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Abstract

Coronavirus disease (COVID-19), the clinical syndrome caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is
currently a global health pandemic with substantial morbidity and
mortality. COVID-19 has cast a shadow on nearly every aspect of
society, straining health systems and economies across the world.
Although it is widely accepted that a close relationship exists
between obesity, cardiovascular disease, and metabolic disorders
on infection, we are only beginning to understand ways in which
the immunological sequelae of obesity functions as a predisposing

factor related to poor clinical outcomes in COVID-19. As both the
innate and adaptive immune systems are each primed by obesity,
the alteration of key pathways results in both an
immunosuppressed and hyperinflammatory state. The present
review will discuss the cellular and molecular immunology of
obesity in the context of its role as a risk factor for severe COVID-
19, discuss the role of cytokine storm, and draw parallels to prior
viral epidemics such as severe acute respiratory syndrome (SARS),
Middle East respiratory syndrome (MERS), and 2009 H1N1.
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The Spanish influenza pandemic of 1918
affected nearly 100,000,000 individuals
worldwide (1). Since then, there have been
few instances of such a rapidly
communicating pandemic affecting millions
of victims across six continents. Coronavirus
disease (COVID-19), the clinical syndrome
resulting from infection with severe acute
respiratory syndrome coronavirus 2 (SARS-
CoV-2), has emerged as a global threat
without precedent in the last century,
resulting in substantial morbidity and
mortality (2). Obesity, defined as a body
mass index of 30 or more, is an epidemic
unto itself, affecting more than 1.9 billion
persons (3). It is associated with increased
incidence and progression of multiple

chronic diseases (4), includingmetabolic
syndrome, respiratory infections such as
pneumonia (5), pandemic influenza (6), and
synergistically worsens cardiovascular disease
mortality (7). Obesity was found to have a
striking link tomortality in theH1N1
pandemic (8–10). Epidemiological data from
COVID-19 hospitalizations (11) suggest that
the presence of obesity is associated withmore
severe disease and greater mortality, withmore
data substantiating this issue over time (12, 13).

To build on these data, there exists a
need to understand the immunological basis
of disease development in patients with
COVID-19 and comorbid obesity and, in
particular, the mechanism of development of
the cytokine storm phenotype. Thus,

understanding the mechanistic links between
obesity, immunomodulation, and disease
outcomes is especially crucial in the
understanding of COVID-19 and will
improve ongoing efforts to prevent COVID-
19–related mortality worldwide.

Immunological Changes
Because of Adiposity as a
Risk Factor for Infection

The role of adiposity in modifying the innate
and adaptive immune system is firmly
established in the human host response to
infection (14, 15). In general, when
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compared with those without obesity,
patients with obesity have a greater risk for
acquiring severe and nonsevere infections
(16). Potentiated interactions between
adiposity, insulin resistance, and
inflammation (17, 18) underscore this
problem because patients with COVID-19
often carry overlapping diagnoses of
diabetes, obesity, and metabolic syndrome.
Insights from preclinical studies on acute
lung injury, inflammation, and obesity
(19–22) will be useful to elucidate the
complex and multifactorial links between
obesity and immune dysregulation in the
pathogenesis of COVID-19 lung injury and
multiple organ failure (23, 24).

Physiologically, adipose tissue is
essential, as it provides the substrate for
normal metabolism and fuel storage, and it is
considered an organ, possessing paracrine
and endocrine functions together with robust
immunological activity (25). Excess adiposity
is a condition of nutrient imbalance in which
the threshold of normal fatty acid storage is
exceeded. The resulting stress state, referred
to as “metainflammation” (26), is marked by
mitochondrial dysfunction, apoptotic
signaling and production of reactive oxygen
species (ROS) (25, 27). One component of
this stress response is the activation of the
smooth endoplasmic reticulum (ER) of
macrophages, termed the “ER stress
response.” This response occurs when
cholesterol-overloaded macrophages
generate ROSmediated by the ER stress
sensors PERK and IRE1a (28), and they
form proinflammatory “foam cells," leading
to TNF-a and IL-6 via NF-kB activation (29)
and to mitogen-activated protein kinases (28,
30). The result is a chronic, low-grade
inflammatory environment (31) in which
circulating cytokines (32) and complement
proteins (33) are constitutively activated,
including increased concentrations of IL-6
(31). IL-6, which is directly associated with
abdominal obesity as it is generated in
adipose tissue (31), acts on IL-6 receptors
and represents a key cytokine implicated in
the hypercytokinemic phase of COVID-19,
in which higher circulating concentrations
are correlated with severity (34). Excess lipids
can directly affect intracellular signaling
pathways by activating PKC isoforms. Lipids
also act as a damage-associated molecular
patterns and directly engage pattern
recognition receptors (pathogen-associated
molecular patterns). For example, saturated
fat, palmitate, and oxidized cholesterol can
activate Toll-like receptor (TLR) signaling via

TLR4, resulting in activation of the
inflammasome and proinflammatory gene
expression (26). This stimulates hepatic CRP,
fibrinogen, andmarrow leukocyte and
platelet release, together with endothelial
activation, which may result in the “primed”
immune responses seen in patients with
obesity and SARS-CoV-2 infection and could
further predispose the host to
immunosuppression and excessive cytokine
activation.

Adiposity and Adipokines

The two major types of adipose tissue—white
and brown—are located in visceral and
subcutaneous compartments (35). Visceral
white adipose tissue is essential for energy
storage, glucose homeostasis, and glucose,
metabolism, and endocrine functions (36). In
patients with obesity, particularly those with
insulin resistance, excess deposition of fatty
acids in visceral adipose tissue is associated
with a chronic proinflammatory state, also
referred to as “metainflammation” (26), in
which circulating immune cells, particularly
macrophages, are abundant (37). Adipose
tissue undergoes remodeling in obesity via an
increase in size and number of adipocytes,
but an infiltration of immune cells also
occurs within the tissue itself. In the obese
state, macrophage activation and production
of proinflammatory transcription factors,
such as NF-kB and JNK, occurs in activated
in adipose tissue as well as liver and muscle
tissue (25, 38). In visceral adipose tissue, both
adipocytes and surrounding stromal cells are
the site of production of proinflammatory
cytokines and polypeptides, such as TNF-a,
IL-6, resistin, MCP-1, and angiotensinogen
(39, 40). Adipocytokines are adipocyte-
derived cytokine-like proteins typically
engaged in energy homeostasis, fat
metabolism, and tissue remodeling (41–43).
Dysfunctional regulation of adipokines has
been implicated in the development of
inflammation, insulin resistance, and
metabolic syndrome. Adiponectin is a key
adipokine with predominantly
antiinflammatory actions and is deficient in
obesity (42). It is expressed in the
endothelium as well as adipocytes and
skeletal muscle cells, binding to cellular
receptors ADIPOR-1 and ADIPOR-2,
stimulating PPAR-a (peroxisome
proliferator–activated receptor a), AMP-
kinase and p38 mitogen–activated protein
kinase, yielding multiple downstream

antiinflammatory effects, including the
attenuation of TNF-a (42). Adiponectin
deficiency in obesity presents a
mechanistically important role in COVID-
19, especially in the context of numerous
preclinical studies revealing obesity as a risk
factor for the development and severity of
respiratory failure (19). In a murine model,
Shah and colleagues (44) demonstrated a
protective effect of adiponectin on the
pulmonary endothelium, such that
deficiency was associated with excess
permeability via modification of junctional
adherens proteins and the development
acute lung injury and acute respiratory
distress syndrome (ARDS).

Leptin is a 16Kd protein with immune
and neuroendocrine properties produced in
adipocytes in proportion to body fat mass. It
serves diverse homeostatic and
immunoregulatory roles (36, 45, 46),
including weight regulation, stress responses,
and satiety (4, 45, 47), in addition to robust
effects on the innate and adaptive immune
systems, exerting activity on neutrophils,
natural killer (NK) cells, monocytes, and
macrophages as well as CD4 cells (45).
Increased leptin concentrations in excess
adipose tissue may be associated with leptin
resistance and the development of diabetes
andmetabolic syndrome (48). A key role is
to modify T-cell responses (49) by
promoting Th1 differentiation (45).
Immunosuppression due to hyperleptinemic
states is also significant in that patients with
obesity have defects in neutrophil function
and impaired cytokine signaling and
chemotaxis, suggesting that leptin at high
concentrations can suppress the innate
immune response (50).

Van der Voort and colleagues (51)
demonstrated that critically ill patients with
SARS-CoV-2 infection had higher baseline
leptin concentrations than matched control
subjects, supporting findings from a prior
study in which Ubags and colleagues (50)
found an association between elevated leptin
concentrations and the progression of
respiratory failure, ARDS, and mortality.
Finally, leptin exhibits structural parallels to
IL-6, IL-12, and G-CSF (granulocyte colony-
stimulating factor) (45) and promotes the
release of Il-6, IL-1b, and ROS, which, taken
together, may be crucial in the pathogenesis
of COVID-19 cytokine storm.

Resistin is a cysteine-rich protein first
described in adipose tissue (52) that has been
implicated in the development of obesity.
Resistin concentrations are elevated in
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patients with obesity and are decreased in the
setting of weight loss. The pathogenesis of
insulin resistance is believed to be mediated,
in part, by resistin (41), and, in fact, the
expression of resistin is induced in
inflammatory states by TNF-a and
NF-kB (53). Key proinflammatory cytokines
TNF-a, IL-6, and IL-1b; CCL-2; and leptin
are generated in excess in white adipose
tissue, where adipose tissue–derived
macrophages are a primary source of
cytokine production. IL-6 has a myriad of
proinflammatory actions, as reviewed
extensively by Ellullu and colleagues (31).
This is pertinent in COVID-19–associated
viral pneumonia because serum IL-6
concentrations are increased under hypoxic
conditions (54), and thus elevated baseline
concentrations in patients with obesity may
be a pivotal mechanistic link between obesity
and disease severity in COVID-19.

Innate Immunity and Obesity

The innate immune response is an essential
early response to viral pathogens. Numerous
murine models have been established to
evaluate pathological alterations of cell
immunological mechanisms in obesity,
allowing the investigation of diverse
respiratory diseases, including ARDS,
pneumonia, and asthma (19). The chronic
inflammatory state generated by obesity,
termed “metainflammation” (39), impairs
the immune response to an infectious insult.
In essence, bioactive proteins and cytokines
are produced from activated adipocytes,
which are more often located in visceral fat
(40). This process commences with
dysregulated lipid and glucose metabolism,
which is normally coordinated by the gut,
liver, and pancreas, and may be potentiated
by inflammatory signals from the
hypothalamus. In the overfed state, this leads
to lipid accumulation, insulin resistance, and
adiposity development. Lipid accumulation
also results in pathologic alterations to
phagocytic cells such as macrophages and
NK cells. In the innate immune response,
recognition of pathogens, pathogen-
associated molecular patterns, and damage-
associated molecular patterns, including free
fatty acids and high glucose concentrations,
occurs by pathogen recognition receptors,
including TLRs (39). TLRs as well as RIG-
like and NOD-like receptors are components
of immunologically active multiprotein
complexes or “inflammasomes,” which,

when activated, can lead to caspase activation
and NF-kB–mediated IL-1b synthesis (55)
and release. Both resident and peripheral
macrophages play a central role in pathogen
recognition, and, ultimately, the
macrophages serve as “signal amplifiers” of
the inflammatory process started in the
adipocyte (18). Macrophages are not only
increased in number via signaling by CCL-2
in the peripheral circulation but also become
highly activated to a proinflammatory M1
phenotype (56), in whichM1 gene
expression leads to robust cytokine
production, including ROS, IL-2, TNF-a,
IL-6, IL-1b, andMCP-1, within adipose
tissue (25, 57–59). This results in increased
neutrophil sequestration and impaired
migration into the alveolar space during
times of infectious insult, as well as M1
polarization of resident alveolar
macrophages. In an LPSmodel of bacterial
sepsis, the obese state promoted switching to
theM1 (proinflammatory) phenotype,
increasing alveolar TNF-a/IL-10 ratio, and
reprogramming of adipose tissue
macrophages to a state of increased
responsiveness (60, 61). NK cells are a subset
of lymphocytes that respond swiftly to
infected host cells with lytic substances such
as perforins and granzymes (62). NK cells
can also shape subsequent immune
responses through their rapid production of
cytokines (IFN-g, TNF-a, IL-6, and GM-
CSF [granulocyte-macrophage colony-
stimulating factor]). One on hand, in adipose
tissue, NK cells may activate macrophages to
a proinflammatory phenotype, and, on the
other, NK cell function is defective in the
obese state (62).

The influence of immunosuppression
and hyperactivation of cytokine pathways
underlie the severity and lethality caused by
COVID-19. Under homeostatic conditions,
the type I IFN pathway is activated when
presented with a viral pathogen. JAK–STAT
signaling and nuclear transposition results in
increased expression of nuclear IFN-
stimulated response elements (63, 64)
(Figure 1). Tian and colleagues (65) found
that obesity leads to inefficient antiviral
response by predisposing patients with
obesity to an attenuated type 1
IFN–mediated defense. Teran-Cabanillas
and colleagues (66) showed that IFN
responses to influenza are attenuated in
patients with obesity, and, in similar fashion,
alteration and evasion of IFN responses by
SARS-CoV-2 are likely culprits of severe
disease and worsening cytokinemia (67). A

proposed mechanism of obesity in viral
infections is described by Almond and
colleagues (68), in which elevated leptin
concentrations and consequent leptin
resistance in obesity could attenuate the IFN
response via SOC-3 (suppressor of cytokine
signaling 3), which is upregulated in obesity
(68). Antimicrobial peptides, such as
defensins and cathelicidins, play a role in
host defense and are present in respiratory
endothelium (69). Defensins are commonly
induced in the setting of viral infection with
effector functions ranging from inactivating
virions to regulating chemokine production,
depending on the type of defensin and the
type of virus (70). Cathelicidins
concentrations are correlated with elevated
body mass index (BMI) (71). These peptides
are chemotactic for neutrophils and T cells in
viral infection and have been demonstrated
to reduce proinflammatory cytokine release
by macrophages (69). It has been
demonstrated that individuals with obesity
and asthma have decreased concentrations of
surfactant protein, an essential finding, as
decreased concentrations are associated with
impaired clearance against both bacterial and
viral pathogens (72, 73). Surfactant D is a
soluble protein in the collectin family located
in mucosal secretions of the respiratory
epithelium, and it plays an important role in
the innate response to viral infection (74).
The full impact of obesity on cathelicidins,
defensins, and surfactant is largely unknown;
however, disrupted surfactant concentrations
are considered to be important in the
pathogenesis of inflammation in the obese
and insulin-resistant state (75).

Obesity in the Adaptive
Immune System

COVID-19 impairs adaptive immune
responses, with significant lymphopenia and
altered T-cell responses (76). These actions
may be exaggerated in obesity, in which the
influence of B cells on T cells generates a
proinflammatory T-cell phenotype (77).
Patients with obesity have an increased
frequency of CD4 TH1 cells, whereas CD41

TH2 cells progressively decrease with the
development of obesity (78). Despite elevated
CD81 T-cell numbers, there is decreased
CD81 T-cell activation and expression of
functional proteins (79). Misumi and
colleagues (16) assessed the effects of obesity
on T-cell responses to viral infection in
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murine models and observed increased
memory T-cell numbers in white adipose
tissue and spleen, with memory T cells
rapidly causing severe pathogenesis upon
rechallenge with infection. Patients with
COVID-19 have higher coexpression of
CD38 and HLA-DR on CD81 T cells. PD-1
expression on CD81 T cells was significantly
lower in patients with COVID-19, with PD-1
being crucial in the reinvigoration of
exhausted T cells (76). In murine models,
obese mice were found to have T-cell
dysfunction, which was partly mediated by
the PD-1 axis and driven by leptin (80). T-
cell dysfunction is largely characterized by
decreased T-cell proliferation, decreased
effector function, decreased naive:memory
T-cell ratio and shift to TH1/TH17
phenotype from TH2/Treg phenotype (81).
Antiinflammatory regulatory T cells, which
typically aim to maintain immunologic
balance by secreting IL-10 and TGF-b, are
reduced (82). Greater concentrations of TH1
phenotype T cells are observed in obese
adipose tissue (83). Obesity causes a
reduction in thymopoiesis and constricts
TCR diversity and thus is associated with
impaired T cell–mediated immune

monitoring (84). Although CD8 T-cell
numbers may be increased in obesity (85),
obesity has been shown to impair memory
T-cell responses to viral infection (21). This
may result in lower leukocyte counts and
decreased CD4 and CD8 subsets, resulting in
altered monocyte oxidative burst functions
in individuals with obesity (14, 15) and
potentiating immunosuppression. Frasca and
colleagues (86) suggest that B cells within
visceral adipose tissue express higher NF-kB
and have reduced antibody responses. This
may be especially pertinent because an
animal model of SARS-CoV-1 (87) infection
demonstrated that intranuclear IL-6
expression was activated via NF-kB,
indicating the need for further study in
SARS-CoV-2 with respect to B cell–induced
transcriptional activity.

Obesity, Viral Pneumonia, and
Hyperinflammation: A Focus
on Human Studies

Evidence is mounting that obesity correlates
with morbidity andmortality in COVID-19
(88). Simonnet and colleagues (89) reported

a positive correlation between BMI and
mortality in COVID-19, finding that 47% of
patients admitted to the ICU had obesity. In
a series of 32 patients hospitalized with
H1N1, Hagau and colleagues (90)
demonstrated that obesity was more
common in those developing ARDS,
suggesting that obesity was an independent
risk factor for admission to the ICU.
Mechanical impairments in individuals with
obesity contribute to this finding, including
decreased expiratory reserve volume, total
lung capacity, functional residual capacity,
and vital capacity and changes in pleural
pressure (91, 92) in addition to anatomic
factors, such as airway narrowing due to
redundant oropharyngeal tissue, and large
neck circumference. Potentiating this
problem are the proinflammatory cytokine
concentrations, which are increased in
patients with obesity, particularly in those
with obstructive sleep apnea (93, 94), in
which IL-6 and TNF-a have been shown to
circulate at higher concentrations. The
amplified cytokine response to viral
respiratory infection is a well-known feature
of influenza (95), in which infected resident
epithelial cells and circulating immune cells
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produce IFN’s, 1L-1b, TNF-a, and IL-6.
Indeed, the cytokine storm phenotype, which
is manifested by the profound activation of
the immune response, is the clinical hallmark
of COVID-19 multiorgan dysfunction and is
associated with critical illness andmortality
in COVID-19 (96). Robust cytokine
responses in COVID-19 involve IL-2, IL-7
MCP-1, TNF-a, and IFN-inducible protein
10 (32). This pattern mirrors ARDS (97) and
bacterial pneumonia, which involves IL-6,
TNF-a, and IL-1b release. This response, in
conjunction with the dysregulated activation
of thrombin (98), leads to the multiorgan
dysfunction seen in severe COVID-19 (96,
99). Thrombin is not only an essential
mediator of in situ thrombosis but also exerts
a proinflammatory response via protein-
activated receptors (98).

Differential cytokine profiles have
bolstered our understanding of disease
severity and risk for both SARS-CoV-2 (100)
and COVID-19 (101) respiratory disease.
Notably, IL-10 concentrations were found to
be predictors of severe disease in SARS and
COVID-19 (102). In addition, in patients
with cytokinemia due to COVID-19, IL-1b,
IL-6, and IL-10 concentrations are higher
than those found in critically ill patients with
community-acquired pneumonia, and they
are quantitatively correlated with severity of
illness (103) Virus replication in airway
epithelial cells promotes CD8 stimulation
and cytokine release, resulting in local tissue

destruction and systemic inflammatory
responses (104). IL-6 production has been
correlated with mortality in H1N1 in 2009
(105) and was similarly shown to be elevated
in patients with SARS from aWuhan cohort
(102) InMERS-CoV and SARS, cytokine
production was elevated, and this was found
to be due to nuclear translocation of NF-kB
(32, 87, 106). Ultimately, numerous
proinflammatory cytokines are not only
independently implicated in obesity but also
correlate to increased concentrations in
severe COVID-19 (Table 1).

Discussion: Clinical
Correlation Obesity in SARS-
CoV-2 and Cytokine Storm in
Patients with Obesity

A comprehensive understanding of the
mechanism by which the altered
immunologic state of visceral obesity yields
predisposition to severe SARS-CoV-2
infection is clearly needed to optimize
management strategies. Likewise, the impact
of obesity on every aspect of both the innate
and adaptive immune systems, including
cytokine, chemokine, and adipokine milieu
should be assessed. In previous SARS-CoV
infections, respiratory ciliated cells were
found to abundantly express ACE-2
receptors, and these ciliated cells were the

predominant cell type infected by SARS-CoV
(107). In obesity, insulin resistance and
associated chronically elevated adipokines,
including leptin, resistin, and visfatin,
promote a constitutive hyperinflammatory
response, including cytokine release (108)
(Table 2). Resistin may be an important
mediator, as it downregulates TRAF-3, which
normally impairs TNF, and upregulates
VCAM1 and ET-1, which may activate
endothelial cells (109). Upon attachment of
the virion to antigen-presenting cells such as
macrophages, which are overproduced in
SARS-CoV-2 (110), recognition receptors
such as TLR2–4 (111) lead to the activation
of NF-kB, IFN-Ç, and the type I IFN
pathway (112). These TLRs are believed to
possibly be activated by saturated fatty acids
in the setting of obesity (39), suggesting a
baseline activation that is furthered by SARS-
CoV-2 viral infection. The downstream
effects of these intracellular pattern
recognition receptors are a vital portion of
the inflammatory response, leading to the
production of proinflammatory cytokines
TNF, IL-1, IL-6, and IL-8, which are elevated
at baseline in obesity (Table 3). In addition,
in patients with obesity, there is an elevation
in gene expression of chemokines MCP-1,
MIP-1a, MIP-1b, MCP-2, MCP-4, MIP-2a,
and PARC (pulmonary and activation-
regulated chemokine) within adipose tissue
(59) that may lead to increased chemokine
production.

Table 1. Comprehensive List of Cytokines Implicated in Obesity and Severe COVID-19

Cytokine/ Chemokine Concentration in Obesity Concentration in Severe COVID-19

TNF-a (TH1; adipokine, cytotoxic)
TNF-b (TH1; cytotoxic)

Increased TNF-a Increased TNF-a

IL-1 Increased IL-1b Increased IL-1b
Increased IL-1RA (antiinflammatory)

IL-6 (adipokine, cytotoxic) Increased Increased
IL-8/CXCL8 Increased Increased
IL-2 (TH1/TH2; cytotoxic) Unknown Increased
IFN-g (TH1; cytotoxic) Increased Unknown
CXCL10/IP-10 Increased Increased
CXCL9/MIG1 Increased Unknown
IL-17 Unknown Increased
IL-7 (cytotoxic) Unknown Increased
IL-4 (TH2; cytotoxic) Unknown Increased
IL-9 (TH2) Unknown Increased
Rantes/CCL5 Increased Increased
MIP-1a/CCL3 Increased Increased
MCP-1/CCL2 Increased Increased
GM-CSF (TH1/TH2) Unknown Increased
TGF-b Increased Increased
IL-10 (TH1/TH2; cytotoxic; allergic) Increased Increased

Definition of abbreviations: COVID-195 coronavirus disease; GM-CSF5granulocyte-macrophage colony-stimulating factor; MCP-1 5 monocyte che-
moattractant protein-1; MIP-1a 5 macrophage inflammatory protein 1a; TGF-b 5 transforming growth factor-b; TH1 5 T-helper cell type 1.
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Finally, immunologically mediated
changes during SARS-CoV-2 infection are
especially destructive in patients with obesity,
as they are already faced with mechanical
disturbances that predispose to hypoxia and
hypercapnia, including poor lung
compliance, respiratory muscle inefficiency,
ventilation–perfusion mismatching, and

impaired gas exchange (92). Undoubtedly,
patients with ARDS secondary to COVID-
19–associated viral pneumonia and
hemodynamic compromise due to cytokine
storm are at increased risk for poor outcomes
because of these mechanical defects.
Ongoing studies comparing subsets of
patients with obesity with COVID-19 with

those having a normal BMI, both with and
without cytokine storm, will be crucial in the
expansion of our understanding of the role of
obesity in COVID-19–related illness.

Conclusions

Early population data fromCOVID-19
studies, together with conclusions from
animal and human studies of prior
pandemics, establish the link between obesity,
metabolic disease, and the immunological
response to respiratory infection. Pathological
attenuation of the innate and adaptive
immune systems in obesity predispose to
infection via dampened response to invading
viral pathogens. Concurrently, changes in
baseline concentrations of adipokines, leptin,
and resistin prime the host to
immunodeficiency, coupled with a
hyperactivated inflammatory response,
cytokine storm, and consequent critical illness
that represent the basis of COVID-19
morbidity andmortality. If we are to pave the
way for preventive action in the form of
vaccine development as well immunologically
based treatment strategies for COVID-19, we
must combine existing data with these
mechanistic links described to devise new
translational and clinical studies.�
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