamentarium in hematologic

Patients after
definitive
treatment

MRD
testing

ctDNA+
(randomly assign)

ctDNA–
(follow-up)

SOC
(optional)

SOC

SOC plus
investigational

therapy

A

B

ALTAIR
patients after

definitive
treatment

MRD
testing

ctDNA+
(randomly assign)

SOC

FTD/TPI

VEGA
patients after

definitive
treatment

MRD
testing

ctDNA
(follow-up) 

ctDNA–
adjuvant
CAPOX

C

Patients after
definitive
treatment

MRD
testing

ctDNA+
escalation

therapy

ctDNA–
de-escalation

therapy

SOC
(optional)

No MRD
testing

FIG 2. (A) Marker by treatment interaction
design with MRD testing after definitive
treatment. ctDNA-positive patients are ran-
domly assigned to SOC plus investigational
therapy versus SOC alone. ctDNA-negative
patients are assigned to the follow-up group.
Noninferiority component permits compari-
son of ctDNA-negative patients with ctDNA-
positive patients to ensure these patients
have outcomes that are no worse than
treatment groups. (B) Marker by treatment
interaction and noninferiority designs with
MRD testing after definitive treatment
(GALAXY, ALTAIR, and VEGA). ctDNA-pos-
itive patients from the GALAXY study are
randomly assigned in the ALTAIR study to
SOC plus investigational therapy versus SOC
alone. ctDNA-negative patients from GAL-
AXY are randomly assigned to CAPOX and
follow-up. Noninferiority of follow-up versus
CAPOX is investigated among ctDNA-nega-
tive patients. ctDNA-negative patients from
VEGA who become ctDNA-positive can
crossover to ALTAIR. (C) MRD testing after
definitive treatment. The results of MRD
testing are used to assign ctDNA-positive
patients to escalation and ctDNA-negative
patients to de-escalation therapy in Arm A.
Arm B has no ctDNA testing and receives
SOC. ctDNA, circulating tumor DNA; FTD/
TPI, trifluridine/tipiracil; MRD, molecular
residual disease; SOC, standard of care.
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cancers. A recent example is the FDA-accelerated approval
of blinatumomab for treatment of patients with a form of
B-cell leukemia who had MRD after initial chemotherapy.79

This single-arm trial showed that those with a complete
MRD response after blinatumomab had longer
progression-free survival and OS durations. Trials that focus
on ctDNA as an intervention are in the early stages, and
conclusions regarding the clinical utility of ctDNA-based
treatment assignment await their completion.

SURROGATE END POINTS

Associations of ctDNA dynamics and clearance with re-
sponse and survival outcomes are consistently reported
across cancers in the neoadjuvant and adjuvant
settings.6,10-12,29,47,80-83 These observations provide support
for using ctDNA status as a surrogate that could act as an
early indicator of clinical benefit, reducing trial length and
accelerating approval of new therapeutics.

A role for surrogate end points in oncology trials is widely
accepted, although debate exists regarding the employment
of many existing surrogates.84 A surrogate end point vali-
dated against an established end point can provide insight
into the benefit of new therapeutics, facilitating accelerated
approval, although generally, a confirmatory trial, with po-
tentially a large sample size, must be ongoing at time of
approval. Pathologic complete response (pCR), discussed
below, is a well-known surrogate end point. The FDA ap-
proved use of pCR for accelerated approval in the neo-
adjuvant setting for high-risk, early breast cancer in 2013.85

Initial data indicate that ctDNA holds promise as a surro-
gate end point. In the immuno-oncology setting, a minority
of patients with solid tumors respond to immune check-
point inhibitors (ICI), although treatment is known to have
long-term benefits for responders. Early determination of
response would enable patients who derive clinical benefit
from immune checkpoint inhibitors to continue therapy
while others could be spared from unnecessary toxicities.86

A retrospective analysis of the IMvigor010 trial found that
patients with urothelial carcinoma undergoing adjuvant
treatment with atezolizumab who cleared ctDNA had im-
proved DFS (hazard ratio, 0.26 [95% CI, 0.12 to 0.56]) and
OS (hazard ratio, 0.14 [95% CI, 0.03 to 0.59]) compared
with patients who did not clear ctDNA. These results
suggest that ctDNA testing provides an early readout that
informs treatment decisions.64

A potential role for ctDNA testing is to be used as a
complementary measure to pCR. A retrospective analysis of
the I-SPY-2 clinical trial, which evaluated neoadjuvant
treatment with investigational drugs in patients with high-
risk breast cancer using pCR as an end point, provides
support for using ctDNA testing in this role. The analysis
found that ctDNA status was strongly associated with pCR,
and lack of ctDNA clearance was a predictor of poor re-
sponse and metastatic recurrence. Importantly, ctDNA
clearance was associated with improved survival in patients

who did not achieve pCR, indicating ctDNA testing might
provide information regarding outcome in clinical trials
beyond that of pCR.83 Interestingly, data from this trial also
indicated ctDNA could serve as a complement to MRI
functional tumor volume as a predictor of treatment
response.87

Further evidence is needed before ctDNA dynamics or
clearance can be approved as surrogate end points in trials.
Approval by appropriate regulatory agencies depends on
accumulation of evidence from observational studies and
clinical trials. Meta-analyses of clinical trials will be key in
determining whether ctDNA dynamics or clearance ro-
bustly predicts treatment effect on the true end point.88

Currently, meta-analyses investigating ctDNA clearance as
an end point in the adjuvant setting are planned for CRC. In
addition, ongoing trials are collecting ctDNA as secondary
measures permitting further evaluation across cancer types
and treatment settings. Analysis and interpretation of these
data has challenges, because of heterogeneity in study
design, ctDNA assays, measurement and metrics, and
timing of ctDNA samples. Preliminary work from ctMoniTR,
a collaboration of private, government, and academic in-
stitutions with the aim of harmonizing data from clinical
studies using ctDNA-based treatment responsemonitoring,
indicates that trends in individual trials can be replicated in
aggregate.88 Agreements on standardization around key
aspects of trial design, such as ctDNA collection time
points, would further streamline analyses and facilitate
interpretation of results.60

CHALLENGES AND LIMITATIONS

As highlighted, alongside evidence presented for using
ctDNA for MRD detection in various malignancies, the
clinical question, assay timing, biology of shedding for
different cancer types, and number of time points being
collected cannot be ignored. Furthermore, reliable
knowledge of recurrence rates of ctDNA-negative patients
by cancer type is needed to allow for appropriate and
ethical de-escalation or discontinuation of therapy. The
merits of ctDNA testing would have to be weighed with the
risks and long-term quality-of-life outcomes. Additionally, a
question that often arises is whether ctDNA-positive pa-
tients are treatable or have occult metastatic disease that
may not be cured with adjuvant therapy. The latter two
concerns underscore the need to consider possible harms
from molecular monitoring and early intervention, partic-
ularly if clinical utility is less than what is currently antici-
pated. Costs of ctDNA testing may represent added out-of-
pocket expense for patients. False-positive results can lead
to additional testing, mental stress for patients, and ex-
posure to toxic and unnecessary therapy. Even true-positive
results can lead to deterioration of quality of life because of
drug-induced adverse effects at a stage when the cancer is
asymptomatic. Early systemic therapy for patients who
relapse may also run the risk that an effective treatment

Kasi et al
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option will no longer be available when the cancer becomes
symptomatic. These concerns can be settled through well-
conducted clinical trials.

In conclusion, evidence pointing to ctDNA as a biomarker
that can predict cancer recurrence continues to accumulate.
ctDNA-based MRD detection is now being incorporated into
the design of clinical trials. It seems likely that, for many
cancers, ctDNA-based trial enrichment will become in-
creasingly common because of cost-reduction benefits. Trial
efficiency could also benefit from using ctDNA as a surrogate

end point, leading to accelerated approval of new thera-
peutics. Further research, however, is needed to validate
ctDNA dynamics or clearance as end points. In the next few
years, trials using ctDNA-based MRD detection to identify
patients who may benefit from early therapeutic interven-
tions will release results. A clear demonstration of efficacy of
ctDNA-based MRD detection would transform clinical
practice. The importance of enrolling patients into ongoing
trials incorporating ctDNA as an integral or exploratory
marker cannot be overemphasized.
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APPENDIX

TABLE A1. Differences Between Tumor-Informed and Tumor-Naive Approaches
Comparison Tumor-Informed Tumor-Naive

Sensitivity Higher sensitivity, as ctDNA assays are based on
known variants22

Sensitivity may be compromised as gene panel
variants may not be present or may be found at
low frequencies in plasma22

Specificity High specificity, less prone to error as only includes
assessment of known variants present in tumor

Assessment of large number of variants may result
in more sequencing errors and reduced
specificity

CHIP Confounding Focusing on clonal variants may reduce
misclassification between CHIP and ctDNA
variants18

Requires additional filtering to minimize impact of
CHIP variants

Cellularity limited, or tumor DNA limited/
unavailable or of low quality

Tumor-informed approach may not be appropriate
for some or all samples

Not a concern as tumor tissue is not required

Detection of acquired mutations Test specific for variants found in primary tissue.
Does not detect acquired variants

Will detect acquired mutations (eg, ESR1, which is
rarely found in primary tumor tissue) if included
in gene panel

Costs Additional costs because of genotyping of tumor
tissue

Plasma DNA costs only

Logistics Need to arrange tumor tissue genotyping
Depends on available tumor tissue with sufficient

cellularity

Less complicated as only plasma samples are
processed

Turnaround time Longer turnaround time for the initial ctDNA test
because of the need to assay tumor tissue to
identify variants for plasma testing; subsequent
tests involve plasma only

Turnaround time dependent on plasma tests alone

Abbreviations: CHIP, clonal hematopoiesis of indeterminate potential; ctDNA, circulating tumor DNA.
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TABLE A2. Additional Clinical Trials Using ctDNA-Based MRD Detection to Select Patients, Guide Treatment, or as Surrogate End Point
Title/ID/Disease/
Phase Agent Assay Primary End Point ctDNA Utilization Sample Size

IMPROVE-IT
NCT03748680
CRC
Stage I or II
Phase: II

CAPOX or FOLFOX NGS + ddPCR DFS Inclusion criteria: ctDNA-
positive after surgery

Details: Randomly assigned to
CAPOX (or FOLFOX) or
intensified follow-up

64

NCT04486378
CRC
Stage II or III
Phase: II

RO7198457 DFS Inclusion criteria: ctDNA-
positive after surgery

Details: Randomly assigned to
treatment or follow-up

201

NCT04434040
Triple-negative

breast cancer
Phase: II

Ipatasertib and
atezolizumab

Clearance of ctDNA after six
cycles

Inclusion criteria: ctDNA-
positive after local therapy

Details: Add atezolizumab to
ipatasertib, single group
assignment

40

MEDOCC-
CrEATE

Colon cancer
stage II

Adjuvant
Chemotherapy

Percent receiving ACT if ctDNA-
positive, recurrence

Inclusion criteria: ctDNA-
positive after surgery

Details: Only ctDNA-positive
patients included in
analyses investigating DFS

660 enrolled,
60 ctDNA-positive for
DFS analysis

NCT03803553
CRC stage III,

CRC
metastatic

Phase: III

FOLFIRI, Nivolumab LUNAR-Guardant
Health

Assign treatment: ctDNA
assessment of patients to
assign treatment

Details: ctDNA-positive
receives FOLFIRI or active
surveillance, ctDNA-
negative assigned to active
surveillance, active
comparator is active
surveillance for ctDNA-
negative; also included is
nonrandomized arm for
ctDNA-positive MSI-H:
nivolumab

500

NCT03436563
CRC stage IV,

microsatellite
instability, or
other solid
tumors

Phase: I, II

M7824 ORR, ctDNA clearance Inclusion criteria: ctDNA-
positive

Assign treatment: Assign
M7824 to patients who are
metastatic or patients with
unresectable tumors

Details: Additional doses if
ctDNA-positive following
resection of all known liver
metastases, single group
assignment

74

Abbreviations: ACT, adjuvant chemotherapy; CRC, colorectal cancer; ctDNA, circulating tumor DNA; ddPCR, digital droplet polymerase chain reaction;
DFS, disease-free survival; ID, study identification; MRD, molecular residual disease; MSI-H, highmicrosatellite instability; NGS, next-generation sequencing;
ORR, overall response rate.
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