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Abstract

The purinergic receptor P2X ligand-gated ion channel 3 (P2X3) is crucially involved in

peripheral nociceptive processes of somatic and visceral pain. Endometriosis pain is consid-

ered as a kind of inflammatory and neuropathic pain. However, whether P2X3 is involved in

endometriosis pain has not been reported up to date. Here, we aimed to determine whether

P2X3 expression in endometriotic lesions is involved in endometriosis pain, which is regu-

lated by inflammatory mediators through extracellular regulated protein kinases (ERK) sig-

nalling pathway. We found that P2X3 expressions in endometriosis endometrium and

endometriotic lesions were both significantly higher as compared with control endometrium

(P<0.05), and both positively correlated with pain (P<0.05). The expression levels of phos-

phorylated –ERK (p-ERK), phosphorylated-cAMP-response element binding protein

(p-CREB), and P2X3 in endometriotic stromal cells (ESCs) were all significantly increased

in comparison to the initial levels after treated with interleukin (IL)-1β (P<0.05) or adenosine

triphosphate (ATP) (P<0.05), respectively, and did not increase after the ESCs were pre-

treated with ERK1/2 inhibitor. Additionally, P2X3 and calcitonin gene related peptide

(CGRP) were co-expressed in endometriotic lesions. These obtained results suggest that

P2X3 might be involved in endometriosis pain signal transduction via ERK signal pathway.

Introduction

Endometriosis is defined by the presence of functional endometrium outside the uterine cav-

ity, resulting in dysmenorrhea, dyspareunia, pelvic pain, and infertility [1]. Pain is the charac-

teristic symptom of endometriosis, but its exact mechanism still remains an enigma. Recent

evidence from some clinical studies has shown that endometriotic lesions are infiltrated by

nerve fibers, and the density of nerve fibers within the lesions may be associated with endome-

triosis pain [2–7]. In a rat model of endometriosis, endometriotic cystic innervation after

transplant surgery has been proved to be a prerequisite for vaginal hyperalgesia [8]. These find-

ings suggest that the lesions, at least in part, are innervated by sensory nerve fibers (including

C and Aδ fibers), and that peripheral neuroinflammation may play a pivotal role in endometri-

osis-associated pain [2–10].
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In women with endometriosis, inflammatory mediators including interleukin (IL)-1β, IL-6,

tumor necrosis factor (TNF)-α, prostaglandins (PGs) and nerve growth factor (NGF) have

been demonstrated to be elevated in peritoneal fluid and/or endometriotic lesions [11–15]. In

the peritoneal inflammatory microenvironment of women with endometriosis, various

inflammatory mediators are thought to activate nociceptive receptors on the afferent neurons

by stimulating sensory nerve fibers within the lesions, leading to the sensitization of sensory

neurons, and thus triggering pain signal cascade [16, 17]. In acute and chronic pain models,

small- and medium-diameter sensory neurons, which express transient receptor vanilloid-1

(TRPV1) channels and/or adenosine triphosphate (ATP)-gated P2X3 receptors, are the impor-

tant pain transducers of noxious stimuli [18]. In women with endometriosis, TRPV1 receptor

expression has been demonstrated to be elevated in endometriotic lesions, and correlated with

endometriosis pain [16, 18–20]. However, almost no studies on the role of the P2X3 receptor

in endometriosis pain have been reported, although TRPV1 and P2X3 are both cation ion

channels, and both are regulated by estrogen [21–23].

ATP has been identified to be a transmitter of signals in the synapse, and 15 different types

of ATP receptors have been found so far, which were divided into two categories: P2X and

P2Y. P2X3 is a subtype of P2X receptors, a family of ligand-gated ion channels activated by

extracellular ATP. Although all P2X subtypes are found on sensory neurons, P2X3 is selec-

tively expressed on the non-peptidergic small diameter sensory neurons [24–26]. Recent stud-

ies have shown that the activation of homomeric P2X3 and heteromeric P2X2/3 receptors can

induce acute nociceptive behavior, hyperalgesia and allodynia, which are regulated by inflam-

matory mediators [27–31]. In terms of signal transduction in nociceptive sensitization, the key

event is protein phosphorylation following nociceptor stimulation and subsequent second

messenger activation. Mitogen-activated protein kinases (MAPK) are the main protein phos-

pho-regulating effectors that mediate nociceptive sensitization [32]. In vitro and in vivo,

MAPK inhibitors have been demonstrated to inhibit the growth of endometriotic cells by

down-regulating proinflammatory mediators [33, 34]. These previous findings let us hypothe-

size that P2X3 receptor in endometriotic lesions may play a key role in endometriosis pain sig-

nal transduction, which may be mediated by MAPK signaling pathway.

In the present study, P2X3 protein expression in the eutopic and ectopic endometrium of

women with endometriosis was firstly determined and compared with control endometrium

from women without endometriosis, and the correlation of P2X3 protein expression and pain

was analysed. Secondly, P2X3 and calcitonin gene related peptide (CGRP) protein expression

on the sensory nerves in human endometriotic lesions were revealed. Thirdly, P2X3 mRNA

and protein expression in endometriotic stromal cells (ESCs) were detected when the cells

were respectively treated with IL-1β, ATP and ERK inhibitor. Finally, the possible regulative

mechanism was discussed.

Materials and methods

Patients

Between June 2013 and July 2014, a total of 65 women undergoing laparoscopic surgery for

endometriosis, infertility and tubal ligation were recruited in this study. Each patient gave

her written informed consent to participate in the study, and the study was approved by the

Human Ethics Committee of Women’s Hospital, School of Medicine, Zhejiang University

(No. 20140045). All the participants were able opt out of the study in the whole duration.

The indications for women with endometriosis (case group: n = 48, 37.5±5.4 years) were endo-

metrioma, pain and infertility. Of the 48 women with endometriosis, 27 women (56.3%) had

pain symptoms, 13 (27.1%) women had ovarian endometriosis, 15 (31.3%) had peritoneal
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PLOS ONE | https://doi.org/10.1371/journal.pone.0184647 September 12, 2017 2 / 17

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0184647


endometriosis and 20 (41.7%) women had deeply infiltrating endometriosis. For women with-

out endometriosis (control group: n = 17, 37.6±6.3 years), tubal ligation was the only indica-

tion, and no woman complained of pain. The severity of pain was documented using a

standardized questionnaire with a visual analog scale (VAS). The pain scale was subdivided

into ten grades. “No pain” was indicated at the left side of the scale and “the maximum pain

you could imagine” was designated at the right side of the scale. However, we did not identify

pain types in this study. Additionally, none of the patients received sex-hormone therapy six

months before surgery.

Tissue collection

We routinely collected three endometrial samples from all women with and without endome-

triosis immediately after surgery. The first specimen was fixed immediately in 10% neutral-

buffered formalin for 24 hours for immunohistochemical staining analysis before processing

and embedded in paraffin according to a standard protocol. The second specimen was

immersed in liquid nitrogen for western blot analysis before storing at -80˚C. The third

specimen was quickly placed in Dulbecco’s modified Eagle Medium/F-12 at 4˚C for primary

ESCs culture. Endometrial histology was dated according to the general classifications of

Noyes et al. [35].

Immunohistochemical (IHC) staining

Immunohistochemical staining with P2X3 was performed as previously described by Huang

et al. [36, 37]. Briefly, serial sections, 6 μm thick, were immunostained using polyclonal rabbit

anti-P2X3 antibody (dilution 1:300, ab90905; Abcam, Cambridge, MA, USA) for 60 min at

room temperature. The sections were washed in phosphate-buffered saline (PBS) and incu-

bated with Envision-labeled polymer-alkaline phosphatase rabbit (EnVisiont/HRP/Rb K4003;

Dako, Glostrup, Denmark) for 60 min. After washing with PBS again, the sections were treated

with diaminobenzidine (K5007; Dako, Glostrup, Denmark) and counterstained with hematox-

ylin, dehydrated, and mounted on a mounting medium.The antigen–antibody reaction was

visualized using diaminobenzidine (DAB) as chromogen. After washing, the sections were

counterstained with Mayer’s hematoxylin, dehydrated, and mounted with a mounting

medium. The primary antibody was replaced by PBS as a negative control. All slides were ana-

lyzed by two blinded observers.

Assessment of immunochemical staining

The expression of P2X3 was classified according to the following grading system as previously

described [36, 37]. Scores that correspond to the percentages of staining cells were defined as

follows: 0 for no documented positive staining cell; 1 for the 25% positive staining cells; 2 for

>25% and 50%; and 3 for >50%. Moreover, in term of intensity of the stain, the following

scores were designated: 0 for no documented stains; 1 for weak; 2 for moderate; and 3 for high.

A value of immunostaining score for P2X3 expression was represented as the sum of the per-

centage score and the intensity score, and the expression of P2X3 was finally defined as follows:

‘‘no expression (-)” for a score of�2; ‘‘low expression (+)” for a score of>2 and 4; and ‘‘high

expression (++)” for a score of 5 or 6.

Human endometriotic cells culture

Isolation of ESCs and endometriotic epithelial cells (EPCs) was performed as following.

Briefly, ectopic endometrium was mechanically dispersed with a scalpel, and then
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enzymatically digested with 0.1% collagenase type 1 and 0.05% DNAse for 1h. Debris was

removed using a 100 mm nylon cell strainer. The epithelial cells and stromal cells in the filter

were aparted with a 40 mm nylon cell strainer. Epithelial cells were remained in the 40mm

nylon while stromal cells were in the filter. Then the cells were cultured in 6-well plates with

Dulbecco’s modified Eagle Medium/F-12 (DMEM/F12) (1:1) containing 10% fetal calf sera.

Immunofluorescence and immunohistochemical analysis of cytokeratin (DC10 1:500, Dako,

Cytomation, Glostrup, Denmark) and vimentin (V9, 1:200, Dako, Cytomation, Glostrup, Den-

mark) expressions were performed to confirm the purification of the isolated endometriotic

stromal cells.

Immunofluorescence staining

Immunofluorescence double staining was performed as previously described [38]. Briefly,

slides were pre-incubated in PBS containing 0.05% Triton X-100 and 0.2% bovine serum albu-

min (BSA; both from Sigma-Aldrich, St Louis, USA). Slides were then incubated with primary

antibody anti-P2X3 (1:300, ab90905; Abcam, Cambridge, MA, USA). The antigen–antibody

reaction was firstly visualized using 3-amino 9-ethyl carbazole (AEC) as chromogen (AEC-

0037, Maixin Bio Co, Ltd., Fuzhou China), which was mounted with AEC Mounting Solution

(AEC-0038, Maixin Bio Co, Ltd., Fuzhou China). After AEC reaction, the sections were

washed with PBS, and added with anti-CGRP (1:100, ab81887; abcam, Cambridge, MA, USA).

The Slides were then rinsed in PBS before mounted with Dako Fluorescence Medium (Dako,

Cytomation, Glostrup, Denmark) to prevent fading. Secondary antibody specificity was

assessed by omitting the primary antibody. For immunofluorescence single staining, the sec-

ond antibody was omitted.

Measurement of ATP release

Release of ATP was determined directly using the firefly luciferin-luciferase assay (A22066,

Invitrogen, Carlsbad, CA, USA). Briefly, endometriotic stromal cells were seeded at a concen-

tration of 2×104/well in 1 ml culture medium in 24-well culture plates 24 h before experiment.

Then ESCs were incubated with Ca2+ free PBS before tested. After treated with IL-1β (50ng/

ml) (Peptech Rocky Hill, NJ, USA), the cell supernatants were collected at the different time

point. Before measured, samples were centrifuged for 5 min at a speed of 12000r/min. Then

samples were placed in closed-bottom 96-well white polystyrene plates (Corning Life Sciences,

Lowell, MA) in a Varioskan Flash (Thermo Scientific, Waltham, MA, USA) immediately.

Several concentrations of ATP standard (0.1 nM-100 nM) with PBS were measured before

analysis of each experimental sample set. Varioskan Flash reader settings were delay: 2 sec,

integration: 10 sec.

Intervention of endometriotic stromal cells

The ESCs grown to confluence were detached with trypsin and incubated in 24-well plates at a

density of 106 cells per well. Twenty-four hours later, ESCs were treated with IL-1β (10ng/mL,

Peptech, Rocky Hill, NJ, USA) or ATP(100μM, A1582, Sigma-Aldrich, St. Louis, MO, USA),

and harvested after 15 min, 30 min, 1 h, 2 h and 24 h incubation respectively for real-time PCR

analysis of P2X3 mRNA levels and western blotting analysis of P2X3, p-ERK and p-CREB. In

the meantime, the ESCs were treated with IL-1β or ATP after PD98059, an ERK1/2 inhibitor

(20 μM, Millipore, Billerica, MA, USA) pre-incubated for 45 min. Afterward, the ESCs were

harvested after 15 min, 30 min, 1 h, 2 h and 24 h incubation respectively for mRNA levels of

P2X3 and protein expression levels of P2X3, p-ERK, and p-CREB.

P2X3 and endometriosis pain
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RNA extraction, transcript and detection

Trizol reagent (Takara Bio Inc., Shiga, Japan) and Prime ScriptTM RT reagent Kit (Takara Bio

Inc., Shiga, Japan) were used to extract the total RNA in endometrial tissues or ESCs and

reverse transcription. Then cDNA was amplified using GoldStar MasterMix (Kangwei Cen-

tury, Beijing, China). To detect the distribution of P2 receptor types in ectopic, eutopic and

control endometrium, specific primers were synthesized from Generay Biotech Co., Ltd.

(Shanghai, China) and the sequences were listed in S1 Table. The cycle profile consisted of

denaturation at 94˚C for 5 min, followed by 35 cycles of 94˚C for 30s, 55˚C for 30s, and 72˚C

for 30s and a final extension step of 72˚C for 10 min. The PCR products were analyzed by 2%

agarose gel (Sigma-Aldrich, St. Louis, MO, USA) with EB by electrophoresis and stained with

EB. Then gels were scanned using an imaging system (Bio-Rad Laboratories, Hercules, CA,

USA). Real-time PCR was performed to measure P2X3 mRNA expression in ESCs using SYBR

Premix Ex TaqTM kit (Takara Bio Inc., Shiga, Japan) for real-time monitoring of amplifica-

tion. The average cycle threshold (Ct) value was calculated from triplicate wells for each sample

and the fold change was determined by using a method of 2-ΔΔCt.

Western blotting analysis

The frozen tissues or cells were disintegrated on ice in lysis buffer (RIPA, Beyotime, Shanghai,

China). After centrifuging at 12,000g for 5 minutes at 4˚C, the supernatants were collected and

the total concentrations of protein were determined by BCA protein assay kit (#23227, Thermo

Scientific, Waltham, MA, USA). 30 μg of total protein was separated in 10% sodium dodecyl

sulfate polyacrylamide gel electrophoresis, then electrotransferred onto polyvinylidene diflour-

ide membrane (IPVH00010, Millipore, Billerica, MA, USA). After blocking in 5% bovine

serum albumin (BSA; both from Sigma-Aldrich, St Louis, USA) for 1 hour at room tempera-

ture, the membranes were incubated with anti-P2X3 antibody (1:500, ab10269, Abcam, Cam-

bridge, UK), anti-p-ERK1/2 (1:2000, #4370, Cell SignalingTechnology, Danvers, MA, USA),

anti-p-CREB (1:2000, #9198, Cell SignalingTechnology, Danvers, MA, USA), and anti-

GAPDH antibody (1:1000, Mab 5465–100, Multi Sciences, Hangzhou, China) overnight at

4˚C. The membranes were further incubated for one hour with a secondary antibody against

rabbit/mouse IgG and labelled with horse-radish peroxidase (1:5000, ab97051/ab97023,

Abcam, Cambridge, UK). The immune-complexes were detected by ECL detection kit (Bio-

logical Industries, The State of Israel). The relative protein levels were quantified on band vol-

ume with respect to GAPDH expression as assessed by Image J software (National Institutes of

Health, Bethesda, MD, USA).

Statistical analysis

Statistical analysis was carried out using the Statistical Package for the Social Sciences Version

17.0 (SPSS, IBM, Chicago, IL, USA). The continuous variables were expressed as mean±stan-

dard deviations (SDs). Mann-Whitney test was conducted for numerical variables analysis.

Categorical variables were analyzed by Fisher’s exact test. Pearson correlation analysis was

used to determine the correlations between P2X3 protein levels and VAS score in women with

endometriosis. P<0.05 was considered a significant difference.

Results

P2 receptor in different kinds of endometrial tissues

S1 Fig. showed that PCR products of the expected size were obtained for P2X1, P2X2, P2X3,

P2X4, P2X5, P2X6, P2X7 and for P2Y1, P2Y2, P2Y4, P2Y6, P2Y11 P2Y12 and P2Y14 in

P2X3 and endometriosis pain
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ectopic, eutopic and control endometrium (S1A–S1C Fig). However, P2Y13 mRNA could not

be detected in any kind of endometrium. There were no differences of the distribution of P2

types in different endometrial tissues

Immunoreactivity of P2X3 in control, eutopic and ectopic endometrium

There were no significant differences between women with and without endometriosis regards

to age, parity, gravidity, abortion, and cycle phase (P>0.05), except for pain symptoms

(P<0.05, Table 1). P2X3 was mainly immunostained in the cytomembrane and cytoplasm of

endometrial glandular epithelial cells, but it could be expressed in endometrial stroma as well

(Fig 1). P2X3 expression frequency and score were both significantly higher in endometriosis

endometrium than those in control endometrium (56.2% vs. 23.5%, P = 0.041; 2.7±1.7 vs. 1.2

±1.6, P = 0.003; Table 2). Moreover, all control endometria exhibited low expression of

P2X3, whereas 12.5% of endometriosis endometria showed high expression of P2X3. The fre-

quency and score of P2X3 expression were both significantly higher in endometriotic lesions

when compared with control endometrium (58.3% vs. 23.5%, P = 0.029; 2.9±1.9 vs. 1.2±1.6,

P = 0.002; Table 2). However, no significant differences of P2X3 expression frequency or

score between ectopic and eutopic endometrium in women with endometriosis were found

(P>0.05, Table 2). Moreover, no significant differences of P2X3 expression frequency or score

between proliferative and secretory endometrium in women with or without endometriosis

were found (P>0.05, Table 2). In addition, no significant differences of P2X3 expression

Table 1. Subject’s characteristics in women with and without endometriosis.

Parameters Endometriosis No endometriosis P value

(n = 48) (n = 17)

Age (years) 37.5±5.4 37.6±6.3 0.179

Gravidity 3.4±0.5 3.2±0.6 0.139

Parity 1.4±0.1 1.3±0.1 0.146

Abortion 2.0±0.4 1.9±0.3 0.125

Pain symptoms 27 (56.3%) 0 (0%) 0.000

Menstrual cycle phase 0.180

Proliferative 34 (70.8%) 9 (52.9%)

Secretory 14 (29.2%) 8 (47.1%)

https://doi.org/10.1371/journal.pone.0184647.t001

Fig 1. P2X3-immunoreactive staining in endometriosis endometrium and endometriotic lesions as compared with control endometrium.

(A), Control endometrium from a woman without endometriosis; (B), Endometriosis endometrium from a woman with ovarian endometriosis; (C),

Ovarian endometriotic lesions from a woman with ovarian endometriosis. The immunohistochemistry (IHC) score of P2X3 expression in endometriosis

endometrium and endometriotic lesions were both significantly higher as compared with control endometrium (P<0.05; Original magnification 400×;

Bar = 50 μm).

https://doi.org/10.1371/journal.pone.0184647.g001

P2X3 and endometriosis pain
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frequency or score between peritoneal, ovarian and deeply infiltrating endometriosis were

found (P>0.05, Table 3).

In women with endometriosis, the frequency and score of P2X3 expression in eutopic

endometrium were 74.1% (20/27) and 3.3±1.4 in women with pain (n = 27), and 33.3% (7/21)

and 2.0±1.9 in women no pain (n = 21), respectively. P2X3 expression frequency and score

were both significantly higher in endometriosis women with pain than those in endometriosis

women without pain (P = 0.005, 0.004). In turn, the frequency and score of P2X3 expression in

endometriotic lesions were 77.8% (21/27) and 4.2±2.8 in women with pain (n = 27), and

33.3% (7/21) and 1.7±2.2 in women without pain (n = 21), respectively. The differences of

P2X3 expression frequency and score between women with and without pain both reached sta-

tistical significance (P = 0.002, 0.001). Moreover, P2X3 expression scores in the eutopic and

ectopic endometrium of women with endometriosis were both significantly correlated with

Table 2. Endometrial P2X3 expression in women with and without endometriosis.

Variable P2X3 protein expression

No* Low High L+H Scores

Women with endometriosis (n = 48)

Eutopic endometrium (n = 48) 21 (43.8) ** 21 (43.7) 6 (12.5) 27 (56.2) a 2.7±1.7 a

Proliferative (n = 34) 14 (41.2) 17(50.0) 3 (8.8) 20 (58.8) 2.7± 1.9

Secretory (n = 14) 7 (50.0) 4 (28.6) 3 (21.4) 7 (50.0) 2.6± 1.5

Ectopic endometrium (n = 48) 20 (41.7) 13 (27.1) 15 (31.2) 28 (58.3) a 2.9±2.3 a

Proliferative (n = 34) 15 (44.1) 9 (26.5) 10 (29.4) 19 (55.9) 2.7±2.1

Secretory (n = 14) 5 (35.7) 4 (28.6) 5 (35.7) 9 (64.3) 3.1±2.2

Control women (n = 17) 13 (76.5) 4 (23.5) 0 (0) 4 (23.5) 1.2±1.6

Proliferative (n = 9) 6 (66.7) 3 (33.3) 0 (0) 3 (33.3) 1.5± 1.8

Secretory (n = 8) 7 (87.5) 1(12.5) 0 (0) 1 (12.5) 0.8± 1.4

* No = no expression (-); Low = low expression (+); High = high expression (++); L+H = low plus high expressions.

** Values in parentheses show percentage.
a P<0.05 (eutopic or ectopic versus control).

https://doi.org/10.1371/journal.pone.0184647.t002

Table 3. P2X3 expression in the different forms of endometriosis.

Variable P2X3 protein expression

No* Low High L+H Scores

Women with endometriosis (n = 48)

Ovarian endometriosis (n = 13) 7 (53.8)** 2 (15.4) 4 (30.8) 6 (46.2) 2.9 ±2.5

With pain (n = 6) 2 (33.3) 1 (16.7) 3 (50.0) 4 (66.7) 4.1± 2.0a

Without pain (n = 7) 5 (71.4) 1 (14.3) 1 (14.3) 2 (28.6) 1.3± 2.2

Peritoneal endometriosis (n = 15) 5 (33.3) 6 (40.0) 4 (26.7) 10 (66.7) 2.8±1.3

With pain (n = 8) 1 (12.5) 4 (50.0) 3 (37.5) 7 (87.5) 3.5±1.3a

Without pain (n = 7) 4 (57.1) 2 (28.6) 1 (14.3) 3 (42.9) 1.0±1.8

Deeply infiltrating endometriosis (n = 20) 8 (40.0) 5 (25.0) 7 (35.0) 12 (60.0) 3.0±3.1

With pain (n = 13) 3 (23.1) 4 (30.7) 6 (46.2) 10 (76.9) 4.1± 3.9a

Without pain (n = 7) 5 (71.4) 1 (14.3) 1 (14.3) 2 (28.6) 1.1± 2.1

* No = no expression (-); Low = low expression (+); High = high expression (++); L+H = low plus high expressions.

** Values in parentheses show percentage.
a P<0.05 (pain versus without pain).

https://doi.org/10.1371/journal.pone.0184647.t003
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VAS score (P<0.05, Fig 2). Additionally, the differences in P2X3 expression score between

women with and without pain reached statistical significance for ovarian endometriosis

(P = 0.000), peritoneal endometriosis (P = 0.000) and deeply infiltrating endometriosis

(P = 0.000), respectively, but no significant differences of P2X3 expression frequency in ovar-

ian endometriosis, peritoneal endometriosis or deeply infiltrating endometriosis between

women with and without pain were found (Table 3).

P2X3 protein expression using western blotting analysis in control,

eutopic and ectopic endometrium

Based on the observations of immunoreactivity levels of P2X3, we further conducted western

blotting analysis to confirm P2X3 protein expression in control and endometriosis endome-

trium as well as endometriotic lesions. Western blotting analysis showed a specific 55 kDa

band for P2X3 (Fig 3A). P2X3 protein levels in endometriotic lesions (n = 24, 1.48±0.15) and

endometriosis endometrium (n = 21, 1.12±0.11) were both significantly higher than those in

control endometrium (n = 16, 0.80±0.09; P<0.05). However, no significant difference of P2X3

protein levels between eutopic and ectopic endometrium in women with endometriosis was

found (P>0.05, Fig 3B). Moreover, ectopic lesions from endometriosis patients with pelvic

pain had a higher level of P2X3 (n = 13, 1.76±0.21) than those without pain (n = 11, 1.15±0.16,

P<0.05, Fig 3C). Also, expression of P2X3 in endometriosis endometrium from women with

pain (n = 11, 1.38±0.16) elevated than that in endometrium of endometriosis patients without

pain (n = 10, 0.83±0.11, P<0.05, Fig 3C). And there was a positive correlation of P2X3 expres-

sion in ectopic lesions and eutopic endometrium isolated from the same woman (n = 21,

r = 0.49, P<0.05, Fig 3D).

P2X3 mRNA and protein expression in endometriotic stromal cells and

intervention

In order to determine whether P2X3 is expressed in ESCs and EPCs, we first isolated ESCs and

EPCs. Immunofluorescence showed that P2X3 expressed higher in gland epithelium and

Fig 2. Correlation of VAS score and P2X3 expression IHC score in endometriosis endometrium and endometriotic lesions. A. endometriosis

endometrium; B. endometriotic lesions. (VAS), Visual analog scale; (IHC), Immunohistochemical staining. The IHC scores of P2X3 expression in

endometriosis endometrium and endometriotic lesions were both correlated with VAS score in women with endometriosis (P<0.05).

https://doi.org/10.1371/journal.pone.0184647.g002
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interstitial tissue of ectopic lesions (Fig 4A and 4B) than in control endometrium of women

without endometriosis (Fig 4C). In primary cells, immunofluorescence staining showed that

P2X3 was expressed in both ESCs and EPCs, although fluorescent staining for P2X3 was

somehow stronger in EPCs (Fig 4D) as comparison to ESCs (Fig 4E). Control stromal cells

expressed a lower level of P2X3 (Fig 4F). Subsequently, we used ESCs from women with ovar-

ian endometriosis (n = 12) to further perform the intervention test, since the passage of epithe-

lial cells is difficult to culture.

After the ESCs were treated with IL-1β, ATP concentrations in ESCs began to increase at 1

min (133.8±8.6 nM), continually increased at 2 min (139.6±6.6 nM), reached the peak value at

3 min (175.0±6.9 nM), and then decreased gradually. The concentrations of ATP in ESCs after

treated with IL-1β for 2 min and 3 min, but not for 1 min, 4 min (145.0±17.7 nM) and 5 min

(141.2±12.9 nM) were significantly higher than the initial levels (113.7±3.2 nM, Fig 5).

Real time PCR analysis showed that the levels of P2X3 mRNA expression in ESCs increased

after treated with IL-1β, and were significantly higher at 15min (2.15 ± 0.50), 2h (1.37 ± 0.22)

and 24 h (2.99 ± 0.20) compared with the initial levels (Fig 6A). Western blot analysis showed a

specific 47 kDa band for P2X3 in ESCs, and P2X3 protein expression was quickly increased at

15 min, reached the peak value at 1 h, and then decreased gradually after treated with IL-1β
(Fig 6B). The levels of P2X3 protein expression in ESCs after treated with IL-1β for 15 min

(1.78±0.20), 30 min (1.83±0.27), 1 h (1.87±0.17) and 2 h (1.69±0.12) except for 24 h (1.33±0.25)

Fig 3. Comparisons of P2X3 protein levels among different endometrial tissues. A. Western blot showed a specific band

(55 kDa) for P2X3 in ectopic, eutopic and control endometrium. B. The levels of P2X3 protein expression in the eutopic and

ectopic endometrium of women with endometriosis were both significantly higher as compared with control endometrium from

women without endometriosis. C. Both in ectopic and eutopic endometrium, the levels of P2X3 protein expression significantly

increased from endometriosis patients with pain than those without pain. D. There was a positive correlation between P2X3

expression levels in ectopic or eutopic endometrium which were isolated from the same patient. As an endogenous control

protein, GAPDH protein expression levels showed similar among ectopic, eutopic or control endometrium. (Ec), Ectopic

endometrium; (Eu), Eutopic endometrium; (Con), Control endometrium. (*P<0.05. **P<0.01.)

https://doi.org/10.1371/journal.pone.0184647.g003
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Fig 4. P2X3-immunofluorescence staining in endomtriotic tissues and cells. (A, B, C), P2X3 (red) expression levels were

significantly higher in both gland epithelial and interstitial tissues of ectopic lesions (A, B) than in control endometrium (C). (D, E, F),

Endometriotic epithelial cells (D) showed stronger P2X3 fluorescent staining compared with endometrotic stromal cells (E) and

control stromal cells (F). The cell nuclei were labeled with 40,6-diamidino-2-phenylindole (DAPI) (blue). (A, B, C, original

magnification 400×; Bar = 50 μm; D, E, F, original magnification 200×; Bar = 100 μm).

https://doi.org/10.1371/journal.pone.0184647.g004

Fig 5. ATP concentrations in ESCs after treated with IL-1ß. (ATP), Adenosine triphosphate; (ESCs),

Endometriotic stromal cells. ATP concentrations (nM) in ESCs after treated with IL-1 ß (10ng/ml) were quickly

increased at 1 min, continued to increase at 2 min, reached the peak value at 3 min, and then gradually

decreased at 4min. Compared with the initiate level, the significant difference was observed at 2 and 3 minute.

(*P<0.05.)

https://doi.org/10.1371/journal.pone.0184647.g005
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were all significantly higher than the initial levels (Fig 6B). For p-ERK, western blot exhibited

two bands (42/44 kDa). The expression levels of p-ERK in ESCs reached the highest value at

the first 15 min, and then decreased gradually after treated with IL-1β (Fig 6C). The levels of

p-ERK expression in ESCs after treated with IL-1β for 15 min (3.74±0.28), 30 min (3.05±0.22),

1 h (2.38±0.13) and 2 h (1.57±0.18) except for 24 h (0.76±0.34) were all significantly higher

than the initial levels (Fig 6C). For p-CREB, western blot showed a specific 45 kDa band. The

expression levels of p-CREB in ESCs increased at 15 min, reached the peak value at 30 min,

and then decreased gradually after treated with IL-1β (Fig 6D). The levels of p-CREB expres-

sion in ESCs after treated with IL-1β for 15 min (7.25±0.71), 30 min (13.45±1.17), 1 h

(7.20±0.65) and 2 h (2.93±0.53) except for 24 h (1.07±0.13) were all significantly higher than

the initial levels (Fig 6D).

However, when the ESCs were pre-treated with ERK1/2 inhibitor, P2X3 mRNA expression

induced by IL-1β did not increase and even decreased at 30 min (0.69±0.19) and 24 h

(0.35±0.22, Fig 6E). P2X3 protein expression levels in ESCs did not increase at any time points

(Fig 6F). On the contrary, P2X3 protein expression levels at 24 h (0.76±0.07) were significantly

lower than the initial levels (Fig 6F). The levels of p-ERK expression in ESCs were significantly

decreased at any time points after treated with ERK1/2 inhibitor and IL-1β when compared

with the initial levels (Fig 6G). However, the levels of p-ERK expression in ESCs increased

gradually as time went on (Fig 6G). In turn, the levels of p-CREB expression in ESCs after

treated with ERK1/2 inhibitor and IL-1β were all significantly lower as compared with those

after treated with IL-1β (P<0.001), but significantly higher at 15 min (2.74±0.42), 30 min

(3.22±0.57) and 1h (2.35±0.46) when compared with the initial levels (Fig 6H).

Fig 6. The changed levels of p-ERK, p-CREB, and P2X3 expressions in ESCs after treated with IL-1β and ERK inhibitor. (A, B, C and D), The

ESCs were treated with IL-1β alone; (E, F, G and H), The ESCs were pretreated with ERK inhibitor for 45min, and then treated with IL-1β. A. Real time

PCR analysis showed that the levels of P2X3 mRNA were significantly higher at 15min, 2h and 24h after IL-1β treatment. B. Western blot showed a

specific band (47 kDa) for P2X3, and the levels of P2X3 expression in ESCs increased at 15min, continued increasing at 30min, reached the peak

value at 1h, and then gradually decreased at 2h. C. Western blot showed two bands (42/44 kDa) for p-ERK, and the levels of p-ERK expression in

ESCs reached the peak value at 15min, and then gradually decreased at 30min. D. Western blot showed a specific band (45 kDa) for p-CREB, and the

levels of p-CREB expression in ESCs increased at 15min, reached the peak value at 30min, and then gradually decreased at 1h. E. ERK inhibitor

blocked the elevation of P2X3 mRNA levels in ESCs after IL-1β treatment. F. The levels of P2X3 expression in ESCs did not increase at any time

points. G. The levels of p-ERK expression in ESCs were significantly decreased at any time points. H. The levels of p-CREB expression in ESCs at

15min, 30min and 1h but not at 2h and 24h were significantly increased. (ESCs), Endometriotic stromal cells. (* P<0.05. **P<0.01. ***P<0.00001.)

https://doi.org/10.1371/journal.pone.0184647.g006
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When the ESCs were treated with ATP alone, the levels of P2X3 mRNA expression were

significantly elevated at 15 min (2.04±0.53), 30 min (2.33±0.27) and 1 h (2.53±0.61) after treat-

ment (Fig 7A). The expression profiles of P2X3, p-ERK and p-CREB were similar to those

after treated with Il-1β (Fig 7B–7D). The expression levels of P2X3, p-ERK and p-CREB in

ESCs after treated with ATP for 15min (1.56±0.18, 2.32±0.20 and 5.69±0.58), 30min

(2.51±0.34, 2.19±0.13 and 8.69±0.47), 1h (2.93±0.24, 1.73±0.09 and 5.93±0.33) and 2 h

(2.11±0.26, 1.35±0.10 and 5.62±0.43) except for 24 h (0.98±0.26, 0.87±0.26 and 1.60±0.23)

were all significantly higher than the initial levels.

P2X3 mRNA expression levels in ESCs did not increased at any time but decreased at 2 h

(0.78±0.14) after treated with ERK1/2 inhibitor and ATP (Fig 7E). The expression profiles of

P2X3 and p-ERK in ESCs were similar to those after treated with ERK1/2 inhibitor and Il-1β
(Fig 7F and 7G). The expression levels of P2X3 in ESCs after treated with ERK1/2 inhibitor

and ATP for 15min (1.12±0.17), 30min (0.90±0.10), 1h (1.04±0.32), 2 h (1.07±0.05) and 24 h

(0.95±0.11) were similar to the initial levels (Fig 7F). Although the levels of p-ERK expression

in ESCs significantly decreased at any time points [(0.15±0.01 (15min), 0.15±0.02 (30min),

0.20±0.02 (1h), 0.26±0.04 (2h) and 0.31±0.02 (24h)] after treated with ERK1/2 inhibitor and

ATP when compared with the initial levels, yet, the expression levels of p-ERK in ESCs

increased gradually as time went on (Fig 7G). In addition, p-CREB expression in ESCs after

treated with ERK1/2 inhibitor and ATP was slightly different from that after treated with

ERK1/2 inhibitor and IL-1β. The expression levels of p-CREB in ESCs after treated with

ERK1/2 inhibitor and ATP for 15 min (1.14±0.11), 30 min (1.12±0.19), 2h (1.46±0.24) and

24h (0.87±0.12) except for 1h (1.80±0.23) did not increased when compared with the initial

levels (Fig 7H).

Fig 7. The changed levels of p-ERK, p-CREB, and P2X3 expression in ESCs after treated with ATP and ERK inhibitor. (A, B, C and D), The

ESCs were treated with ATP alone; (E, F, G and H), The ESCs were pretreated with ERK inhibitor for 45min, and then treated with ATP. ESCs:

Endometriotic stromal cells. A. The levels of P2X3 mRNA expression in ESCS increased at 15min, 30 min and 1h after treated with ATP. B. Western

blot showed a specific band (47 kDa) for P2X3, and the levels of P2X3 expression in ESCs increased at 15min, continued to increase at 30min,

reached the peak value at 1h, and then gradually decreased at 2h. C. Western blot showed two bands (42/44 kDa) for p-ERK, and the levels of p-ERK

expression in ESCs reached the peak value at 15min, and then gradually decreased at 30min. D. Western blot showed a specific band (45 kDa) for p-

CREB, and the levels of p-CREB expression in ESCs increased at 15min, reached the peak value at 30min, and then gradually decreased at 1h. E.

The elevated levels of P2X3 mRNA induced by ATP were totally blocked by ERK1/2 inhibitor. F. The levels of P2X3 protein expression in ESCs did not

increase at any time points. G. The levels of p-ERK expression in ESCs significantly decreased at any time points. H. The levels of p-CREB expression

in ESCs at any time points except at 1h did not increase. (* P<0.05. **P<0.01. ***P<0.00001.)

https://doi.org/10.1371/journal.pone.0184647.g007
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Determination of coexpression of P2X3 and CGRP in endometriotic

lesions

In order to determine whether P2X3 is expressed on sensory nerves in endometriotic lesions,

and the correlation of P2X3 protein expression and nerve fibers within the lesions, we used

sensory neuronal marker CGRP to reveal sensory nerve fibers. Immunofluorescence double

staining showed a co-expression of P2X3 and CGRP in endometriotic lesions, which were

mainly seen in endometrial grandular epithelial cells, suggesting P2X3 is expressed on CGRP-

positive sensory nerve fibers in human endometriotic lesions (Fig 8).

Discussion

P2X3 is as a subtype of ligand-gated P2X channels belonging to the member of purinergic

receptors, which is are expressed not only on neuronal cells but also on most non-neuronal

cells [24–26]. In the present study we found that P2X3 was expressed not only on endometrial

epithelial cells but also on endometrial stromal cells, although there was more P2X3 protein

expression in endometrial epithelial cells. Immunohistochemical staining showed that P2X3

expression levels in endometriotic lesions and endometriosis endometrium were both higher

than those in control endometrium, which was confirmed by western blotting analysis. More-

over, P2X3 protein expression levels in endometriotic lesions and endometriosis endometrium

were both correlated with the severity of pain in women with endometriosis, and there was a

positive correlation between P2X3 protein expression levels in endometriotic lesions and

endometriosis endometrium in the same woman. In acute and chronic pain models, the acti-

vation of P2X3 receptor on neurons and/or their terminals can induce acute nociceptive

behavior, hyperalgesia and allodynia [38]. Moreover, the levels of P2X3 expression in DRG

neurons and their terminal tissues are both increased, and exhibit the linear correlation [27–

31, 38]. In the present study, P2X3 was expressed not only on endometriotic cells but also on

CGRP-positive nerve fibers within endometriotic lesions. These results together with the

above-mentioned findings suggest that increased P2X3 in endometriotic lesions and endome-

triosis endometrium imply an important role in the mechanisms of endometriosis-associated

pain triggering.

Endometriosis pain is thought to be a kind of inflammatory, nociceptive and neuropathic

pain [17, 39]. Herein we make a hypothesis that inflammatory mediators may activate nocicep-

tive receptor P2X3 on the afferent neurons, leading to the sensitization of sensory neurons,

and thus triggering endometriosis pain. It lies in: 1) An imbalance of innervation and the

Fig 8. Double-labelling immunofluorescence staining for P2X3 and CGRP in endometriotic lesions. (A), P2X3 expression; (B), CGRP

expression; (C), Co-expression of P2X3 and CGRP. An arrow indicating the expressions of P2X3 and/or CGRP. (C: Merge. Original magnification

400×; Bar = 50 μm).

https://doi.org/10.1371/journal.pone.0184647.g008
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abnormal secretion of different cytokines could mediate neurogenesis and subsequent periph-

eral neuroinflammation in endometriosis [39]; 2) In the present study, it has been proved that

P2X3 is expressed not only on endometrial epithelial cells but also endometrial stromal cells

and CGRP-positive nerve fibers within endometriotic lesions; 3) As ligand of receptor of

P2X3, ATP, which is a neurotransmitter and pain factor, will increase in pathological condi-

tions, including inflammation, stress, injury and tension [40]; 4) Endometriosis is considered

as a kind of inflammatory and/or neuropathic disease [39, 41]; 5) In theory, microcavities exist

in endometriotic lesion and its tension fluctuates with the menstruation; 6) ATP releasing

from epithelium lining the tube or sac acts on P2X3 and/or P2X2/3 receptors on subepithelial

sensory nerves to convey sensory/nociceptive information to the central nervous system [40].

Actually, in acute and chronic pain models, inflammatory mediators induce nociceptive

behavior, hyperalgesia and allodynia, which need to activate P2X3 receptor [28–30]. As an

important pain transducer of noxious stimuli, P2X3 is nociceptive receptor and found to be

expressed not only on endometriotic cells but also on sensory nerve fibers within the lesions

[24–26]. As such, inflammatory mediators such as IL-1β produced by endometriotic lesions

might regulate expression of P2X3 on endometriotic cells and sensory nerve fibers within the

lesions in a similar way for muscle and lead to nociceptive sensitization, and thus triggering

endometriosis pain signal cascade [15–17, 30].

It has been shown that MAPK, one of the main protein phospho-regulating effectors that

mediate nociceptive sensitization, is involved in endometriosis pain signal pathway by mediat-

ing inflammatory mediators [32–34]. Although the expression levels of p-ERK, p-CREB and

P2X3 in ESCs were all increased after the ESCs were treated with IL-1β, yet, the peak value was

firstly reached for p-ERK, then for p-CREB and lastly for P2X3. When the ESCs were pre-

treated with ERK inhibitor and then treated with IL-1β, however, the expression levels of p-

ERK and P2X3 in ESCs did not increase. Although the expression levels of p-CREB in ESCs

were decreased as compared with those when treated with only IL-1β, yet, there were still

some increases of p-CREB expression in ESCs when treated with ERK inhibitor and IL-1β.

The CREB, a transcription factor binding to the promoter regions of many genes, is the down-

stream molecule of MAPK signal pathways [42]. It is suggested that endometriosis pain

induced by inflammatory mediators such as IL-1β may be through ERK signal pathway.

Interestingly, when we used ATP rather than IL-1β to treat ESCs, it showed similar profiles

of p-ERK, p-CREB and P2X3 expressions in ESCs to IL-1β. Actually, endogenous ATP, a

ligand of P2X3 purinoceptors, is a powerful candidate molecule responsible for the molecular

signature of neuronal sensitization and spontaneous aberrant firing in a variety of pain-related

diseases [43]. Generally, ATP could be released in response to inflammatory stimuli and/or tis-

sue injury and it acts as a danger signal during inflammation [44, 45]. Our study also showed

that IL-1β induced ESCs to release ATP quickly. It is suggested that inflammatory mediators

such as IL-1β may induce endometriotic cells to release ATP from intracellular to extracellular

milieus, resulting in the activation of ATP in endometriotic lesions. Both IL-1β and ATP

resulted in transcription up-regulation of P2X3 on endometriotic cells via ERK signal pathway.

On the other hand, the activated ATP may directly activate P2X3 on sensory nerve fibers in

endometriotic lesions, leading to the co-sensitization of nociceptors on sensory nerve fibers

and endometriotic cells. At the same time, the activation of P2X3 in turn can sensitize ATP,

closing a vicious circle, and thus further causing the sensitization of the afferent neurons [24–

26]. These obtained results suggest that P2X3 might play a key role in endometriosis pain sig-

nal transduction.

In summary, our preliminary results showed that increased P2X3 expression in endome-

triotic lesions is correlated with endometriosis pain, and P2X3 might be involved in endome-

triosis pain signal transduction via ERK signal pathway. Further studies are needed.
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S1 Fig. RT-PCR identification of P2 mRNA in endometrium. Gels showed PCR products of

the estimated molecular weights corresponding to P2X and P2Y. Totally 7 P2X receptor

(P2X1, P2X2, P2X3, P2X4, P2X5, P2X6 and P2X7) and 7 P2Y (P2Y1, P2Y2, P2Y4, P2Y6,
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