
1SciEnTiFic REPOrTs | 7: 17206  | DOI:10.1038/s41598-017-17633-2

www.nature.com/scientificreports

Prediction of cassava protein 
interactome based on interolog 
method
Ratana Thanasomboon1,2, Saowalak Kalapanulak2,3, Supatcharee Netrphan4 &  
Treenut Saithong2,3

Cassava is a starchy root crop whose role in food security becomes more significant nowadays. Together 
with the industrial uses for versatile purposes, demand for cassava starch is continuously growing. 
However, in-depth study to uncover the mystery of cellular regulation, especially the interaction 
between proteins, is lacking. To reduce the knowledge gap in protein-protein interaction (PPI), genome-
scale PPI network of cassava was constructed using interolog-based method (MePPI-In, available at 
http://bml.sbi.kmutt.ac.th/ppi). The network was constructed from the information of seven template 
plants. The MePPI-In included 90,173 interactions from 7,209 proteins. At least, 39 percent of the total 
predictions were found with supports from gene/protein expression data, while further co-expression 
analysis yielded 16 highly promising PPIs. In addition, domain-domain interaction information was 
employed to increase reliability of the network and guide the search for more groups of promising PPIs. 
Moreover, the topology and functional content of MePPI-In was similar to the networks of Arabidopsis 
and rice. The potential contribution of MePPI-In for various applications, such as protein-complex 
formation and prediction of protein function, was discussed and exemplified. The insights provided by 
our MePPI-In would hopefully enable us to pursue precise trait improvement in cassava.

Proteins are macromolecules that play crucial roles in a range of biological processes in cells. They do not only act 
as catalysts but are also involved in intracellular regulatory processes, e.g. signal transduction and transcriptional 
regulation1. Although specific function is assigned to each protein, too often, we see that the protein remains 
inactive in the cellular matrix. This is because the protein needs to go through some modification processes, 
such as protein dimerization and complex formation via protein binding. Cooperation between proteins, called 
protein-protein interaction (PPI), allows cells to dynamically modulate when proteins and their counterparts are 
turned on to play roles in particular cellular processes. Since these interactions are highly dependent on prevailing 
conditions of exposure, the PPI is considered a type of biological language utilized to synchronize cellular regula-
tion, especially at post-translational level.

Due to the immense impact of PPIs on the regulation of cellular processes, great attempts have been devoted 
to capture the interactions between proteins as well as investigate their consequences. Earlier, availability of 
experimental techniques, such as affinity chromatography, immunoprecipitation and chemical crosslinking, only 
allowed for investigation of interaction of one, or maximally, a few protein pair at once2. Nowadays, large-scale 
detection of PPIs at genome-wide level has been made possible through yeast two-hybrid (Y2H), or affinity puri-
fication coupled with mass spectrometry (AP-MS)3–5. With these techniques, however, it still seems impossible 
to acquire knowledge in protein science at the rate that is fast enough to catch up with the big data currently 
available in post-genomic era.

Computational inference technique is an alternative method that can be used to identify the interactions 
between proteins. This technique is based on the hypothesis that the function of proteins, and also the interac-
tion among them are conserved across their evolutionary lineage. By incorporating various types of data, such 
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as amino acid sequences, functional domains, folding structure and co-evolution of interacting sites, successes 
in PPI conjecture in a wide range of organisms have been reported6–9. The information acquired from PPI pre-
diction has helped expand the understanding of the regulation at protein level, such as PPI-based mechanism of 
signal transduction process, and molecular interaction underlying host-pathogen relationship10–12. Recently, in 
an effort to move beyond the available PPI data, sophisticated computational methods, such as machine learn-
ing13,14, Bayesian network15,16, physical docking17 and correlated mutation18, have been introduced. To approach 
genome-wide prediction, machine learning based methods are of wide interest. Series of effective algorithms 
have continuously been developed in an attempt to incorporate multiple genomic/proteomic features into a 
framework of PPI prediction19–22. These algorithmic methods predict PPI from amino acid sequences and their 
collective information, for instance evolutionary background. Some examples include support vector machine 
(SVM)13,14,23, rotation forest and decision tree24,25, Bayesian classification15,16, Naïve Bayes26, relevance vector 
machine (RVM)27,28 and weighted sparse representation (WSRC)29,30. These computational algorithms have con-
tributed immensely to the study of PPI in a broad range of organisms, from bacteria16 to humans31. Nonetheless, 
the performance of the machine learning based-methods depends enormously on the numbers and quality of the 
employed data, especially the model-training information which are in general related to experimentally meas-
ured data. Application of such methods in non-model organisms, which always lack data, are quite challenging. 
To closely investigate the interaction of a protein set, computational methods that include information on protein 
structure into prediction regime, such as Struct2Net32 and physical docking17 are proposed.

In plants, earlier studies of PPI were limited to only a few species. The current PPI information of plants, 
especially cassava, has constrained choices of predictive methods. Not only the number of data is small, but only 
few experimental evidences are available. The computational prediction methods such as classification, machine 
learning and statistical inference were considered not suitable, and sometimes not applicable, for the status of 
data resource. A simple computational technique called interolog, which relies on existing data, is often adopted 
for PPI prediction under this restriction. The interolog method is inspired by the hypothesis that the function 
of protein is retained and passed through their orthologs in evolution-related organisms. The method, basically, 
infers PPI information from other well-studied species by orthology-based deduction. Most of PPI networks in 
plants were basically developed based on the interolog method, for example Arabidopsis6, rice33 and tomato34. The 
first plant PPI network constructed by interolog-based method was reported in 2007, describing 19,979 interac-
tions of 3,617 Arabidopsis proteins35. Since the first publication was released, accuracy of the interolog-based PPI 
network has greatly been improved by integrating various sources of information, from both predictive studies 
and experimental measurements36–38. Presently, the PPI research of plant species has been expanded from model 
plants, e.g. Arabidopsis6,35–39 and rice9,33,40, to economic crops, e.g tomato34, maize41 and sweet orange42. The pre-
vious research works are the good evidences of the appropriateness of such method for PPI inference in plants.

Cassava (Manihot esculenta Crantz) is an important crop of the world, since its roots feed at least 800 mil-
lion people43. Cassava yield improvement is thus, a major research topic ultimately aiming to guarantee food 
sufficiency for growing population. To date, the advent of high-throughput technology has improved our under-
standing of various aspects of cassava, especially root development44,45 and starch biosynthesis46–48. However, the 
information at protein level, which drives the physiology of cassava, is still a mystery. Several reports on protein 
expression exist under the conditions of interest49–59, but they do not provide further information on PPIs that 
might relate to post-translational or protein-level regulation. Here, by employing interolog approach, we propose 
the first genome-scale protein-protein interaction network of cassava (MePPI-In), using available PPI data and 
information from a variety of plant species. Our MePPI-In contains 90,173 interactions interconnecting 7,209 
cassava proteins (approximately 21 percent of all proteins in the whole genome). These interactions were partially 
supported by protein/gene expression and domain-domain interaction data. The resulting PPI network provided 
the landscape of possible interactions that might help fill the knowledge-gap on post-translational regulation in 
cassava as exemplified in the last section.

Methods
Construction of cassava PPI network using interolog-based method.  The interolog method is gen-
erally based on the inference of PPI information known to exist in other organisms. In this study, plant species, 
whose PPI information was employed for inference, were selected based on one of these criteria; (1) having a 
closed evolution with cassava (i.e. Ricinus communis (castor bean), Populus trichocarpa (poplar) and Glycine max 
(soybean)), (2) being recognized as a starch-storing plant (i.e. Solanum tuberosum (potato), Zea mays (maize) and 
Oryza sativa (rice)), or (3) having abundant PPI information (i.e. Arabidopsis thaliana). The protein information 
of these template plants was obtained from Phytozome V960 and Uniprot61 databases, and the protein interac-
tion information was collected from seven databases; IntAct62, MINT63, AtPIN36, AtPID37, PAIR38, APID39, and 
PRIN9 (Fig. 1a). To find protein orthologs in cassava, we performed BLASTp search against the cassava genome 
sequence. The cassava orthologous proteins were identified if the identity percentage ≥ 60, coverage percent-
age ≥ 80 and e-value ≤ 10−10. To be able to infer interaction that originally exists in one of the plant templates to 
cassava, orthologous proteins interconnected by such interaction must be identified in cassava. The cassava PPI 
network, MePPI-In, was then visualized using Cytoscape software64.

Validation of MePPI-In based on expression data.  Protein and gene expression data were exploited 
in this prediction framework to directly indicate if the proteins, or products of genes, exist in real cassava system. 
Afterwards, the proteins were considered available for the interactions among them to occur. To perform this, we 
utilized seven sets of protein expression data (Li et al.50, Mitprasat et al.51, Naconsie et al.52, Otiwi et al.53, Sheffield 
et al.56, Vanderschuren et al.57 and Zhao et al.59), and four sets of gene expression data (Yang et al.45, Li et al.65, An 
et al.66 and Utsumi et al.67). For the gene expression data, it is important to note that only highly expressed genes 
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that showed expression level above the 80th percentile rank were used. In MePPI-In, the nodes (proteins) were 
highlighted as blue color, if their expression information was available, as shown in Fig. 2.

From eleven datasets mentioned above, only the time-series datasets of Naconsie et al.52, Yang et al.45, Li et al.65  
and An et al.66 were employed to investigate the correlation of the expression profiles for interacting protein 
pair. This was based on the hypothesis that the genes/proteins with co-expression profile would have greater 
probability to interact than uncorrelated ones. Herein, the expression profiles of the highly expressed genes were 
determined based on Pearson’s correlation (Pearson correlation coefficient score (PCC))68, and co-expression of 
a protein pair in MePPI-In was suggested at PCC > 0.9 and p-value < 0.1.

Validation of MePPI-In based on domain-domain interaction (DDI) data.  Since proteins always 
interact via specific domains, the reliability of predicted PPIs could be determined using information on 

Figure 1.  Overall methodology of PPI prediction in cassava consisting of three parts: (a) Construction of 
protein-protein interaction network of cassava using interolog-based approach (MePPI-In), (b) Validation of 
the PPIs proposed in MePPI-In using protein/gene expression or domain-domain interaction (DDI) evidence, 
and (c) Characterization of MePPI-In based on three aspects – network topology, functional contents and 
biological inference.
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domain-domain interaction (DDI). In this work, the domain information of all proteins in the cassava PPI net-
work was obtained from Pfam database69 and the interactions between protein domains were collected from 
iPfam database70 (Fig. 1b). From the original MePPI-In, different colors were given to the interactions (edges) 
with or without supporting DDI information as shown in Fig. 2.

Scoring the confidence of the MePPI-In.  The confidence of predicted PPIs in MePPI-In was determined 
based on the consistency of the results inferred by two methods: interolog and domain-domain interaction anal-
yses. Each predicted interaction was given the level of confidence, in terms of confidence value (CV). The con-
fidence value (CV) score was defined as a product of the confidence values from interolog (CVinterolog) and DDI 
(CVDDI) (Equation 1). Since our interolog-based PPI prediction was derived from the evidence in plant templates, 
the CVinterolog was formulated to represent the confidence of the prediction, based upon the number of species 
from which the interaction was inferred. Additionally, this score was also weighted by the method employed 
to identify the interactions in the source organism, computational prediction or experimental measurements 
(Equation 2). The CVDDI indicated the confidence of prediction based on domain-domain interactions, in which 

Figure 2.  Cassava protein-protein interaction network (MePPI-In) derived by the interolog-based method. 
The network contained 90,173 interactions (edges) interconnecting 7,209 proteins (nodes). Different colors 
were given to both edges and nodes. The black edges represent PPIs with DDI or co-expression support, while 
the grey ones represent those with no supporting data. Blue color nodes represent proteins with supporting 
expression data45,50–53,56,57,59,65–67, while the orange ones have no expression support. (All information is publicly 
available at http://bml.sbi.kmutt.ac.th/ppi).

http://bml.sbi.kmutt.ac.th/ppi
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the number of interacting domains between a predicted protein pair was taken into account (Equation 3). The 
formulas were as follows:

= ×CV CV CV (1)interolog DDI

= ∑ =CV
S M

N (2)interolog
i
N

i i1

=CV dD (3)DDI

where S ∈ {0, 1} is the existence factor, indicating the presence of an orthologous protein pair in cassava genome. 
In this study, S is always equal to 1 because orthologous protein pairs need to be identified prior to being incorpo-
rated in the MePPI-In. M refers to the reliability of the method by which the interactions were identified: 0.5 for 
computational prediction, and 1 for experimental measurement. N ∈ {1, 2, …, 7} is the number of species from 
which the protein-protein interactions in cassava were inferred. D = [0, 1] refers to domain enrichment, which 
is the ratio of the reported DDI pairs to all interactions possibly happening among domains in a protein pair. For 
example, D calculated for three and four domain-containing proteins that interact via two DDIs is equal to 2/
(3 × 4). To compensate the probability bias in calculation of D for the studied protein pairs that contain only one 
domain, the correction factor (d) = 0.5 was used. Otherwise, d was set to 1.

Analysis of topology and functional content of MePPI-In.  The MePPI-In network was character-
ized in terms of topology and biological function relevance (Fig. 1c). The topology of the network was analyzed 
using network analysis tools in Cytoscape64. The topological characteristics of MePPI-In were then compared 
with those of the cassava random network (simulated by Cytoscape containing the same number of nodes and 
average number of edges as MePPI-In), Arabidopsis36 and rice9 PPI networks. Biological function of the pro-
teins in MePPI-In was examined through AgriGO71, from which GO enrichment analysis was determined using 
REVIGO72. The results were illustrated in scatterplot graph and compared with the GO enrichment of proteins in 
Arabidopsis36 and rice9 PPI networks.

Results and Discussion
Protein-protein interaction network of cassava.  The interaction between proteins is a transient phe-
nomenon that allows cells to be regulated at post-translational level. Since experimental investigation of PPIs 
is difficult and requires huge effort, prediction of protein interactions through computational techniques has, 
thus, widely been accepted73,74. In this study, interolog-based method was utilized to construct a genome-scale 
PPI network of cassava. Upon the homology-based principle of this method, seven plant species were selected 
as templates, based on one of the three criteria (the model plant, Arabidopsis, has abundant PPI information; 
potato, rice and maize are starch-storing crops; castor bean, poplar and soybean are closely related to cassava). 
According to PPI information from various databases (Fig. 1a), Arabidopsis has the most abundant PPI infor-
mation (235,215 interactions of 17,962 proteins) followed by rice (76,829 interactions of 5,219 proteins), potato 
(42 interactions of 48 proteins), maize (25 interactions of 29 proteins), soybean (10 interactions of 12 proteins), 
castor bean (10 interactions of 10 proteins), and poplar (8 interactions of 10 proteins) (Table 1). To infer PPI 
information for cassava from each template plant, BLASTp search of the cassava genome sequence database was 
carried out. The cassava orthologous proteins that showed identity percentage ≥60, coverage percentage ≥80 and 
e-value ≤ 10−10 were identified. If these orthologous proteins matched the proteins of template plants that had 
previously been identified to have protein-protein interaction, such interactions were regarded as orthologous 
PPIs in cassava. Based on the results obtained, majority of the inferred PPIs were from Arabidopsis (90,069 inter-
actions) followed by rice (212 interactions), potato (19 interactions), soybean (7 interactions), maize and poplar 
(5 interactions each) and castor bean (2 interactions) (Table 1).

The resulting interolog-based PPI network of cassava, or MePPI-In, is comprised of 90,173 interactions inter-
connecting 7,209 proteins, which accounted for c.a. 21 percent of proteins in the whole genome (Fig. S1). The 
overall predicted PPIs are available at http://bml.sbi.kmutt.ac.th/ppi. Figure 2 illustrates the overview of MePPI-In 

Plants

Genome Information60 PPI Information MePPI-In

Number of genes Number of proteins Number of PPIs Number of proteins Sources Infered PPIs in cassava Orthologs in casssava

Arabidopsis 27,416 35,386 235,215 17,962 ref.36 – ref.39 90,069 7,193

ref.62 – ref.63

Rice 55,986 154,310 76,829 5,219 ref.9, ref.62 212 84

Potato 35,119 59,699 42 48 ref.62 19 15

Maize 32,540 88,383 25 29 ref.62 5 8

Soybean 54,175 83,795 10 12 ref.62 7 7

Poplar 41,335 83,796 8 10 ref.62 5 7

Castorbean 25,878 31,576 10 10 ref.62 2 2

90,173 7,209

Table 1.  Protein-protein interactions in plant templates and MePPI-In.

http://bml.sbi.kmutt.ac.th/ppi
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Figure 3.  MePPI-In with supporting expression evidence. (a) Overview of the number of proteins in MePPI-In 
and expression information45,50–53,56,57,59,65–67. The numbers in parenthesis represented the total number of genes 
or proteins in each cohort. (b) The list of PPIs between proteins with co-expression profiles derived from time-
series expression datasets of Yang et al.45 (cassava fibrous, intermediate and storage roots at 4 months), Li et al.65  
(cassava leaves, stems and roots harvested at 2nd, 4th, 7th and 10th month), An et al.66 (cassava apical shoots 
subjected to cold at 7 °C for 0, 4 and 9 h) and Naconsie et al.52 (cassava storage roots harvested at 3rd, 6th, 9th 
and 12th months). The resulting interactions were classified into three groups based on the number of proteins 
and their topologies. Each protein was presented as a circle in the color that corresponds to the graph of its 
expression profile (see more information in Table S2).
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within which subnetwork demonstrated partial set of protein interaction, metabolism and sub-metabolism with 
specific group of proteins of interest. It is important to note here that different colors were given to both inter-
actions (edges) and proteins (nodes) to indicate whether their existence could be supported by other evidences. 
Edge colors represented interactions from interolog-based method with or without co-expression or DDI support 
(black or grey), while node colors denoted the proteins with or without expression data (blue or orange) (see more 
details in the Supporting the interactions section below). Approximately 99 percent of the PPIs in MePPI-In were 
inferred from Arabidopsis and rice. None of the interactions included in our network was presented in all seven 
template plants. These results implied that availability of data was the main limitation in inference-based PPI net-
work construction. To improve the confidence of the network derived originally from interolog-based prediction 
method, other available types of data, such as expression or domain-domain interaction, could be incorporated 
in the newly constructed MePPI-In.

Supporting the interactions of proteins with expression data.  Our MePPI-In was constructed using 
interolog-based method, which could only project the known PPIs in other plants to cassava. Accordingly, it 
might be helpful if collective information could be incorporated to support the occurrence of such predictions 
in cassava. In this study, expression of the proteins included in MePPI-In was examined using information from 
seven protein expression50–53,56,57,59 and four gene expression datasets45,65–67. Subsequently, co-expression of each 
interacting protein pair was also determined. This was based on the fact that interaction between two proteins 
occurs only if both proteins are presented at the same time.

From eleven expression datasets exploited here, 4,698 proteins expression were detected, from the total num-
ber of 7,209 proteins in MePPI-In, (Fig. 3a, Table S1). Accordingly, different colors were given to nodes (or pro-
teins) shown in Fig. 2. The blue color nodes highlighted the proteins with supporting expression data, while the 
orange ones had no supporting expression data. Since expression of the proteins from eleven expression datasets 
indicated their presence in cassava, these proteins were then considered available for the interactions among them 
to occur. From the total of 90,173 interactions in MePPI-In, 35,146 interactions (or 39 percent) were observed to 
connect the proteins with supporting expression data.

Among the eleven expression datasets, the time-series datasets of Naconsie et al.52, Yang et al.45, Li et al.65 
and An et al.66 were utilized to observe the correlation of expression between two proteins (Pearson correlation 
coefficient score (PCC) > 0.9 and p-value < 0.1). From the results obtained, there were 16 interactions that were 
identified to interconnect the proteins with co-expression pattern (Table S2). We further classified these PPIs into 
three groups based on the number of protein members and the types of interactions (Fig. 3b). First, the heterod-
imeric interactions represented interactions between two proteins, for example, an interaction between methio-
nine adenosyltransferase 3 (M3) and small ubiquitin-like modifier 1 (SUMO1). The second group represented 
linear multimeric interactions, which probably exhibited the sequential functional relationship between proteins. 
The third was circular multimeric interactions. The interactions between nucleolar complex protein 2 (NOC2P), 
ribosomal RNA processing brix domain protein (RRB) and pescadillo-like protein (PES) potentially suggested 
functional relationship of these proteins in rRNA processing and cell proliferation control75.

Supporting the interaction of proteins with DDI data.  From our MePPI-In, reliability of each PPI 
was determined by incorporating the information on domain-domain interaction (DDI). This was based upon 
the observation that the proteins usually interact via specific domains. In this work, the domain information of 
proteins in MePPI-In were obtained from Pfam database69 and the interactions between protein domains were 
from iPfam database70 (Fig. 1b). From the total number of proteins proposed in MePPI-In, only 4,963 proteins (or 
69 percent) were identified to have at least one domain. From these numbers, only 1,981 proteins (or 27 percent 
of the proteins proposed in MePPI-In or 40 percent of the proteins with domain information) were indicated, by 
iPfam, to interact via specific domains. Accordingly, only 6,826 from 90,173 interactions (~seven percent) could 
be confirmed through DDI information. Even with Pfam and iPfam, the largest universal repositories of protein 
domain information, only a small fraction of interactions initially proposed in MePPI-In were identified to have 
supporting DDI information. However, this did not mean that the DDI information could not provide any insight 
into the confidence level of PPIs obtained from interolog-based prediction method.

Ranking the confidence of PPIs in MePPI-In based on DDI data.  In this study, the confidence of 
the predicted PPIs in MePPI-In was classified into two groups. The PPIs with high confidence level (High (H), 
Table 2) represented those with supporting domain information (6,826 PPIs). The other class which exhib-
ited basal confidence level (Basal (B), Table 2) included the remaining interactions in MePPI-In (83,347 PPIs). 
Emphases on the class of high confidence level, confidence value (CV) scores, for the 6,826 PPIs, were determined 
and classified into three sub-groups, based on the percentile rank of the CV scores (see Methods). The CV score 
basically ranges from 0 to 1, from the lowest to the highest level of confidence. However, the distribution of CV 
scores was observed to be positively skewed, meaning that majority of the PPIs had the CV score ≤ 0.5. This was 
because most of the PPIs in MePPI-In were obtained from computational prediction, not experimental measure-
ments. Accordingly, the factor M for the calculation of CVinterolog was set at 0.5. Also, in most cases, the correction 
factor d for the calculation of CVDDI was set at 0.5 to represent the DDIs between proteins with only one domain. 
The small values of both CVinterolog and CVDDI only allowed a maximum final CV scores of 0.5. Accordingly, per-
centile calculation was employed to further classify these high confidence PPIs into three sub-classes: H1 (percen-
tile of CV score > 80), H2 (percentile of CV score: 50–80) and H3 (percentile of CV score < 50) (Table 2).

As mentioned above, the current knowledge of protein domain and DDI information can support only up 
to seven percent of the overall interactions in MePPI-In. However, the confidence level obtained, along with 
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the PPIs, herein, should help contrast the reliability of each prediction for further investigation by experimental 
approaches.

Characteristics of the MePPI-In Network.  The MePPI-In proposed in this study is the first genome-wide 
protein-protein interaction network of cassava consisting of 90,173 interactions and 7,209 proteins. Here, char-
acteristics of the MePPI-In were described in terms of the global network topology and the functional coverage. 
At last, we discussed how MePPI-In might be used to infer biological regulatory processes. Some of these appli-
cations include (1) identification of a hub protein in the interactome cascade, (2) functional identification of 
unknown protein, (3) inference of protein complex formation, and (4) study of protein connections in metabolic 
pathway as well as connection of various metabolic pathways via protein-protein interactions. These examples 
showed the contribution of MePPI-In in envisaging cellular communication via crosstalk at protein level.

MePPI-In performs as a biological network.  A protein-protein interaction network, such as MePPI-In, 
is generally constructed from available proteome and interactome data of reference species and the studied organ-
ism itself. The MePPI-In proposed here included knowledge of PPIs from both cassava and other plants. The con-
structed network contained a large number of possible interacting protein pairs; nonetheless, it was impossible 
to determine the exact coverage of the network constituents of the overall PPIs that exist in real living cells. The 
ill-defined network boundary did not allow assessment of its representativeness in the cellular PPI matrix. In this 
circumstance, network topology was employed, at least as an alternative, to suggest the plausibility of the pro-
posed network as if it possesses the properties of common biological network system76. To investigate topology 
of MePPI-In, the key global network properties, including node degree distribution, average path length (L) and 
clustering coefficient (Ci), were determined according to graphical analysis method76.

The MePPI-In exhibited the biological network characteristics based upon the two supporting properties; 
scale-free and small world. First, the connectivity (k) of the proteins in MePPI-In followed a power-law distri-
bution, P(k)~k−γ. The MePPI-In exhibited scale-free property and showed an explicit deviation from a random 
network, in which most proteins had relatively the same numbers of interactions as shown in the relationship 
between degree and number of nodes (Fig. 4). In MePPI-In, most proteins have only a few interactions and only a 
few proteins, called hub proteins, have a large number of interactions. The scale-free property is not only observed 
in MePPI-In, but also occurs in other types of biological networks76, such as metabolic network, and gene regula-
tory network77. MePPI-In was analyzed and compared with the PPI networks of Arabidopsis36 and rice9. Figure 4 
described the various features of these PPI networks, including network diameter, average path length and clus-
tering coefficient. Although these PPI networks contained different numbers of interactions and proteins, all of 
them followed a power law distribution, a common behavior of biological networks in living organisms.

Second, the MePPI-In possessed a small-world structure. According to the definition given by Watz and 
Strogatz78, the average path length of a small-world network must be relatively greater than average path length 
(L) of random network, while the clustering coefficient (Ci) of small world network is relatively much higher than 
Ci of random network (Lsmall world ≥ Lrandom but Ci small world ≫ Ci random). The average path length (average of shortest 
paths between all possible pairs of proteins in the network) value of MePPI-In was 3.53, slightly greater than that 
of the random network with the same number of nodes and average number of edges per node (3.04). Moreover, 
the much higher clustering coeffiecient of MePPI-In, when comparing with random network shown in Fig. 4, also 
supported the small world property of our network. This property of MePPI-In is considered beneficial, since it 
can protect cassava from any perturbation caused by endogenous and exogenous stimuli.

In conclusion, based on the two network properties mentioned above, MePPI-In exhibits a well-presented 
biological network behavior. It is thus presumed that the MePPI-In contains sufficient information, hence, could 
be utilized as the model PPI network in cassava.

Functional content of MePPI-In.  Besides the network topology, functional content of proteins in 
MePPI-In was determined to demonstrate some PPI-based regulation in cassava. The functional coverage of 
proteins in the network was examined by GO analysis. The results were presented based on three classes of gene 
ontology79, biological process, molecular function and cellular component. In addition to the basic GO terms, 
GO enrichment of proteins in MePPI-In was examined and the results were presented in scatterplot (Fig. 5). The 
node color showed degree of enrichment ranging from low (red) to high (blue), while the node size represented 
the frequency of proteins in each functional group. According to the scatterplot of MePPI-In, a large number of 
proteins, in ‘biological process’ class, were identified to be related to cellular and metabolic processes. These cor-
responded to the result in the ‘molecular function’ class, in which a large number of the proteins were observed 

Confidence level Range of confidence value (CV)

Number

PPIs Proteins

Total MePPI-In — — 90,173 7,209

Interolog, no DDI information Basal (B) — 83,347 5,228

Interolog, DDI - heterodimer High (H) [0.00, 1.00] 6,826 1,981

Percentile of CV score: >80 H1 [0.14, 1.00] 1,184 733

Percentile of CV score: 50–80 H2 [0.12, 0.14) 3,859 1,439

Percentile of CV score: <50 H3 [0.01, 0.12) 1,783 855

Table 2.  Classification of predicted PPIs based on the confidence level.
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Figure 4.  The global network properties of protein-protein interaction networks in cassava, Arabidopsis and 
rice.

Figure 5.  Comparison of the functional content of MePPI-In and the PPI networks of Arabidopsis and rice. 
The scatterplots were derived based on GO enrichment analysis. The node color showed degree of enrichment 
ranging from low (red) to high (blue), while the node size represented the frequency of the proteins in each 
functional group.
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to have catalytic activity or binding capacity, probably acting as enzymes in metabolic pathways and transcription 
factors in cellular regulatory processes. For the last class of gene ontology or the ‘cellular component’, our results 
provided no information on specific compartments of the cell where the PPIs tend to occur.

By comparing MePPI-In with the Arabidopsis and rice PPI networks, some similarities of the functional 
content of the proteins were observed (Fig. 5). These included the proteins that function in cellular processes and 
cellular metabolism, and possess catalytic or binding capacity. The functional content of MePPI-In was observed 
to be more closely related to Arabidopsis than to rice. These differences probably reflect the different nature of the 
plants as cassava and Arabidopsis are dicots, while rice is a monocot80,81.

Inference of biological regulation from MePPI-In.  The involvement of protein-protein interaction in 
mediating cellular regulation has been reported in several studies82–84. These studies demonstrated key roles of 

Figure 6.  Interaction of the cassava heat shock protein 90.1 (HSP90.1; cassava4.1_002708m) and its partner 
proteins in MePPI-In. The nodes represent the proteins; blue for proteins with supporting expression data45,50–

53,56,57,59,65–67 and orange for proteins with no supporting data. The edges represent interactions between HSP90.1 
and its partners.

Figure 7.  Interaction of an unknown protein (cassava4.1_011746m) with partner proteins with known 
function. The nodes represent the proteins; blue for proteins with supporting expression data45,50–53,56,57,59,65–67 
and orange for proteins with no supporting data. The edges represent interactions between the unknown 
protein and its partners.
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PPIs in post-translational regulation that governs biological processes in cells. In similar manner, we propose 
possible post-translational regulation in cassava using the information acquired from MePPI-In. Genome-scale 
network enabled us to access the extensive cooperation of PPIs underlying specific cellular regulatory process, 
beyond the explanation at an associative protein pair.

As the first global protein interaction network in cassava, our MePPI-In was able to illustrate the complexity 
of cellular regulation in cassava, from the highly elaborate topology of the network (Fig. 2). Moreover, our cassava 
PPI network (MePPI-In) has brought various insights. First, it helps in identifying the most important protein 
whose significance is reflected by its number of interactions with diverse partner proteins (denoted as high node 
degree in Fig. 2). Regarding the MePPI-In, heat shock protein 90.1 (HSP90.1; cassava4.1_002708m) showed the 
highest (620) number of connections (Fig. 6). HSP90.1 was recognized as a communication hub because it inter-
acts with various types of proteins including transcription factors, signaling proteins, structural proteins and 
enzymatic proteins (Fig. 6). HSP90.1 was reported to play roles in various biological processes, including protein 
folding, intracellular transport, protein degradation and cell signaling85,86, which agrees with our finding. Similar 
to cassava, Arabidopsis and rice also use heat shock protein as the center of communication, but the hub protein 
in these two plants was heat shock protein 70 (HSP70)33,36. In MePPI-In, the HSP70 is one of the proteins with 
many connections (following only HPS90.1). However, partner proteins that interact with cassava HSP70 are dif-
ferent from those that interact with Arabidopsis and rice HSP70. These results suggested that cassava, Arabidopsis 

Figure 8.  Protein complex of the cassava ubiquitin-conjugating protein (cassava4.1_017321m). The nodes 
represent the proteins; ubiquitin-conjugating protein (yellow); ubiquitin ligases (green); F-box family proteins 
(purple); galactose oxidase/kelch repeat superfamily proteins (pink); other proteins (orange). The edges 
represent PPIs: black – PPIs with DDI or co-expression support, and grey for – PPIs with no supporting data.
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and rice may use these core proteins to respond to stress, but how these plants react are different since they use 
different mechanisms through different protein activities.

Second, the MePPI-In might be used to identify functions of unknown proteins in similar manner to Sharan 
et al.87. Proteins involved in same metabolic pathway usually interact to carry out a specific task required by 
cells. From MePPI-In, the unknown protein, cassava4.1_011746m, was observed to interact with five proteins; 
cassava4.1_032607m (basic leucine zipper transcription factor protein (bZIP)), cassava4.1_007074m (TGACG 
motif-binding factor 6), cassava4.1_015896m (response regulator 5), cassava4.1_023865m (response regulator 
6), and cassava4.1_022288m (response regulator 9), all of which are transcription factors88,89 (Fig. 7). Based on 
its interaction with transcription factors, the unknown protein might act as another component in this transcrip-
tional regulation cascade.

Third, the network could be used to investigate the possibility of proteins to form complexes, as in vivo proteins 
often work together by forming protein complex. From MePPI-In, interaction between ubiquitin-conjugating 
protein (E2; cassava4.1_017321m) and ubiquitin ligase proteins (E3; cassava4.1_000004m and cassa-
va4.1_002295m) was observed with high interaction confidence (Fig. 8). This finding agreed well with the results 
from previous study which reported that during ubiquitination process, ubiquitin-conjugating proteins form 
complexes with ubiquitin ligase proteins prior to binding to target proteins90. In addition to the proteins that are 
known to form complexes, our network also indicated additional protein components that might form complex 
with the ubiquitin-conjugating protein (Fig. 8). These included the F-box family proteins, which were reported 
to mediate ubiquitination during protein degradation91, and galactose oxidase/kelch repeat superfamily proteins, 
which functions as substrate-specific adapter proteins in ubiquitin ligase binding92.

Fourth, the network could be used to gain knowledge on a particular metabolic pathway. As the value of 
cassava mainly relies on its capacity to synthesize and store starch, our MePPI-In might provide some insight 
related to the biosynthesis of starch in cassava. Herein, all proteins involved in the CO2 fixation pathway (Calvin 
cycle), sucrose biosynthesis pathway and starch biosynthesis pathway (defined as starch proteins)47 as well as 
their partners, were presented in the form of starch sub-network (Fig. 9). According to Fig. 9, starch proteins 
interact not only with starch proteins, but with other proteins such as signaling proteins, regulatory proteins, 
and proteins in other metabolic pathways. These results suggested that starch metabolism was tightly regulated. 
Since starch proteins connected to proteins in other metabolic processes, its perturbations could eventually affect 
whole organism. This might be the reason why unexpected pleiotropic effects were often observed, even though 
the mutants in question had already been proven to lack only a single starch gene.

Conclusions
The study of protein-protein interaction allows us to envisage potential post-translational regulation that mediates 
the cellular processes in cassava. Our MePPI-In is the first genome-scale protein-protein interaction network of 
cassava, consisting of 90,173 interactions and 7,209 proteins. The MePPI-In was constructed from extensive PPI 

Figure 9.  Cassava starch sub-network. The nodes represent starch proteins (green) and their first neighbors 
(orange). The edges represent interactions between proteins; black for PPIs with DDI or co-expression 
supporting data, and grey for PPIs with no supporting information. Within the starch sub-network, the 
arrows indicated where the starch synthases (SS1, SS2, SS3, SS4), starch branching enzymes (SBE2.1, SBE2.2), 
isoamylase (ISA3) and ADP glucose pyrophosphorylase in large and small subunit (APL1, APS1) resided.
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data of seven plants (i.e. Arabidopsis, rice, potato, maize, castor bean, soybean, and poplar) using interolog-based 
method. The MePPI-In contained the largest number of PPIs in cassava, which are involved in many biological 
processes especially cellular process, and metabolism. Moreover, confidence value (CV) was calculated to rank 
the reliability of the prediction, which is beneficial for the discovery of promising PPI for further investigation. 
The biological insights gained from the MePPI-In network, hopefully, fill a part of the current gap of knowledge 
on cassava proteins and their function.
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