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SUMMARY

We present a comprehensive and robust protocol to track the dynamics of all
proteins in a complex in yeast cells. A single member of the protein assembly
is tagged and conditionally expressed, minimizing the perturbations to the
protein complex. Then, SILAC labeling and affinity purification are used for the
assessment of the whole protein complex dynamics. This method can determine
and distinguish both subunit turnover and exchange specifically in an assembly to
provide a comprehensive picture of assembly dynamics.
For complete details on the use and execution of this protocol, please refer to
Hakhverdyan et al. (2021).

BEFORE YOU BEGIN

Wewill describe the protein complex dynamicsmeasurement procedure on the yeast nuclear pore com-

plex (NPC). Metabolic labeling with isotopically heavy lysine is employed to track ‘‘old’’ and ‘‘new’’ pro-

teins. The old proteins are labeled with heavy lysine and the new proteins are labeled with light lysine,

thus allowing us to measure the fraction of the remaining old protein over time by mass spectrometry.

To a first approximation both turnover and exchange are first order reactions. Thus, both processes

can be estimated by fitting an exponential model to the data. For the turnover experiments (Figure 1),

firstly, the cells are grown in appropriate medium such that they are completely heavy labeled. Next,

the cells are switched to a light medium. The cells are then grown for several hours. Each hour a sample

is harvested and flash-frozen. The frozen samples are processed and NPCs affinity captured from them

through aGFP tag. The purified samples are then analyzed by quantitativeMS, which yields ameasure of

the appearance of ‘‘new’’ protein in the growing cells’ population of NPCs. As diagrammed in Figure 2,

the design of the exchange experiments is a straightforward adaptation of that for the turnover experi-

ments described above, with an additional capacity to also track ‘‘old’’ NPCs over time, allowing us to

assess if any Nups have been replaced with new ones. For this, we conditionally express the tagged

Nup with which we affinity capture the NPCs. During the first, heavy labeling step, the tagged Nup is

expressed normally. When cells are then switched to light medium, we stop translation of the tagged

Nup from its transcript to ensure extremely rapid cessation of its synthesis. During affinity capture,

post-lysis exchange of proteins is blocked by mild chemical crosslinking. The affinity capture step thus

generates only mature i.e., ‘‘old’’, initially heavy-labeled, NPCs; the subsequent appearance of light-

labeled Nups in this fraction from cells collected over time must then result from the exchange between

soluble Nups and those bound to mature NPCs.
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CRITICAL:

� identify the member of the complex with the slowest/negligible dynamics using prior knowledge

and literature (Nup157 and Nup84 for the yeast NPC)

Figure 1. Diagram of nucleoporin turnover experiment

(A) Initially, the cells are completely heavy labeled. Next, the cells are switched to a light medium. The cells are grown for 5 h. Each hour a sample is harvested and

flash-frozen. (B) The frozen samples aredisruptedand theNPCs are affinity captured throughaGFP tag. Thepurified samples are analyzedbyquantitativeMSand the

fraction of remaining old protein is plotted against time for each Nup. (C) An exponential curve is fitted to the data to determine the decay rate and half-life.
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Figure 2. Diagram of the nucleoporin exchange experiment

(A) Initially, the cells are completely heavy labeled. Next, the cells are switched to light medium. Simultaneously, the expression of the GFP-tagged Nup

is repressed. The cells are grown for 5 h. Each hour a sample is harvested and flash-frozen. (B) The frozen samples are disrupted and the NPCs are affinity

captured through the GFP tag, which is still present in the ‘‘old’’ NPCs. The purified protein samples are analyzed by quantitative MS and the remaining

fraction of old protein is plotted against time for each Nup. (C) An exponential curve is fit to the data to determine the decay rate and half-life.
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� Use prior knowledge or experimentally confirm that N-terminal tagging does not disrupt the func-

tion of the selected protein

� Identify the affinity capture condition that yields all/most proteins in the complex

� Pick a yeast background that is lysine auxotrophic or knock out an essential gene in lysine biosyn-

thesis pathway

In the first step we prepare the baker’s yeast (Saccharomyces cerevisiae) strain and analytical pro-

cedures for measuring protein turnover and exchange rates (Figures 1 and 2) in a complex that

can be affinity captured from lysed cells. While in principle this method should be readily adaptable

for other model organisms, we have not done so here. It is imperative that the protein chosen for

affinity tagging is stable and has slow dynamics in the protein complex of interest; use prior knowl-

edge and published literature to make the best choice. Our choice of the N-terminal vs C-terminal

tagging is based on the conditional expression system: translational repression with a tetracycline-

binding aptamer in the 50-UTR (untranslated region) of the target gene (details of which are provided

in (Kotter et al., 2009; Suess et al., 2012)). Note, since the experiments are performed in diploid cells,

the tagged protein (repressed during the exchange time course) can be essential, so long as it does

not produce haploinsufficiency. Next, it is important to become acquainted with sample prepara-

tion, cryomilling and affinity capture techniques. Since protein complexes have their physicochem-

ical idiosyncrasies, the optimal purification conditions have to be determined empirically and it is

best to do this on mock/unlabeled samples, since the actual samples labeled with stable isotopes

are more expensive to produce. Finally, we have observed best heavy lysine labeling results with

a lysine auxotrophic strain after 12–16 h growth. Hence, we recommend either using an auxotrophic

strain or knocking out an essential gene in the lysine biosynthetic pathway, e.g., LYS2 / YBR115C.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-HA (Y-11) rabbit polyclonal Santa Cruz Biotechnology Cat.# sc-805

Anti-GFP llama polyclonal IgG (Fridy et al., 2014) anti-GFP antibody

Chemicals, peptides, recombinant proteins, and media

Chlortetracycline hydrochloride Sigma-Aldrich Cat.# 26430

Calf Intestinal Alkaline Phosphatase (CIP) New England Biolabs Cat.# M0290

cOmplete�, EDTA-free Protease
Inhibitor Cocktail

Sigma-Aldrich Cat.# 11873580001

Coomassie Blue R250 MP Biomedicals Cat.# 190682

Glutaraldehyde Sigma-Aldrich Cat.# 340855

Trypsin Sequencing Grade, modified Roche Cat.# 11418033001

Iodoacetamide Sigma-Aldrich Cat.# I6125-10g

L-Lysine:2HCl 13C6 Cambridge Isotope
Laboratories Inc.

Cat.# CNLM-291-H

NuPAGE LDS Sample Buffer Thermo Fisher Scientific Cat.# NP0007

Pepstatin A Sigma-Aldrich Cat.# P5318

Polyvinylpyrrolidone, ave mol. Wt. ~40,000 Da Sigma-Aldrich Cat.# PVP40-500G

Protease Inhibitor Cocktail (PIC) Sigma-Aldrich Cat.# P8340

4-(2-Aminoethyl)benzenesulfonyl
fluoride hydrochloride

Sigma-Aldrich Cat.# A8456

Ultrapure Salmon Sperm DNA Solution Invitrogen Cat.# 15632011

Dextrose Fisher Scientific Cat.# OXLP0071B

Bacto Agar Fisher Scientific DF0140-01-0

SC (Synthetic complete) amino acid mixtures Sunrise Science
Products

Cat.# #: 1303-030, 1329-030

Yeast Nitrogen Base (YNB) w/o Amino Acids Fisher Scientific Cat.# DF0919-15-3

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

Dynabeads M270 Epoxy Thermo Fisher Scientific Cat # 143.02D

Deposited data

Mass spectrometry raw datasets Zenodo
(https://zenodo.org/ )

DOI #: 10.5281/zenodo.4062150

Experimental model organisms: Saccharomyces cerevisiae strains

MATa/a his3-D200/his3-D200
leu2-3,112/leu2-3,112 lys2-801/
lys2-801 trp1-1(am)/trp1-1(am)
ura3-52ura3-52

(Rout et al., 2000) DF5

MATa/a ade2-1::ADE2/ade2-1::
ADE2 trp1-1/TRP1 LYS2/lys2 ura3-1/
ura3-1 leu2-3,112/leu2-3,112 his3-11,
15/his3-11,15 can1-100/can1-100 myc-LoxP-
nup145DGLFG/myc-LoxP-nup145DGLFG

(Strawn et al., 2004) SWY2870

DF5, NUP84/pTDH3-tc3-GFP-Nup84::SpHIS5 This study Tc3-GFP-Nup84

DF5, NUP157/pTDH3-tc3-GFP-Nup157::SpHIS5 This study Tc3-GFP-Nup157

DF5, NUP84/pTDH3-tc3-GFP-Nup84::
SpHIS5, Nup145N-LoxP-6xHA-Nup145C/
Nup145N-LoxP-6xHA-Nup145C

This study Nup145NC-fusion

SWY2870, pTDH3-tc3-GFP-Nup84::SpHIS5,
lys2::KanR/lys2

This study nup145NDFG

DF5, nup120::URA3/nup120::URA3
NUP157/ pTDH3-tc3-GFP-Nup157::SpHIS5

This study nup120null

DF5, NUP84/pTDH3-tc3-GFP-Nup84::SpHIS5,
NUP170/Nup170-AID::KanR, OsTIR::URA3/ura3-52

This study Nup170-AID

DF5, pTDH3-tc3-GFP-Nup84::SpHIS5,
NUP116/ Nup116-AID::KanR, OsTIR::
URA3/ura3-52

This study Nup116-AID

Recombinant DNA: List of Plasmids Used in this Study

TDH3 promoter replacement and
N-terminal tagging with tetracycline
binding aptamers and 3HA tag, Amp, KanR

Euroscarf pTDH3-tc3-3xHA

Gene deletion, Amp, HIS5 Euroscarf pUG27

KanR marker in pTDH3-tc3-3xHA
replaced with HIS5 in
pTDH3-tc3-3xHA, Amp

This study Ttc3HAHis5

GFP encoding sequence inserted in
Ttc3HAHis5, Amp

This study Ttc3GFP-His5

N-terminal or internal 6xHA tagging,
Amp, KanR

Euroscarf pOM10

Transient, conditional expression of
Cre recombinase under GAL1 promoter,
Amp, URA3

Euroscarf pSH47

Gene deletion, Amp, KlLEU2 Euroscarf pUG73

Integratable plasmid, Amp, TRP1 Rout Lab p404GALL-GFP

C-terminal AID tagging, KanMX, Amp Yeast NIG BYP6740

osTIR expression, integrative URA3, Amp Yeast NIG BYP6744

Oligonucleotides

GAAATGAACTATATATCCTAT
AATCCCTTTGGCGGGACTTGGA
CTTTCAAAGTCAATCCTTGCAG
GTCGACAACCCTTAAT

This study ZH127

ACTCAAATCGTCTTCATCTATTTCC
GCATCTTCTTCATTGACTAACCCCCA
AATGCTAGAGCTAGAAGCGTAATC
TGGAAC

This study ZH128

CCGCATCAGACAAATCAG This study ZH131

(Continued on next page)
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STEP-BY-STEP METHOD DETAILS

Endogenous N-terminal tagging of the stable subunit of the protein complex of interest

Timing: [1 week]

1. Prepare synthetic defined agar plates lacking Histidine (SD-His) from SC-His (synthetic complete

lacking Histidine) amino acid mixture following manufacturer’s instructions (Sunrize Sciences).

2. PCR amplify the N-terminal tagging cassette from Ttc3GFP-His5 plasmid with 45–60 bp

overhangs homologous to the insertion locus (i.e., right at the ATG start codon), using standard

approaches and as described (Hakhverdyan et al., 2021).

Ttc3GFP-His5 contains the pTDH3 yeast promoter, 3 tetracycline-binding aptamers in the 50-UTR
andGFP - all parts necessary for conditional expression of the tagged gene of interest in the absence

of tetracycline/ chlortetracycline (ClTc) and repression in the presence of the antibiotic (Hakhverdyan

et al., 2021; Kotter et al., 2009; Suess et al., 2012).

3. Use the standard S. cerevisiae lithium acetate transformation procedure with the diploid strain of

interest.

4. Plate the transformants on SD-His plates.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

AAACGAGCTCTCGAGAAC This study ZH132

ATGACTAACGAAAAGGTCTGGATAG
AGAAGTTGGATAATCCAACTCTTTC
AGTGTTACCAGATCC
GCAGGCTAACCGGAAC

This study ZH150

TTAAGCTGCTGC
GGAGCTTCCACGAG
CACCAGCACCTGAAGC
AACTAGACTTA
TTTGCGCAGCTCGCTG
TGAAGATCCCAG

This study ZH151

TATGAAGGATCCGGCCT
GGAAGTTCTGTTCCA

This study ZH90

GCACCGAAGCTTTTTG
TACAATTCATCCATAC

This study ZH94

Software and algorithms

MaxQuant (version 1.2.2.5) (Cox and Mann, 2008) http://www.coxdocs.org/
doku.php?id=maxquant:start

UCSF Chimera, version 1.13 (Pettersen et al., 2004) https://www.cgl.ucsf.edu/chimera/

Custom Python scripts This study https://github.com/zhakhverdyan/
protein-dynamics-pipeline

Other

Mass spectrometer Thermo Fisher
Scientific

Orbitrap Fusion

Mass spectrometer Thermo Fisher
Scientific

Q Exactive Plus

Liquid chromatograph Thermo Fisher
Scientific

Easy-nLC 1000

Easy-spray column Thermo Fisher
Scientific

ES800

NuPAGE 4%–12% Bis-Tris Gel
1.0 mm 3 10 well

Thermo Fisher
Scientific

Cat.# NP0321Box

NuPAGE 43 LDS Sample Buffer Thermo Fisher
Scientific

Cat.# NP0007

Poros R2 reversed phase resin Thermo Fisher
Scientific

Cat.# 1112906

OMIX Tips Agilent Cat.# A57003100
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5. Confirm the correct insertion of the cassette as well as the remaining wild type locus by PCR with

oligos specific for the insertion locus and tag. See reference (Longtine et al., 1998) for details.

6. Confirm proper expression and localization of the construct in positive clones by western-blot

using antibodies specific against the tag and fluorescence / immunofluorescence microscopy.

a. Confirmation of the functionality of the N-terminal tagged protein by standard yeast genetic

methods is advisable.

Harvesting cells and making noodles

Timing: [2 days]

Prepare Resuspension Buffer:

1.2% w/v PVP-40 (Polyvinylpyrrolidone, ave mol. Wt. �40,000 Da), 20 mM HEPES / KOH pH 7.4

(keep at 4�C for months)

Note: Before using the Resuspension Buffer, add the following solutions to the volume of

buffer you intend to use.

� 1:100 PIC (protease inhibitors cocktail).

� 1:100 Solution P (Dissolve 90 mg 4-(2-aminoethyl)benzenesulfonyl fluoride and 2 mg pepstatin A

in 5 mL dry absolute ethanol).

� 1:1000 of 1 M DTT (dithiothreitol) in water.

This protocol is designed to harvest a yeast cell culture and prepare it for milling.

7. Prepare synthetic defined medium lacking Histidine (SD-His) from SC-His (synthetic complete

lacking Histidine) amino acid mixture following manufacturer’s instructions (Sunrize Sciences).

8. Grow cell culture in SC-His to at least 3.03107 cell/mL total. Growth is in an orbital shaker / incu-

bator at 200 RPM, 30�C.
9. Spin cultures down at 40003g, for 10 min, 4�C.
10. Wash the cell pellet, by resuspending the pellet with 50 mL of ice-cold water. Put the resus-

pended solution into a 50 mL Falcon tube(s) and spin down at 26003g, for 5 min, at 4�C. Repeat
this step once.

11. Resuspend pellet, with a volume of Resuspension Buffer at 4�C equal to the volume of the pellet

(estimated by eye). Spin down at 26003g, for 15 min, 4�C. Aspirate all liquid from the pellet.

12. Spin down again (just the pellet), at 26003g for 15 min to ensure all of the buffer is removed.

CRITICAL: use an aspirator to remove as much liquid as possible from the pellet as

excessive liquid interferes with successful cryomilling (next step).

13. The pellets should be free of excess liquid and resemble a thick paste.

14. Place liquid nitrogen in a styrofoam container, cover with double ply aluminum foil and place a

50mL Falcon tube through a hole in the foil ensuring that the bottom of the tube is submerged in

the liquid nitrogen. Allow the tube to cool.

Caution: exercise care when handling liquid nitrogen, always wear cryo gloves and perform the

procedure in a well-ventilated area or a chemical fume hood.

15. Fill the cooled 50 mL Falcon tube, to the very top, with liquid nitrogen.

16. With a spatula, scoop out the cell paste from step 6 and place into a 10 mL or 20 mL syringe.

Squirt the cell paste into the liquid nitrogen in the Falcon tube; this will form ‘‘noodles’’ of frozen

cell paste.
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17. When all cell paste is frozen as noodles, decant liquid nitrogen from the tube (try not to lose any

noodles; can pour off liquid nitrogen by poking holes into the cap of the Falcon tube, screw on

the cap and then turn the tube upside down to pour out the liquid nitrogen).

18. Do not tighten the tube cap completely, in order to allow liquid nitrogen to evaporate. Store

tubes at - 80�C. Close the cap after 24 h.

Cryogenic disruption of yeast cells

Timing: [1 day]

We use a Retsch PM100 Planetary Ball Mill, with either the 50 mL or 125 mL stainless steel jars.

Alternatively, other models such as the Retsch Cryomill or Retsch MM 400 can also be used. For

visualization of a very similar protocol, see reference (LaCava et al., 2016).

19. Fill a rectangular ice bucket about 1⁄4 full with liquid nitrogen.

20. Determine the required volume of the milling jar and number of 20 mm steel grinding beads

based on the noodle volume:

a. For 20 mL–50 mL of noodles, use a 125 mL jar, for less than 20 mL of noodles, use a 50 mL jar.

b. For 50 mL noodles use 7–9 balls, 20–50 mL - 9–11 balls, 15–20 mL - 2–3 balls

21. Pre-chill everything in the liquid nitrogen: immerse the stainless steel milling jars, the stainless

steel lid, the milling balls and the storage tube, with the frozen yeast noodles, in the liquid

nitrogen.

22. Pre-cooling is finished when the nitrogen bath is no longer bubbling vigorously.

23. Once everything is chilled, tip the appropriate amount of packed noodles into the milling jar.

Place the required number of balls inside the jar.

24. Weigh the milling jar (with noodles and beads) and adjust the counterbalance weight.

25. Be sure no liquid nitrogen is in the milling jar prior to milling to avoid a buildup of pressure in the

jars during milling.

26. Milling is completed in 8 cycles:

a. when using the 125 mL jar each cycle is set to 400 RPM, 3 min plus 1 min reverse rotation with

no breaks between rotations.

b. when using the 50 mL jar the milling settings are: 500 RPM, 3 min plus 1 min reverse rotation

with no breaks between rotations.

Note: You must hear the balls rattling around in the jar. If there is no rattling then add/remove

balls to the jar until you hear it rattle.

CRITICAL: A rattle should be audible throughout the grinding cycle, otherwize the beads

and powder are stuck and the powder is not being milled.

27. Between each cycle the jars are removed and re-cooled in liquid nitrogen.

a. Do not remove the lid (removal of lid may result in cell material loss).

b. To ensure the lid is chilled use an empty Falcon tube to pour liquid nitrogen over the top of

the milling jar while the bowl of the milling jar cools in the liquid nitrogen bath.

CRITICAL: Do not submerge the jar completely as this will allow liquid nitrogen into the

milling bowl and may also result in cell loss.

28. When 8 cycles are complete check inside the jar – if there is powder stuck to the side of the jar

repeat 1milling cycle at 350 RPM, 2min plus 1min reverse rotation no breaks between rotations.

29. Use a pre-chilled metallic spatula to move the milled powder to falcon tubes pre-chilled in liquid

nitrogen. Store at �80�C until use.
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Pause point: the frozen powder can be stored at �80�C for up to a year.

Antibody conjugation of magnetic beads

Timing: [3 days]

Note: antibody-conjugated magnetic beads can be stored at �20�C for months.

Prepare:

Dynabeads (M270 Epoxy). Keep dry powder at 4�C, stable for months.

0.1M sodium phosphate, pH 7.4. Stable for months at 20�C–24�C.

3M ammonium sulfate in 0.1M sodium phosphate, pH 7.4. Stable for months at 20�C–24�C.

100 mM Glycine pH 2.5. Stable at 4�C for months.

10 mM Tris, pH 8.8. Stable at 20�C–24�C for months.

Fresh 100 mM Triethylamine (56uL Triethylamine in 4 mL water). Prepare immediately before use.

103 PBS (1.37MNaCl, 27mMKCl, 100mMNa2HPO4, 18mMKH2PO4, pH 7.4). Stable at 20�C–24�C
for months.

13 PBS. Stable at 20�C–24�C for months.

13 PBS + 0.5% Triton X-100. Stable at 20�C–24�C for months.

50% glycerol, 1x PBS. Stable at 20�C–24�C for months.

30. Measure out 100 mg of Dynabeads (M270 Epoxy).

31. Add 6 mL 0.1 M sodium phosphate, pH 7.4.

32. Vortex for 30 s, nutate 10 min, 20�C–24�C. For all subsequent magnetic bead recovery steps,

use a manufacturer’s recommended magnet to pellet the beads.

33. Repeat the sodium phosphate buffer washing step, rock until ready to add antibody solution.

34. In a round bottom 5 mL falcon tube combine 13 PBS with 1 mg of purified antibody specific for

the tag up to 1 mL (in our case, we used either rabbit or llama anti-GFP polyclonal antibodies).

35. Add 1 mL of 3 M ammonium sulfate in 0.1 M sodium phosphate, pH 7.4, drop wise while gently

shaking the tube. Filter the resulting antibody solution through a 0.22 micron filter.

36. Combine the antibody solution with beads in a 15 mL round bottom f tube, seal the cap with

parafilm and incubate in a slowly rotating wheel (or equivalent) at 30�C for 2 days.

37. After the incubation, transfer to a 15mL falcon tube, and perform the following washes using the

magnet from step 32:

CRITICAL: glycine, tris and triethylamine washes should be performed quickly (no incuba-

tion) to avoid excessive denaturation of the conjugated antibodies.

a. 4 mL 100 mM Glycine pH 2.5.

b. 4 mL 10 mM Tris, pH 8.8.

c. 4 mL fresh 100 mM Triethylamine.
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d. 4 mL 13 PBS and place the tube on a rocker for 5 min, next pellet the beads on the magnet

and remove the supernatant

e. Repeat the wash in 37 d 3 more times.

f. Finally, incubate the beads with 4 mL 13 PBS + 0.5% Triton X-100 for 15 min on a rocker.

38. Remove the final wash and resuspend the beads in 670 uL 50 % glycerol, 13 PBS and store at

�20�C. The conjugated beads are stable up to a year

Affinity capture optimization

Timing: [1–5 days]

Note: this analysis assumes the composition of the protein complex is known, e.g. the number

of subunits and stoichiometry. The goal of optimizing the extraction condition is to purify the

majority of the complex, observed as sharp, roughly stoichiometric bands on a Coomassie-

stained protein gel. Please see (Hakhverdyan et al., 2015) for optimal purification profiles.

CRITICAL: avoid primary amines in the extraction buffers, as this will interfere with the

crosslinking step (crosslinking is applied to labeled samples only, see below).

CRITICAL: do not proceed with the protocol unless an optimal extraction buffer is

selected.

Prepare a 50 3 protease inhibitor cocktail solution by dissolving a complete EDTA-free protease in-

hibitor tablet (Sigma-Aldrich) in 1 mL of milliQ filtered water. The solution is stable at �20�C for

months. Thaw out the stock immediately prior to use. Note, protease inhibitors are only added to

the extraction buffer prior to cell powder resuspension and should be omitted for other steps.

Additionally, the extraction buffer added to the frozen cell material should be at 20�C–24�C to

prevent the buffer from freezing and aid in the rapid resuspension of cell material.

Prepare extraction buffers to test. Once prepared the buffers are stable at 20�C–24�C for several

months (without protease inhibitors). Some exemplar extraction buffers are listed as follows, but

the exact composition to maximally preserve any given macromolecular assembly must be

empirically determined. A full description of empirical parameterization of optimal buffer conditions

can be found in (Hakhverdyan et al., 2015):

� 20 mM Na-HEPES (pH 7.4), 0.15–1 M sodium chloride, and 0.1% (v/v) Tween 20.

� Between 0.25 M to 1.5 M ammonium acetate (pH close to 7.0) and 1% (v/v) Triton X-100.

� 250 mM sodium phosphate (try between pH 7 to pH 8) and 1% (v/v) Triton X-100.

� 40 mM Tris-Cl (pH 8.0), between 50 mM to 250 mM sodium citrate, 150 mM sodium chloride, and

1% (v/v) Triton X-100.

Prepare 13 LDS buffer (stable at 20�C–24�C for months), by diluting 43 LDS buffer (Thermo Fisher)

4-fold with Milli Q water.

Pre-chill a benchtop centrifuge to 4�C.

39. Using a liquid nitrogen cold metallic spatula, weigh�100 mg of cell powder into liquid nitrogen

pre-chilled 1.5 mL tubes.

40. Remove these tubes containing the �100 mg aliquots of yeast cell powder from liquid nitrogen

and let them stand with open (or loosened) caps for 30 s (per 100 mg) at 20�C–24�C.
41. Add four volumes of extraction buffer at 20�C–24�C supplemented with 13protease inhibitors

to the yeast cell powder (e.g., 400 uL extraction buffer + protease inhibitors per 100 mg of
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powder). Briefly vortex (30 s) to completely resuspend the cell powder. Once the cell material is

resuspended the subsequent steps should be performed at 4 C.

42. Clarify the crude extracts by spinning in a benchtop microcentrifuge at 23,000 g for 7 min at 4 C.

43. While the cell extracts are in the centrifuge, aliquot the antibody-conjugated magnetic affinity

medium into microcentrifuge tubes (5 uL bead slurry per 100 mg of powder).

44. Pre-equilibrate the beads by washing them three times with 0.5 mL of extraction buffer:

a. Add 500 uL extraction buffer to microcentrifuge tubes, add 5 uL of bead slurry per tube

b. Use a vortex mixer to completely resuspend the beads

c. Place on the magnet and wait for the beads to pellet

d. Use an aspirator to remove the supernatant

e. Repeat the wash 2 more times, but leave the supernatant for the final wash

f. Remove the final wash only when ready to proceed (to avoid drying the beads)

45. Transfer the clarified extracts to the tubes containing the washed magnetic beads (after

removing the final wash). Incubate the mixture on a rotating wheel (�20 RPM) mixer for

30 min at 4 C.

46. After the batch binding is complete, place the tubes on a magnet to collect the beads and re-

move the supernatant. Wash the beads three times with 500 uL of extraction buffer as in step 44.

During the second wash, transfer the beads to a fresh microcentrifuge tube, and then perform

the final wash.

Note: the transfer to a fresh tube reduces the contaminants in the final elution.

47. Remove as much liquid as possible from the beads and elute the protein complexes by incu-

bating the beads with 20 uL of 13 LDS sample buffer (without a reducing agent to prevent

IgG leakage) at 70�C. After magnetic removal of the beads, add 50 mM of DTT and incubate

the sample at 70�C for 10 more minutes. .

48. Perform standard SDS-PAGE to evaluate the affinity capture results (Hakhverdyan et al., 2015).

Exchange and turnover measurement time course

Timing: [2 days]

Note: all yeast growth is at 200 RPM, 30�C in an orbital shaker / incubator.

Prepare stock solutions and growth media:

� 50 mg/mL 13C6 L-lysine (K6, 10003). Dissolve in water, filter-sterilize and freeze aliquots at�20�C
until ready for use (stable for months).

� 50 mg/mL 12C6 L-lysine (K0, 10003). Dissolve in water, filter-sterilize and freeze aliquots at�20�C
until ready for use (stable for months).

� > 120 mL of 8 mg/mL Chlortetracycline (ClTc) dissolved in water. Filter sterilize and freeze / store

aliquots at �20�C (stable for months). Thaw right before use.

� 11 L of synthetic complete yeast medium, prepare a day prior to experiment :

� 13 SC-His-Lys (synthetic complete lacking histidine and lysine, Sunrise Sciences), autoclave in

foil-covered erlenmeyer flasks (or 2 L bottles) the day before the experiment.

� 103 YNB (yeast nitrogen base, Fisher Scientific) , filter-sterilize and store at 4 C until ready for

use (stable for months).

� 20% Glucose, autoclave and store at 20�C–24�C until ready for use (stable for months).

� combine the ingredients to make synthetic dropout medium lacking histidine and lysine

(SCD-His-Lys) as follows:

- 1 part 10x YNB (1.1 L), 1 part 20% Glucose (1.1 L), 8 parts 13 SC-His-Lys (8.8 L).

� 2 L Heavy labeling medium:

� 2 L SCD-His-Lys + 2 mL K6
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� 4.2 L Turnover medium:

� 4.2 L SCD-His-Lys + 4.2 mL K0 + 105 mL sterile water

� 4.2 L Exchange medium:

� 4.2 L SCD-His-Lys + 4.2 mL K0 + 105 mL 8 mg/mL ClTc

Prechill a centrifuge for spinning large cultures to 4�C.

Prepare Resuspension buffer:

1.2% w/v PVP-40 (Polyvinylpyrrolidone, ave mol. Wt. �40,000 Da), 20 mM HEPES / KOH pH 7.4

(keep at 4�C for months).

Prepare a 50 3 PIC (protease inhibitor cocktail) solution by dissolving a complete EDTA-free

protease inhibitor tablet (Sigma-Aldrich) in 1 mL of milliQ filtered water. The solution is stable at

�20�C for months. Thaw out the stock immediately prior. Keep frozen until use.

49. Inoculate the tagged yeast strain into 40 mL of Heavy labeling medium and grow 12–16 h.The

followingmorning, inoculate the culture into remaining�2 L Heavy labelingmedium. Grow until

OD600 = 1.

50. Spin yeast culture down in 500 mL or 1 L centrifuge bottles for 5 min at 20003 g. Discard the

supernatant.

51. Re-suspend one half of the resulting yeast pellet into 4.2 L of Turnover medium (turnover culture

Figure 1). Re-suspend the remaining half into 4.2 L of Exchange medium (exchange culture

Figure 2).

Note: The time course starts as soon as the cells are re-suspended.

52. Follow the table below to harvest samples at given time points, e.g., collect 1.5 L of each

Turnover and Exchange cultures after 1 h of growth, collect 1 L after 2 h, etc.

53. For each sample perform the (modified) harvesting procedure:

Note: the protocol essentially follows steps 9–18, except it is streamlined and adapted for less

cell material.

a. The cell material must be kept cold immediately after it is taken out of the incubator. Harvest

the cells at 40003 g for 5 min in a 4�C pre-chilled centrifuge.

b. No washing steps are necessary. Re-suspend the cell material in 25 mL Resuspension Buffer

with 1 3 PIC and put in a capped 60 mL syringe. Save the syringe plungers for later use.

c. Place syringes in 50 mL Falcon tubes and spin at 40003 g for 5 min, 4�C. Discard the

supernatant and repeat the spin. Remove the remaining supernatant with an aspirator. Try

to remove as much liquid as possible.

Note: the drier the cell paste, the less cell material will stick to the walls of the milling jar, which

is important when the cell material is limited.

d. Sit labeled falcon tubes in liquid nitrogen (liquid nitrogen filled inside). Remove the caps from

syringes and push the cell material into the corresponding tube with the plunger. Carefully

Time (h) 1 2 3 4 5

Volume(L) 1.5 1 0.7 0.5 0.3

Note, the presented harvesting times work for cells doubling roughly every 2 h. For slower/faster cells, the growth interval

between harvests needs to be adjusted.
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remove the liquid nitrogen from the tubes, loosely cap the tubes (to allow nitrogen to escape)

and place �80�C. The tubes can be tightened the day after.

Pause point: the frozen powder is stable at �80�C for many months

54. Cryogenic disruption of the frozen noodles is performed exactly as in steps 19–29.

Pause point: the frozen powder is stable at �80�C for many months

Affinity capture (modified)

The following steps are minor modifications of the procedure as described in steps 39–48.

Prepare the optimal extraction buffer, determined in steps 39–48. Here, the optimal buffer is

supplemented with a low concentration of glutaraldehyde, which introduces substoichiometric

stabilizing crosslinks in the complex to inhibit in vitro protein exchange (Subbotin and Chait, 2014).

Prepare a 50 3 protease inhibitor cocktail solution by dissolving a complete EDTA-free protease

inhibitor tablet (Sigma-Aldrich) in 1 mL of milliQ filtered water. The solution is stable at �20�C for

months. Thaw out the stock immediately prior to use. Note, protease inhibitors are only added to

the extraction buffer prior to cell powder resuspension and should be omitted for other steps. Addi-

tionally, the extraction buffer added to the frozen cell material should be at 20�C–24�C to prevent

the buffer from freezing and aid in the rapid resuspension of cell material.

Prepare the optimal extraction buffers.

EM-grade glutaraldehyde 50% w/v solution in water, aliquot, store at �20�C. Discard after 3 freeze-

thaw cycles.

Label 2 mL round-bottom tubes.

Prepare ice and liquid nitrogen.

55. Pre-chill 2-mL round bottom tubes in liquid nitrogen.

56. Weigh out 200 mg of cryomilled powder.

57. Add 800uL of 20�C–24�C extraction buffer with 13 protease inhibitors and 10 mM EM-grade

glutaraldehyde (keep 50% w/v in water, �5M aliquoted at �20C).

a. Note, 20�C–24�C buffer aids in rapid powder resuspension.

b. Glutaraldehyde is very reactive, add immediately prior to use.

58. Vortex for 30 s, check if the powder is completely resuspended, otherwise, ice for 30 s and

repeat the vortexing step. Incubate on ice for 5 min.

59. Quench the cross linking reaction by adding 100 mM Tris, pH 8.0.

60. Clarify the lysate by spinning 10 min at >20,000 g, 4�C.
61. While the lysate is spinning wash 10 uL of the packed antibody conjugated dynabeads with

500uL of extraction buffer 23 as in step 44.

62. Apply the supernatant to the beads, incubate for 1 h at 4�C with agitation, e.g., orbital shaker or

a wheel.

Note: It is better to use flat-bottomed 2mL tubes for the binding step, since conical tubes do

not permit complete mixing of the sample.

63. Remove the flow-through and wash the beads 23 with 500uL of cold extraction buffer as in step

44 (no glutaraldehyde or protease inhibitors necessary at this stage) .

64. Transfer the beads to a fresh tube (with 200uL of fresh extraction buffer).
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65. Remove the buffer and incubate the beads with 25uL of 13NuPage LDS Sample Buffer (10 min,

70�C).
66. Move the eluate to a fresh tube, add 50 mM (final concentration) DTT, incubate for a further

10 min at 70�C.

Pause point: the eluates should be stored at �20�C until ready for the next step

Sample preparation for mass spectrometry

Timing: [3 days]

There are numerous procedures for sample cleanup for mass spectrometry. We prefer the gel plug

approach as it enables efficient detergent removal in a concentrated sample and a convenient

means for handling and digesting the entire mixture of the denatured proteins of interest. Note,

starting from step 11, destaining of gel bands, all reagents used must be HPLC/LC-MS grade.

Prepare:

Note: Bicarbonate containing solutions should be stored at 4�C for no longer than a month.

Remaining solutions are stable at 20�C–24�C for months, except Iodoacetamide, stored at

�20�C.

50 mM Ammonium Bicarbonate in milliQ water.

50 mM ammonium bicarbonate, 50% acetonitrile (v/v).

1M Iodoacetamide.

Destaining solution (16% methanol, 10% acetic acid in milliQ water).

HPLC/LC-MS grade acetonitrile.

HPLC/LC-MS grade water.

5% trifluoroacetic acid stock, sequencing grade.

0.1% trifluoroacetic acid in HPLC grade water.

40% acetonitrile, 0.1% trifluoroacetic acid in HPLC grade water.

50% acetonitrile, 0.1% trifluoroacetic acid in HPLC grade water.

80% acetonitrile, 0.1% trifluoroacetic acid in HPLC grade water.

67. Alkylate the gel sample (above) with 100 mM iodoacetamide for 30 min in the dark at 20�C–
24�C.

68. Load the sample into the well of a NuPage 4%–12% Bis-Tris Gel 1.0 mm 3 10 well

69. Run the gel for 5 min at 200 V, until the sample completely runs into the stacking gel as a tight

band

Note: time and voltage need to be adjusted depending on the gel system.

70. Place the gel into a fresh container allowing ample movement during agitation.
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71. Wash the gel once for 5 min with milliQ water.

72. Fix for 5 min with destaining solution.

73. Wash 23 5 min with milliQ water.

74. Stain the gel for 1 h with commercial colloidal Coomassie stain according to manufacturer’s

instructions, e.g., Thermo Fisher GelCode� Blue Safe Protein Stain.

75. Destain the gel in milliQ water until clear background

Note: this step takes (3 h–12 h, frequent water changes expedite the procedure).

76. Excise protein bands from the gel with a disposable razor and put in low binding Eppendorf

tubes.

77. De-stain remaining Coomassie from the resulting gel plug with 500uL 50 mM ammonium

bicarbonate, 50% acetonitrile at 37�C with shaking.

78. Replace the destaining solution every 20–30 min until the coomassie is fully gone (keep the

tubes at 4�C if destaining for > 6 h).

79. Remove destain and add 100uL 100% acetonitrile, vortex 10–20 s and spin down. Pipette out

acetonitrile and leave the tubes open to air dry for 5 min (cover with a Kimwipe to prevent

dust from falling in) or speedvac to remove residual acetonitrile (30�C, 5 min).

80. While the tubes are drying prepare the digestion solution: 12.5 ng/uL trypsin in 50 mM

ammonium bicarbonate.

81. Add 30uL of digestion solution on dry gel pieces and place the tube on ice for 30 min �1 h to

allow the gel pieces to swell. Check if the gel pieces are sticking out of the liquid, add 10–

20uL 50 mM ammonium bicarbonate as necessary to cover the pieces.

82. Put the tubes at 37�C, check after 1 h, sometimes because of evaporation or further swelling gel

pieces stick out, add 50 mM ammonium bicarbonate as necessary. Incubate for 4–12 h..

83. Transfer the Trypsin digest above gel pieces to a fresh Eppendorf LoBind tube (all extracts will

be combined in this tube).

84. Add 50uL of 0.1% trifluoroacetic acid and incubate at 20�C–24�C on a shaker for 20–30 min.

Combine the extract with trypsin digest (from step 17).

85. Add 40% acetonitrile, 0.1% trifluoroacetic acid and incubate at 20�C–24�C on a shaker for

20–30 min. Combine the extract with trypsin digest (from step 17).

86. Add 80% acetonitrile, 0.1% trifluoroacetic acid and incubate at 20�C–24�C on a shaker for

20–30 min. Combine the extract with trypsin digest (from step 17).

87. Add 100% acetonitrile and incubate at 20�C–24�C on a shaker for 20–30 min. Combine the

extract with trypsin digest (from step 17).

88. Evaporate off combined fractions in a speedvac.

89. Resuspend the peptides in 0.1% trifluoroacetic acid.

90. Follow manufacturer’s instructions for binding the protein digest to C18 tips.

91. Wash the tips 43 with 0.1% trifluoroacetic acid.

92. Elute once 40% acetonitrile, 0.1% trifluoroacetic acid and once with 80% acetonitrile, 0.1%

trifluoroacetic acid, combine eluates.

93. Evaporate off combined fractions in a speedvac.

Mass spectrometry procedure

Before you begin prepare:

5% (v/v) methanol, 0.2% (v/v) formic acid.

Solvent B: 0.1% (v/v) formic acid in acetonitrile.

Solvent A: 0.1% (v/v) formic acid in water.

Note: the solutions are stable at 20�C–24�C for months.
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Note: the MS run parameters below have been optimized for Q Exactive Plus and Orbitrap

Fusion and would need to be adjusted for a different system.

94. Resuspend peptides in 5% (v/v) methanol, 0.2% (v/v) formic acid.

95. Load onto an EASY-Spray column (Thermo Fisher Scientific, ES800, 15 cm 3 75 mm ID, Pep-

Map C18, 3 mm) via an EASY-nLC 1000 (Thermo Fisher Scientific).

96. Set the column temperature to 35�C.
97. Set the flow rate to 300 nl/min.

98. Elute the peptides with a gradient of 4%–30% solvent B in 35 min, followed by 30%–80% B in

5 min.

99. Apply a voltage of 1.7–2.5 kV to obtain stable spray of the peptide solution.

100. Use either a Q Exactive Plus or Orbitrap Fusion (both Thermo Fisher Scientific) or equivalent to

perform online mass spectrometric analyses.

101. For analyses performed on the Q Exactive Plus:

a. Fragment the top 10 most intense ions in each full scan by higher-energy collisional disso-

ciation.

b. Detailed parameters of the method are as follows:

c. For analyses performed on the Orbitrap Fusion:

i. Perform full scans every 5 s.

ii. As time between full scans allows, fragment ions by collision-induced dissociation in de-

scending intensity order.

iii. Precursors are detected in the Orbitrap and fragments are detected in the ion trap.

Detailed parameters of the method are as follows:

The parameters for full scans were

Microscans 1

Resolution 70,000

AGC target 3e6

Maximum injection time 500 msec

m/z scan range 350–1500

Spectrum data type Profile

Parameters relevant to the selection of precursors for MS2

Exclude charge 1 and unassigned True

Peptide match Preferred

Exclude isotopes True

Dynamic exclusion Exclude after 1 MS2 scan
for 15 s, with mass tolerance 10 ppm

The parameters for MS2 scans were

Microscans 1

Resolution 17,500

AGC target 1e5

Maximum injection time 100 msec

Spectrum data type Centroid

Normalized collision energy 30%

Isolation window 2 m/z

The parameters for full scans were

Microscans 1

Resolution 60,000

AGC target 2e5

Maximum injection time 100 msec

m/z scan range 300–1500
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Use of MaxQuant for relative heavy-light evaluation

102. Search raw data against forward and reversed yeast (or organism of choice) translated ORF se-

quences, as well as common contaminants.

103. Use the following parameters:

104. Additionally, make sure that the time point samples for one experiment are sequentially

(alphanumerically) labeled, e.g., a1, a2, a3, ....

Curve fitting, parameter extraction

Note: the following procedure is intended as a foundation for the mass spec analysis. Depending

on the project needs and the particular protein complex of interest, further regrouping/analysis of

data might be necessary. The following analysis is provided as a python script here:

https://github.com/zhakhverdyan/protein-dynamics-pipeline

105. Please follow the instructions in the README.md file for running the script. The final analysis is

written in the data_out/Assigned/evidence_poi_grouped.txt file.

Following is the description of data cleaning and analysis steps performed by the script:

Use quadrupole isolation True

Spectrum data type Profile

Parameters relevant to the selection of precursors for MS2

Monoisotopic precursor selection True

Intensity threshold 1e3

Include charge 2–6

Dynamic exclusion Exclude after 1 MS2 scan
for 15 s, with mass tolerance 10 ppm

The parameters for MS2 scans were

Microscans 1

Isolation mode Quadrupole

AGC target 7e3

Maximum injection time 100 msec

Spectrum data type Centroid

Isolation window 2 m/z

Collision energy 35%

Activation Q 0.25

Ion trap scan rate Rapid

Multiplicity 2

Maximum labeled amino acids 3

Fixed modification carbamidomethylation at cysteine

Variable modifications oxidation at methionine, acetylation of protein N-terminus

Maximum modifications per peptide 5

Digestion enzyme Trypsin

Maximum missed cleavages 2

Requantify Enabled

Match between runs enabled with match time window 0.7 min and alignment
time window 20 min

Minimum label ratio count for protein quantitation 2

Peptides for quantitation unique and razor, including unmodified peptides and
peptides with aforementioned modifications

MS/MS FTMS top peaks per 100 Da 12, with match tolerance 20 ppm

MS/MS ITMS top peaks per 100 Da 8, with match tolerance 0.5 Da
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a. Filter out contaminants, decoys, and peptides with no lysine.

b. Compute the heavy labeled fraction (HLF) for all remaining peptides using theMaxQuant h/

l column:

HLF =
h

h+ l
=

h
l
h+ l
l

=
h
l

h
l + 1

c. Average the HLF of the peptides for the same protein.

d. Log-transform the HLF and fit a linear regression model with time as independent variable

and HLF for time points as dependent variable. Some parameters and statistics extracted

from fitting are:

� k (slope) - hourly rate of heavy labeled fraction reduction or the ‘‘old’’ protein reduction,

which is taken as the apparent rate of protein turnover or exchange depending on the

experiment

� r - correlation coefficient

� p value - for the null hypothesis that the slope is 0

e. The final analysis file is split the data into two groups: ‘‘proteins of interest’’ and ‘‘other’’.

This is accomplished by searching Saccharomyces Genome Database gene annotations

for keywords provided as an argument by the user; all matching proteins are put into

‘‘proteins of interest’’ group, and non-matching proteins into the ‘‘other’’ group.

Note: the ‘‘other’’ category usually corresponds to abundant cytosolic proteins that

commonly co-isolate as contaminants in affinity capture experiments (Mellacheruvu et al.,

2013). This data is useful as an empirical null distribution. For example, one can use the

average and standard deviation of exchange parameters estimated for ‘‘other’’ proteins to

conduct a 1-tailed Z-test for the proteins in the ‘‘proteins of interest’’ category, where z score

>2 is significantly slower exchange rate than expected by chance.

Parameter interpretation

For ease of interpretation, convert the slopes (hourly rate of reduction) of fitted curves into half-lives

(the time it takes for half the heavy labeled fraction to disappear):

Thalf = �ln(2)/k [h], where k[h�1] is the slope from linear fits in k4.

There are 2 regimes for turnover:

1. Fast turnover: Thalf < cell doubling time - regulatory proteins, e.g., cyclines.

2. Slow turnover: Thalf y cell doubling time - the majority of yeast proteome.

We observe 3 regimes for exchange:

1. Fast exchangers: Thalf <= 2.5 h (or � the cell division time), examples are proteins involved in

dynamic processes, such as nuclear transport.

2. Intermediate exchangers: residence time 2.5–7 h, examples are flexible connectors in the nuclear

pore complex.

3. Slow exchangers: residence time > 7 h, structural proteins, e.g., proteins comprising nuclear pore

complex scaffold.

EXPECTED OUTCOMES

Turnover - most proteins in yeast will turn over at the rate of cell division (through new protein

synthesis and dilution to daughter cells). A rate faster than cell division implies additional disappear-

ance of the protein through degradation.
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Exchange - the residence time of protein complex members will range from 2 h to > 7 h. Please see

the limitation for fast exchangers. Longer residence times imply a structural/ scaffold function for a

protein.

LIMITATIONS

This method is suitable for studying the dynamics of protein complexes that remain assembled for

longer than one cell generation. Consequently, assemblies such as the yeast spindle pole body, that

assemble and disassemble with each cell division, cannot be studied with this method. Moreover,

since amino acid labeling, old label depletion and free protein pull switching take time, precise

exchange rates below cell division rate cannot be determined.

TROUBLESHOOTING

Problem 1

The cell powder is compacted and stuck to the wall after a grinding cycle (step 28)

Potential solution

This is usually caused by excessive moisture in the cell paste. Make sure to remove as much liquid as

possible from the cell pase before producing the noodles. During grinding dislodge any balls stuck

to the walls/powder with a liquid nitrogen cold spatula and repeat 1 milling cycle at 350 RPM, 2 min

plus 1 min reverse rotation no breaks between rotations

Problem 2

After weighing the frozen cell powder into microcentrifuge tubes and taking them out to 20�C–24�C,
the caps pop open, resulting in cell material loss. Or when opening the tube some powder is

expelled out (steps 39–40, 57).

Potential solution

This is likely because liquid nitrogen seeps into tubes and expands rapidly when warmed to 20�C–
24�C. One simple solution is to simply leave the tubes open after weighing the powder or open the

tubes before taking them out to 20�C–24�C.

Problem 3

During the exchange experiment a light - labeled version of the tagged protein is observed (after

tagged protein expression is stopped no light labeled copies should be produced), step 106.

Potential solution

Shorten the duration of the time course. In our experience after � 5 h the ClTc repression loosens

and some light labeled tagged protein is produced. Perform a western analysis on time course

samples to determine the best stopping point (when the tagged protein is still repressed).

Problem 4

All residence times in the exchange experiments are � 2 h (division rate), step 106.

Potential solution

If there is sufficient evidence to support intermediate/slow dynamics for protein complex members,

then the most likely explanation for quick apparent exchange is that the tagged protein itself

exchanges rapidly, e.g., if the tag hinders the binding site. Switching the tag to an alternate member

will likely solve the issue.

Problem 5

After processing the data for the exchange experiment, some proteins have unfavorable correlation

coefficient (r << 1) and p value (>0.05), step 106.
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Potential solution

If the bad fits are associated with a large slope magnitude, then more time points or deeper MS scan will

help improve the fit and get a more accurate slope. However, if the poor fits are associated with a small

slope, this is because the slope is close to0, hence thenull hypothesis that the slope is 0 cannotbe rejected.

Hence, in the latter case the poor fit is not an issue (and the corresponding protein is a slow exchanger).

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact author Michael P. Rout (rout@rockefeller.edu).

Materials availability

All unique/stable reagents generated in this study are available from the lead contact with a

completed Materials Transfer Agreement.

Data and code availability

Mass spectrometry raw datasets used in this study are publicly available in Zenodo (https://zenodo.

org/) under DOI #: 10.5281/zenodo.4062150.

The code is available on github: https://github.com/zhakhverdyan/protein-dynamics-pipeline

ACKNOWLEDGMENTS

This work was supported by NIH grants U54 GM103511 (to B.T.C. and M.P.R.), R01 GM112108 (to

M.P.R.), P41 GM109824 (to M.P.R. and B.T.C.), and P41 GM103314 (to B.T.C.).

AUTHOR CONTRIBUTIONS

Conceptualization, Z.H., J.F.-M., B.T.C., and M.P.R.; investigation, Z.H., K.R.M., and R.I.S.; formal

analysis, Z.H., B.T.C., and M.P.R.; writing, Z.H., J.F.-M., B.T.C., and M.P.R.; funding acquisition,

B.T.C. and M.P.R.; supervision, J.F.-M., B.T.C., and M.P.R.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

Cox, J., and Mann, M. (2008). MaxQuant enables
high peptide identification rates, individualized
p.p.b.-range mass accuracies and proteome-wide
protein quantification. Nat. Biotechnol. 26, 1367–
1372.

Fridy, P.C., Li, Y., Keegan, S., Thompson, M.K.,
Nudelman, I., Scheid, J.F., Oeffinger, M.,
Nussenzweig,M.C.,Fenyo,D.,Chait,B.T., etal. (2014).
A robust pipeline for rapid production of versatile
nanobody repertoires. Nat. Methods 11, 1253–1260.

Hakhverdyan, Z., Domanski, M., Hough, L.E.,
Oroskar, A.A., Oroskar, A.R., Keegan, S., Dilworth,
D.J., Molloy, K.R., Sherman, V., Aitchison, J.D.,
et al. (2015). Rapid, optimized interactomic
screening. Nat. Methods 12, 553–560.

Hakhverdyan, Z., Molloy, K.R., Keegan, S., Herricks,
T., Lepore, D.M.,Munson,M., Subbotin, R.I., Fenyo,
D., Aitchison, J.D., Fernandez-Martinez, J., et al.
(2021). Dissecting the structural dynamics of the
nuclear pore complex. Mol. Cell 81, 153–165 e157.

Kotter, P., Weigand, J.E., Meyer, B., Entian, K.D.,
and Suess, B. (2009). A fast and efficient
translational control system for conditional
expression of yeast genes. Nucleic Acids Res. 37,
e120.

LaCava, J., Jiang, H., and Rout, M.P. (2016). Protein
complex affinity capture from cryomilled
mammalian cells. J. Vis. Exp. 118, 54518.

Longtine, M.S., McKenzie, A., 3rd, Demarini, D.J.,
Shah, N.G., Wach, A., Brachat, A., Philippsen, P.,
and Pringle, J.R. (1998). Additional modules for
versatile and economical PCR-based gene deletion
and modification in Saccharomyces cerevisiae.
Yeast 14, 953–961.

Mellacheruvu, D., Wright, Z., Couzens, A.L.,
Lambert, J.P., St-Denis, N.A., Li, T., Miteva, Y.V.,
Hauri, S., Sardiu, M.E., Low, T.Y., et al. (2013). The
CRAPome: a contaminant repository for affinity
purification-mass spectrometry data. Nat. Methods
10, 730–736.

Pettersen, E.F., Goddard, T.D., Huang, C.C.,
Couch, G.S., Greenblatt, D.M., Meng, E.C., and
Ferrin, T.E. (2004). UCSF Chimera–a visualization
system for exploratory research and analysis.
J. Comput. Chem. 25, 1605–1612.

Rout, M.P., Aitchison, J.D., Suprapto, A., Hjertaas,
K., Zhao, Y., andChait, B.T. (2000). The yeast nuclear
pore complex: composition, architecture, and
transport mechanism. J. Cell Biol. 148, 635–651.

Strawn, L.A., Shen, T., Shulga, N., Goldfarb, D.S.,
and Wente, S.R. (2004). Minimal nuclear pore
complexes define FG repeat domains essential for
transport. Nat. Cell Biol. 6, 197–206.

Subbotin, R.I., and Chait, B.T. (2014). A pipeline for
determining protein-protein interactions and
proximities in the cellular milieu. Mol. Cell.
Proteomics 13, 2824–2835.

Suess, B., Entian, K.D., Kotter, P., andWeigand, J.E.
(2012). Aptamer-regulated expression of essential
genes in yeast. Methods Mol. Biol. 824, 381–391.

ll
OPEN ACCESS

20 STAR Protocols 2, 100800, September 17, 2021

Protocol

mailto:rout@rockefeller.edu
https://zenodo.org/
https://zenodo.org/
https://github.com/zhakhverdyan/protein-dynamics-pipeline
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref1
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref1
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref1
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref1
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref1
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref2
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref2
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref2
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref2
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref2
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref3
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref3
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref3
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref3
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref3
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref4
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref4
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref4
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref4
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref4
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref5
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref6
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref6
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref6
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref7
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref8
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref9
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref9
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref9
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref9
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref9
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref10
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref10
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref10
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref10
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref11
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref11
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref11
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref11
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref12
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref12
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref12
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref12
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref13
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref13
http://refhub.elsevier.com/S2666-1667(21)00506-2/sref13

	XPRO100800_proof_v2i3.pdf
	Measuring in vivo protein turnover and exchange in yeast macromolecular assemblies
	Before you begin
	Key resources table
	Step-by-step method details
	Endogenous N-terminal tagging of the stable subunit of the protein complex of interest
	Harvesting cells and making noodles
	Cryogenic disruption of yeast cells
	Antibody conjugation of magnetic beads
	Affinity capture optimization
	Exchange and turnover measurement time course

	Affinity capture (modified)
	Sample preparation for mass spectrometry
	Mass spectrometry procedure
	Use of MaxQuant for relative heavy-light evaluation
	Curve fitting, parameter extraction
	Parameter interpretation

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References



