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Abstract. The aim of the present study was to extract 
potential sub‑pathway biomarkers for spondyloarthropathy 
(SpA)/ankylosing spondylitis (AS) using a sub‑pathway 
strategy. SpA/AS‑relevant data, reference pathways and 
long non‑coding (lnc)RNA‑micro (mi)RNA‑mRNA interac-
tions were downloaded. The seed pathways based on Kyoto 
Encyclopedia of Genes and Genomes pathways and the 
mRNAs in the co‑expressed lncRNA‑mRNA interactions were 
extracted. Sub‑pathways regulated by lncRNA were selected 
after establishing condition‑specific lncRNA competitively 
regulated pathways (LCRP) network. Significant sub‑path-
ways were further identified using the attract method. These 
significant sub‑pathways were evaluated in the other indepen-
dent published AS microarray data (E‑GEOD‑25101) using 
in silico validation. In addition, to uncover SpA/AS‑relevant 
lncRNAs, the degree analysis for all nodes in the LCRP 
network was conducted. A total of 35 lncRNAs, 131 mRNAs 
and 145  co‑expressed interactions were identified. When 
entering these 131 mRNAs into the reference pathways, 
82 seed pathways were extracted, which were transformed 
into undirected graphs, and the 35 lncRNAs were mapped to 
the pathway graphs to further establish the condition‑specific 
LCRP network. Based on degree analysis, four hub lncRNAs 
were selected, including C14orf169, LINC00242, LINC00116 
and LINC00482. It was identified that 35 lncRNAs competi-
tively regulating sub‑pathways were involved in 56 complete 
pathways. Among these, the top three sub‑pathways were path: 
04010_1, which was a subregion of the mitogen‑activated 
protein kinase (MAPK) signaling pathway; path: 04062‑1, 

an important subregion in the chemokine signaling pathway; 
and path: 04066_2, was a part of HIF‑1 signaling pathway. 
Furthermore, it was validated consistently in the separate 
microarray data set E‑GEOD‑25101. Cancer‑associated path-
ways and hub node C14orf169 were identified in validation. 
Sub‑pathways, including the MAPK signaling pathway and 
chemokine signaling pathway, and hub lncRNA (C14orf169) 
may serve important roles in SpA/AS.

Introduction

Spondyloarthropathy (SpA), including ankylosing spondylitis 
(AS), is a type of inflammatory disorder, which is characterized 
by uveitis and inflammation of the axial skeleton, and associated 
to human leukocyte antigen‑B27  (1). Initial symptoms of 
SpA/AS appear in the late teen and early adult years; however, 
due to a lack of signatures for early diagnosis, treatment is 
frequently delayed, ultimately leading to disability (2). There 
is 0.3% incidence rate of AS in people of Asian descent (3). 
More importantly, the molecular mechanisms driving disease 
progression are very poorly understood. Therefore, elucidating 
the pathogenesis of SpA/AS is urgently warranted.

Previously, microarray analyses have become a standard 
approach for finding the alterations underlying the onset 
and progression of disease and identifying signatures for 
diagnosis and response to treatment (4,5). According to litera-
ture, numerous microarray studies have been conducted on 
SpA/AS (6‑8). Though these analyses have successfully identi-
fied a number of gene biomarkers distinguishing subjects with 
SpA/AS from healthy subjects, the differentially expressed 
genes (DEGs) listed in each study have little overlap. Due to 
the limited performance ability of DEGs, discovering poten-
tial pathogenic pathways is crucial, as the pathway biomarkers 
may enhance the accuracy of detection, relative to individual 
genes (9,10). Furthermore, long non‑coding (lnc)RNAs were 
demonstrated to competitively regulate biological pathways 
and exert key functions during the development of bone‑asso-
ciated disease, for example, AS (11,12). Therefore, discovering 
the pathways competitively regulated by lncRNA may reveal 
disease pathogenesis and is helpful to expound the biological 
roles of lncRNAs in disease. In addition, searching for 

Identification of pathways significantly associated 
with spondyloarthropathy/ankylosing spondylitis 

using the sub‑pathway method
MING DING1,2,  TING‑JIN GUAN2,  CHUAN‑YIN WEI2  and  BO‑HUA CHEN3

1Qingdao University, Qingdao, Shandong 266100; 2Department of Orthopedics (Second), The First Hospital of Zibo City,  
Zibo, Shandong 255200; 3Department of Spinal Surgery, The Affiliated Hospital of Qingdao University,  

Qingdao, Shandong 266100, P.R. China

Received December 8, 2017;  Accepted June 12, 2018

DOI: 10.3892/mmr.2018.9395

Correspondence to: Dr Bo‑Hua Chen, Department of Spinal 
Surgery, The Affiliated Hospital of Qingdao University, 59 Haier 
Road, Laoshan, Qingdao, Shandong 266100, P.R. China
E‑mail: chenbhblood@163.com

Key words: spondyloarthropathy, ankylosing spondylitis, long 
non‑coding RNAs, sub‑pathways



DING et al:  SUB-PATHWAYS IN SpA/AS3826

sub‑pathways instead of the complete pathways may uncover 
more meaningful pathways and identify the functions of 
lncRNAs. The concept of key local subregion was created (13), 
which was used to successfully identify a number of impor-
tant sub‑pathways. So far, no data on lncRNA‑regulated 
sub‑pathways associated with SpA/AS has been reported.

In the present study, to further reveal the mechanisms of the 
initiation and progression of SpA/AS, a systematical tracking 
of sub‑pathways from the lncRNA competitively regulated 
pathways (LCRP) based on the combination of lncRNA data 
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways was conducted. This method may be beneficial for 
expounding the functional roles of lncRNAs in SpA/AS.

Materials and methods

Data collection. Microarray data of E‑GEOD‑41038  (14) 
were obtained from the ArrayExpress at the European 
Bioinformatics Institute (www.ebi.ac.uk/arrayexpress/) using 
the terms ‘ankylosing spondylitis’, ‘spondyloarthritis’ and 
‘normal control’ on May 29, 2017. In the E‑GEOD‑41038, 
there were 15 knee synovial biopsy tissue samples, including 
six seronegative SpA, two AS, three osteoarthritis and four 
normal control biopsies. The platform of E‑GEOD‑41038 
was A‑MEXP‑1172‑Illumina HumanRef‑8 v 3.0 Expression 
BeadChip (www.ebi.ac.uk/arrayexpress/experiments/
E‑GEOD‑41038/). In order to reveal the molecular mechanisms 
of SpA/AS, we selected 6 seronegative SpA, two AS, and four 
normal control biopsies for identifying important signatures 
between SpA/AS and control. The other independent published 
AS microarray data set (E‑GEOD‑25101) (15) was used to 
conduct in silico validation.

Data preprocessing. EXPRESSO function of Affy package (16) 
was employed to pre‑treat the gene expression profile. Specific 
steps included background adjustment using the robust multi-
array average method, normalization via quartile method, 
perfect match/mismatch match probe correction by means 
of MAS5.0 and MEDIANPOLISH used to summarize the 
expression values. Ultimately, 15,593 genes were obtained.

Ca ndida te  lncR NA‑mR NA in teract ions.  Fi rst ly, 
lncRNA‑micro (mi)RNA interactions were collected from 
StarBase version 2.0  (17), and the proved mRNA‑miRNA 
interactions were downloaded from the public databases of 
mirTarBase (18), miRecords (19), TarBase (20) and mir2Dis-
ease (21). According to the shared miRNAs of lncRNAs and 
mRNAs, the candidate lncRNA‑mRNA regulated interactions 
were obtained. For removing unreliable data, the candidate 
competing mRNAs for each lncRNA were filtered using the 
following two criteria (22). Criterion one: A hypergeometric 
test was used to assess the significance of the shared miRNAs, 
and false discovery rate (FDR) <0.05 was selected as the 
cut‑off threshold. Criterion two: The Jaccard Coefficient of 
lncRNA‑mRNA interactions was calculated and ordered, and 
the top 20% lncRNA‑mRNA interactions were reserved.

Based on the aforementioned two criteria, informative 
lncRNA‑mRNA competitive interactions were identified, which 
constituted 1,749 mRNAs, 7,693 lncRNA‑mRNA associations 
and 835 lncRNAs.

Constructing the co‑expressed lncRNAs‑mRNA interactions. 
In the present study, the Pearson correlation coefficient (PCC) 
was used to measure the co‑expression possibility for any pair 
of informative lncRNA‑mRNA interactions using the matched 
lncRNA and mRNA expression data, which is reported to 
measure the correlation between two variables (23). Relying on 
Fisher's r‑to‑Z transformation (24), the interaction with r value 
reaching a significant positive threshold (P<0.05) were kept.

Selecting important sub‑pathways
Detecting seed pathways. All KEGG reference pathways were 
retrieved from the KEGG database. Subsequently, the genes of 
the co‑expressed lncRNAs‑mRNA interactions were entered 
into the reference pathways, which was utilized to correct the 
P‑values using the Benjamini‑Hochberg procedure (25). Seed 
pathways were identified based on the criteria of FDR <0.05.

Establishment of condition‑specific LCRP. R packages were 
used to convert the seed pathways to undirected graphs 
which held the structure of the original pathways (26). The 
lncRNAs within the co‑expressed lncRNAs‑mRNA interac-
tions were entered into the pathway graphs, in which lncRNAs 
associated with their mediated‑mRNAs. Subsequently, the 
condition‑specific LCRP was constructed, which included 
lncRNA nodes and lncRNA‑mRNA regulated edges.

Locating sub‑pathways competing regulated by lncRNAs. 
lncRNAs have been implicated to serve as signature nodes, 
as they competitively regulate the interested genes. Therefore, 
the combination of lncRNAs and the topology properties of 
LCRP is beneficial to effectively locate lncRNA‑mediated 
subregions. Specifically, the shortest path between any two 
signature nodes was analyzed, on condition that the molecule 
number between each pair of signature nodes was smaller 
than the controlled the strength of regulated signals (n), and 
these signature nodes were combined into one. The molecule 
number involved in a given pathway more than controlled the 
sub‑pathway size (s) was regarded as candidate sub‑pathways 
mediated by lncRNAs s. Herein, n=1 and s=8 in the present 
study were utilized to extract the candidate sub‑pathways.

Detection of significant sub‑pathways using the attract method. 
To assess whether the candidate sub‑pathways were competi-
tively regulated by lncRNAs, these candidate sub‑pathways 
were used to identify the significant sub‑pathways using the 
attract method (27). On the basis of the analysis of variance 
model, Fisher's test was performed for genes in the candidate 
sub‑pathways and the F‑statistic value for gene ‘a’ was counted 
as follows:

In this formula, N was the total number of sub‑pathways; rk 
represented each cell type; k =1, …, K; y was the mixed effect 
model; and b stood for the corresponding expression value in 
each replicate sub‑pathway. Subsequently, a t‑test was utilized 
to examine the F‑statistics values, and the P‑values were 
obtained. The FDR was applied to adjust the P‑values using the 
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Table I. List of seed pathways between AS and control.

	 False
Pathways	 discovery rate

hsa05200: Pathways in cancer	 1.48x10‑23

hsa05161: Hepatitis B	 1.26x10‑14

hsa05215: Prostate cancer	 1.93x10‑14

hsa05212: Pancreatic cancer	 5.37x10‑13

hsa04151: PI3K‑Akt signaling pathway	 3.25x10‑12

hsa05220: Chronic myeloid leukemia	 3.94x10‑11

hsa05214: Glioma	 1.17x10‑10

hsa05211: Renal cell carcinoma	 1.43x10‑10

hsa05218: Melanoma	 3.77x10‑10

hsa05219: Bladder cancer	 1.01x10‑9

hsa05222: Small cell lung cancer	 4.47x10‑9

hsa04510: Focal adhesion	 3.68x10‑8

hsa04066: HIF‑1 signaling pathway	 4.21x10‑8

hsa04520: Adherens junction	 7.60x10‑8

hsa05203: Viral carcinogenesis	 1.96x10‑7

hsa04110: Cell cycle	 3.88x10‑7

hsa04540: Gap junction	 6.07x10‑7

hsa05223: Non‑small cell lung cancer	 6.97x10‑7

hsa04012: ErbB signaling pathway	 3.96x10‑6

hsa05169: Epstein‑Barr virus infection	 4.10x10‑6

hsa04010: MAPK signaling pathway	 4.37x10‑6

hsa04912: GnRH signaling pathway	 6.60x10‑6

hsa04320: Dorso‑ventral axis formation	 7.68x10‑6

hsa04730: Long‑term depression	 1.26x10‑5

hsa05131: Shigellosis	 2.05x10‑5

hsa05166: HTLV‑I infection	 2.12x10‑5

hsa04115: p53 signaling pathway	 3.21x10‑5

hsa05120: Epithelial cell signaling	 3.21x10‑5

in Helicobacter pylori infection
hsa05213: Endometrial cancer	 4.22x10‑5

hsa04910: Insulin signaling pathway	 5.07x10‑5

hsa05145: Toxoplasmosis	 6.38x10‑5

hsa04722: Neurotrophin signaling pathway	 6.86x10‑5

hsa04916: Melanogenesis	 9.53x10‑5

hsa04350: TGF‑β signaling pathway	 1.05x10‑4

hsa05142: Chagas disease (American	 1.20x10‑4

trypanosomiasis)
hsa05210: Colorectal cancer	 1.33x10‑4

hsa04810: Regulation of actin cytoskeleton	 1.58x10‑4

hsa05216: Thyroid cancer	 1.67x10‑4

hsa04062: Chemokine signaling pathway	 1.81x10‑4

hsa04725: Cholinergic synapse	 2.26x10‑4

hsa04726: Serotonergic synapse	 2.42x10‑4

hsa04664: Fc epsilon RI signaling pathway	 2.87x10‑4

hsa04360: Axon guidance	 5.40x10‑4

hsa05221: Acute myeloid leukemia	 5.98x10‑4

hsa04660: T cell receptor signaling pathway	 .6.42x10‑4

hsa04728: Dopaminergic synapse	 6.77x10‑4

hsa05160: Hepatitis C	 7.56x10‑4

hsa04150: mTOR signaling pathway	 7.88x10‑4

hsa05132: Salmonella infection	 1.01x10‑3

Table I. Continued.

	 False
Pathways	 discovery rate

hsa04114: Oocyte meiosis	 1.11x10‑3

hsa04064: NF‑κB signaling pathway	 1.41x10‑3

hsa04144: Endocytosis	 1.88x10‑3

hsa04662: B cell receptor signaling pathway	 2.05x10‑3

hsa04380: Osteoclast differentiation	 2.85x10‑3

hsa05100: Bacterial invasion of epithelial	 2.89x10‑3

cells
hsa05016: Huntington's disease	 2.95x10‑3

hsa04620: Toll‑like receptor signaling	 3.37x10‑3

pathway
hsa05010: Alzheimer's disease	 3.82x10‑3

hsa04621: NOD‑like receptor signaling	 3.89x10‑3

pathway
hsa04210: Apoptosis	 5.01x10‑3

hsa04370: VEGF signaling pathway	 5.21x10‑3

hsa04512: ECM‑receptor interaction	 5.30x10‑3

hsa05034: Alcoholism	 5.99x10‑3

hsa04666: Fc γ R‑mediated	 6.59x10‑3

phagocytosis
hsa04720: Long‑term potentiation	 7.75x10‑3

hsa04330: Notch signaling pathway	 1.12x10‑2

hsa04961: Endocrine and other 	 1.16x10‑2

factor‑regulated calcium reabsorption
hsa05162: Measles	 1.18x10‑2

hsa04310: Wnt signaling pathway	 1.48x10‑2

hsa05164: Influenza A	 1.61x10‑2

hsa05152: Tuberculosis	 1.71x10‑2

hsa05130: Pathogenic Escherichia coli	 1.84x10‑2

infection
hsa05168: Herpes simplex infection	 2.10x10‑2

hsa04914: Progesterone‑mediated oocyte	 2.32x10‑2

maturation
hsa05020: Prion diseases	 2.83x10‑2

hsa04713: Circadian entrainment	 3.34x10‑2

hsa04650: Natural killer cell mediated	 4.11x10‑2

cytotoxicity
hsa04723: Retrograde endocannabinoid	 4.16x10‑2

signaling
hsa04530: Tight junction	 4.24x10‑2

hsa05202: Transcriptional misregulation	 4.77x10‑2

in cancer
hsa04971: Gastric acid secretion	 4.96x10‑2

hsa05133: Pertussis	 4.97x10‑2

PIK3, phosphatidylinositol 3‑kinase; Akt, RAC‑α serine/threo-
nine‑protein kinase; HIF1, hypoxia‑inducible factor 1; ErbB, receptor 
tyrosine‑protein kinase; MAPK, mitogen‑activated protein kinase; 
GnRH, gonadotropin‑releasing hormone; HTLV‑1, human T‑cell 
lymphotrophic virus type 1; p53, cellular tumor antigen p53; mTOR, 
serine/threonine‑protein kinase mTOR; NF, nuclear factor; NOD, 
nucleotide oligomerization domain; VEGF, vascular endothelial 
growth factor; ECM, extracellular matrix. 
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Benjamini‑Hochberg approach. The significant sub‑pathways 
were identified based on the threshold of FDR <0.05.

Selecting hub lncRNAs in LCRP network. As reported, hub 
nodes constantly reflect the crucial functions of the network. 
In a biological network, the degree index was determined as 
the total count of edges connecting all nodes. Hence, in the 
present study, the degree distribution of the nodes in the LCRP 
network were measured and the top 10% lncRNAs with the 
highest degrees were selected to serve as hub nodes.

In silico validation in the other independent AS microarray 
data. To predict these important sub‑pathways, further AS 
data were downloaded from the publicly available microarray 
dataset E‑GEOD‑25101, which represented 16 patients with 
AS and 16 normal patients. For verification, all steps and the 
defined criteria were the same as the aforementioned analysis.

Results

Identif ying co‑expressed lncRNA‑mRNA interactions 
and seed pathways. In the present study, PCC was used 
to determine the co‑expression possibility for any pair of 
informative lncRNA‑mRNA interactions. Compared with 
SpA/AS‑control, a total of 35 lncRNAs, 131 mRNAs and 
145  co‑expressed interactions were identified (data not 
shown). Subsequently, these 131 mRNAs were respectively 
aligned to the reference pathways to further detect the seed 
pathways. A total of 82 seed pathways were respectively 
identified between SpA/AS and control with the FDR set as 
<0.05 (Table I). Significantly, the top five pathways included 
pathways in cancer, hepatitis B, prostate cancer, pancreatic 
cancer and the phosphoinositide 3‑kinase (PI3K)‑RAC‑α 
serine/threonine‑protein kinase (Akt) signaling pathway.

Constructing the condition‑specific LCRP and identifying 
sub‑pathways. Following the extraction of seed pathways of 
the two groups, the seed pathways were respectively trans-
formed into undirected graphs, and the 35 lncRNAs in the 
co‑expressed lncRNA‑mRNA interactions of SpA/AS were 
embedded into pathway graphs as nodes by associating with 
their regulated‑mRNAs. An SpA/AS‑specific LCRP was 
established, which covered lncRNA nodes in addition to 
lncRNA‑mRNA edges. Specific LCRPs are presented in Fig. 1. 
In the SpA/AS‑specific network, it was identified that overall, 
35 significant lncRNAs competitively regulated sub‑pathways 
involved in 56 complete pathways.

The top three sub‑pathways that are competitively 
regulated by lncRNAs in the comparison between AS and 
control groups were further analyzed. The first is the most 
significant sub‑pathway path: 04010_1, which was a subre-
gion of mitogen‑activated protein kinase (MAPK) signaling 
pathway (Fig. 2). Based on this module composition, it was 
observed that this subregion was competitively regulated by 
six lncRNAs. The second significant sub‑pathway was path: 
04062‑1, an important sub region in the chemokine signaling 
pathway (Fig. 3). This sub‑pathway was regulated by seven 
lncRNAs. Notably, LINC00482 and UBXN8 regulated three 
genes. The third sub‑pathway, path: 04066_2, was a part of the 
HIF‑1 signaling pathway (Fig. 4).

Dissecting hub lncRNAs in the LCRP network. To dissect 
key lncRNAs associated with spondyloarthropathy, degree 
analysis was conducted for all nodes within the LCRP. 
According to the degree distribution, four hub lncRNAs in 
SpA/AS‑specific LCRP were identified, including LINC00482 
(degree=22), LINC00242 (degree=9), C14orf169 (degree=7) 
and LINC00116 (degree=7). The degree distribution of all 
lncRNAs in the SpA/AS‑specific LCRP network is presented 
in Table II.

In  silico validation in the other independent AS micro‑
array data. With the attempt to verify the significant 
sub‑pathways identified above, the other AS data from the 
publicly available microarray dataset E‑GEOD‑25101 was 
used.

Table II. Degree distribution of all lncRNAs in the 
SpA/AS‑specific LCRP network.

LncRNAs	 Degree

LINC00482	 22
LINC00242	 9
C14orf169	 7
LINC00116	 7
VPS11	 5
UBXN8	 4
LINC00312	 4
JRK	 4
LINC00152	 4
ZNF761	 3
UHRF1	 3
MIR600HG	 2
SEMA3B	 2
MAL2	 2
NEXN‑AS1	 2
EMG1	 2
MAP3K14	 2
CWC15	 2
LINC00265	 2
HCP5	 2
LINC00341	 1
RN7SL1	 1
DCP1A	 1
TPTEP1	 1
MEG3	 1
SNHG11	 1
SLC37A4	 1
DGCR5	 1
SLC38A3	 1
LINC00176	 1
SNHG3	 1
POLDIP2	 1

lncRNA, long non‑coding RNA; SpA/AS, spondyloarthropathy/anky-
losing spondylitis; LCRP, lncRNA competitively regulated pathways.
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Following reweighting, a total of 28 lncRNAs, 123 mRNAs 
and 141 co‑expressed interactions were extracted. The 
123  mRNAs were entered into the reference pathways to 
identify the seed pathways. There were 11 seed pathways 

that differed between subjects with AS and normal subjects, 
based on the FDR <0.05. These pathways included the 
PI3K‑Akt signaling pathway, focal adhesion, pathways in 
cancer, pancreatic cancer, cell cycle, influenza A, insulin 

Figure 2. Sub‑pathway of the MAPK signaling pathway identified on the basis of sub‑pathway strategy. Red and green nodes respectively denote long 
non‑coding RNAs and mRNAs. MAPK, mitogen‑activated protein kinase. 

Figure 1. Condition‑specific lncRNA competitively regulates pathway networks based on matched lncRNA and mRNA expression data as well as 
lncRNA‑mRNA interactions. Red, green and blue nodes respectively denote lncRNAs, mRNAs as well as pathways. Yellow nodes represent hub lncRNAs. 
lncRNA, long non‑coding RNA.
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signaling pathway, p53 signaling pathway, glioma, small cell 
lung cancer and prostate cancer. Significantly, it was identified 
that there were three common pathways between the top five 
pathways in the E‑GEOD‑41038 and the seed pathways in the 
E‑GEOD‑25101, including the PI3K‑Akt signaling pathway, 
pathways in cancer and pancreatic cancer (Table III).

Following obtaining the seed pathways, the LCRP 
was established, which included lncRNA nodes and 
lncRNA‑mRNA edges. Within the LCRP network, a total of 
21 significant lncRNAs competitively regulating sub‑pathways 
involved in 11 complete pathways were identified. In further 
analysis, the top three sub‑pathways that were competitively 
regulated by lncRNAs in the comparison between the AS and 
normal groups were investigated. The first most significant 
sub‑pathway was path: 04115_1, which was a subregion of the 
p53 signaling pathway. The second significant sub‑pathway was 
path: 05222_1, an important subregion in small cell lung cancer. 

The third sub‑pathway, path: 05214_1, was involved in glioma. 
Notably, the top three sub‑pathways in the E‑GEOD‑41038 and 
E‑GEOD‑25101 were identified as cancer‑associated pathways. 
Based on the degree distribution, three hub lncRNAs were 
screened out, including ZNF761, DCP1A and C14orf169. 
Notably, it was observed that the hub lncRNA C14orf169 was 
the most common in the E‑GEOD‑41038 and E‑GEOD‑25101 
(data not shown). These findings demonstrated that the contents 
of the present study are reliable.

Discussion

Previously, a number of studies have implied that disruption 
of cellular pathways competitively mediated by lncRNAs may 
lead to the onset of disorders (28‑30). Therefore, understanding 
this regulation mechanism may offer novel opportunities for 
detecting key signatures for disease and for developing novel 

Figure 4. Sub‑pathway of the HIF‑1 signaling pathway identified on the basis of sub‑pathway strategy. Red and green nodes respectively denote long non‑coding 
RNAs and mRNAs. HIF‑1, hypoxia‑inducible factor 1.

Figure 3. Sub‑pathway of chemokine signaling pathway identified on the basis of sub‑pathway strategy. Red and green nodes respectively denote long 
non‑coding RNAs and mRNAs.
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target therapies. However, the research regarding lncRNA 
functions involved in SpA/AS is in its infancy. Furthermore, 
more attention to crucial sub‑pathways instead of entire 
pathways may be more applicable to reveal the roles of lncRNAs 
in a given disease (13). Additionally, this subregion strategy 
integrating lncRNA‑mRNA data and pathway topologies 
has a number of advantages. Firstly, lncRNA as a type of 
novel regulatory layer is covered in the pathway analysis. 
Secondly, the joint effect of lncRNAs, pathway topologies, 
in addition to lncRNA competitively regulated genes was 
comprehensively measured. The sub‑pathway method may 
detect more meaningful pathways. SpA, including AS and 
non‑radiographic SpA, is connected with a significant burden 
of disease and typically affects patients with AS of working 
age. Therefore, it is urgently required to identify molecular 
targets to prevent SpA/AS development, and further improve 
the prognosis of patients with SpA/AS. In the present study, 
in order to reveal the etiopathogenesis of SpA/AS, gene 
expression data E‑GEOD‑41038 were investigated to identify 
significant sub‑pathways, which may be involved in SpA/AS 
progression by combining lncRNA‑mRNA expression data 
with pathway topologies using the sub‑pathway strategy. 
A total of 35 significant lncRNAs competitively regulating 
sub‑pathways were involved in 56 complete pathways. The first 
was the most significant sub‑pathway path: 04010_1, which 
is a subregion of the MAPK signaling pathway. The second 
significant sub‑pathway was path: 04062‑1, an important 
subregion in the chemokine signaling pathway.

The MAPK signaling pathway is known to mediate stress 
responses and is activated by the proinflammatory cytokines 
interleukin‑1 or tumor necrosis factor‑α (31). There are no 
reports, to the best of the author's knowledge, demonstrating 
the direct association between the MAPK pathway and 
SpA/AS. The MAPK signaling pathway has been demon-
strated to be highly associated with the functioning of the 
immune response (32). Furthermore, Chen et al (33) demon-
strated that one MAPK pathway serves a key function in the 
induction of the proinflammatory response, which is involved 
in SpA. Furthermore, inflammation is suggested to be associ-
ated with novel bone formation, which is highly associated 
with the development of SpA and AS (34,35). Bone forma-
tion requires differentiation of osteoblasts (36). Notably, the 
MAPK pathway is implicated in the regulation of osteoblast 
differentiation  (37,38). Inactivation of the pro‑osteogenic 
MAPK pathway has been reported to inhibit osteoblast 

differentiation (39). Therefore, it may be inferred that MAPK 
may serve crucial roles in SpA/AS, partially by regulating 
the resolution of inflammation and the subsequent new bone 
formation.

The second sub‑pathway was the chemokine signaling 
pathway in the present analysis. Chemokines are crucial media-
tors in the inflammatory response, and in parallel, members of 
the chemokine system serve important roles in AS occurrence 
and progression (40,41). In addition, Chen et al (33) reported 
that SpA is associated with certain proinflammatory pathways, 
for example, the chemokine signaling pathway. Furthermore, 
Duftner et al (42) reported that type 1 and type 2 chemokines 
and lymphocytic expression of chemokine receptors serve 
important roles in AS. Yang et al (43) additionally demon-
strated that the chemokine receptor CCR4 is increased in AS. 
Accordingly, it is speculated that the chemokine signaling 
pathway may contribute to the progression of SpA/AS, thereby 
suggesting that this created sub‑pathway method is a good 
approach for biomarker prediction.

C14orf169 was one of the hub lncRNAs in the present 
study for E‑GEOD‑41038. In the in silico validation using 
E‑GEOD‑25101, C14orf169 was additionally identified as the 
hub node in the LCRP. The alias of C14orf169 is NO66. NO66 
proteins are believed to exhibit enzymatic activity, which 
regulates gene expression and chromatin remodeling  (44). 
Chromatin remodeling is crucial for controlling Osterix 
function, which is an osteoblast‑specific transcription factor 
required for osteoblast differentiation and bone formation (45). 
In accordance with the aforementioned study, a different 
previous study strongly supported the physiological role of 
NO66 during osteoblast differentiation (46). C14orf169 may 
account, at least partially, for the progression of SpA/AS, by 
regulating bone formation and differentiation.

The present study was the first, to the best of the authors' 
knowledge, to conduct an analysis on SpA/AS based on a 
sub‑pathway strategy by systematically integrating pathway 
information with lncRNA‑mRNA data. This may be 
considered the primary strength of the present study. Overall, 
a number of significant sub‑pathways were successfully 
identified based on this computational method. However, 
numerous limitations must be taken into consideration 
in the present study. To begin with, the sample data were 
recruited from the open access database. The SpA/AS 
samples used for microarray analysis were not obtained by 
the present study. Although a number of key sub‑pathways 

Table III. Common seed pathways in the top five seed pathways of E‑GEOD‑41038 and the top five seed pathways in 
E‑GEOD‑25101.

Top five seed pathways in E‑GEOD‑41038	 Top five seed pathways in E‑GEOD‑25101	 Common seed pathways

Pathways in cancer	 PI3K‑Akt signaling pathway	 Pathways in cancer
Hepatitis B	 Focal adhesion	 Pancreatic cancer
Prostate cancer	 Pathways in cancer	 PI3K‑Akt signaling pathway
Pancreatic cancer	 Pancreatic cancer	
PI3K‑Akt signaling pathway	 Cell cycle	

PIK3, phosphatidylinositol 3‑kinase; Akt, RAC‑α serine/threonine‑protein kinase.
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and lncRNAs of interest were identified in the present study, 
it must be considered as an exploratory study at the present 
time. In addition, the present study only used a bioinformatics 
approach to select significant sub‑pathways to reveal the 
etiopathogenic process of SpA/AS; however, the association 
between sub‑pathways and SpA/AS has not been validated by 
experiments. This was the principal limitation. As a result, 
further independent confirmation studies are required to 
prove the significance of the present initial findings. Although 
these drawbacks existed, it was confirmed that the predicted 
sub‑pathways offer researchers valuable resources for 
providing guidance for focusing research efforts to elucidate 
disease mechanisms, and detect potential biomarkers for early 
diagnosis and therapy of SpA/AS. Furthermore, this strategy 
may be useful for the study of other diseases.

In conclusion, sub‑pathways, including the MAPK 
signaling pathway and chemokine signaling pathway, may 
be potential biomarkers for SpA/AS therapy. The identified 
sub‑pathways and lncRNAs may provide valuable diagnostic 
and therapeutic targets for SpA/AS.
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