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Abstract

Breast cancer is a highly heterogeneous disease, and there are many forms of categorization for breast cancer based on gene
expression profiles. Gene expression profiles are variables and may show differences if measured at different time points or
under different conditions. In contrast, biological networks are relatively stable over time and under different conditions. In
this study, we used a gene interaction network from a new point of view to explore the subtypes of breast cancer based on
individual-specific edge perturbations measured by relative gene expression value. Our study reveals that there are four
breast cancer subtypes based on gene interaction perturbations at the individual level. The new network-based subtypes of
breast cancer show strong heterogeneity in prognosis, somatic mutations, phenotypic changes and enriched pathways. The
network-based subtypes are closely related to the PAM50 subtypes and immunohistochemistry index. This work helps us to
better understand the heterogeneity and mechanisms of breast cancer from a network perspective.
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Introduction
Breast cancer is a major public health issue mainly in women.
Hundreds of thousands of women die of this disease each year.
Breast cancer is a highly heterogeneous disease, and there are
many forms of categorization, such as the classic grading system
and the tumor–node–metastasis (TNM) classification. Among
all methods, the immunohistochemistry (IHC) index has played
a vital role in diagnostics, prognostics and therapy response
prediction. The method based on histological classification and
IHC-based marker selection has become the essential criterion
that clinicians use for breast cancer typing [1]. Additionally,
breast cancer samples are also classified on the basis of the
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expression of some biomarker genes. Microarray-based coding
mRNA expression profiling has identified five ‘intrinsic’ sub-
types (called PAM50 subtypes), including luminal-A, luminal-
B, Human epidermal growth factor receptor 2 (HER2)-enriched,
basal-like and normal-like [2, 3], which adds significant prognos-
tic and predictive information to standard parameters for breast
cancer patients. Recently, with advances in whole-transcriptome
sequencing (RNA sequencing, RNA-seq), this classification has
been refined to the identification of 12 breast tumor subgroups
using the top 3662 variably expressed genes [4]. Meanwhile,
some work has shown that long noncoding RNAs and microR-
NAs might play key roles in mammary tumor development
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[5, 6], and consequently, breast cancer subgroups on the basis of
lncRNAs have been studied in [7], which report its tight correla-
tion compared with the PAM50-defined mRNA-based subtypes.
There is strong heterogeneity not only in breast cancer but also
in a single subtype of breast cancer. For example, the subtypes
and corresponding treatment strategies of triple-negative breast
cancer (TNBC) have been investigated in [8]. In addition, well-
characterized and cancer-associated heterocellular signatures
have been applied to reveal luminal-A breast cancer hetero-
geneity and to study differential therapeutic responses [9]. This
analysis stratified the luminal-A breast cancer samples into five
subtypes, with a majority of them belonging to one subtype
(stem-like), which is enriched for stem and stromal cell gene sig-
natures representing potential luminal progenitor origin. In the
case of molecular typing, the TNBC and the normal-like subtypes
have no unique biological markers for response to any specific
drugs, which indicates that more precise tools are needed to
improve its predictive, therapeutic and prognostic performance.

In terms of dynamics, the gene expression in a biological
system is variable and may be different if measured at dif-
ferent time points or under different conditions, even for the
same cell. In contrast, biological networks are relatively sta-
ble against time and condition [10, 11]. Macromolecular inter-
action networks can more reliably characterize the biological
system or state of the tissue. Many network methods are based
on biological pathways, which are focused on the inference
of pathway activity by using pathway-specific genes [12, 13].
Application of the pathway approach in breast cancer research
implicates the methodological means for the quantification of
the pathway activity in individual tumors [14, 15]; hence, there
are some pathway-targeted therapies in breast cancer. For exam-
ple, pathway-targeted therapy by vascular endothelial growth
factor signaling inhibitors may target the enhanced angiogen-
esis, proliferative signaling, invasion and metastatic properties
of cancer cells [16]. Pathway-targeted therapies might confer
a lower systemic risk of adverse effects by targeting only the
specific disordered pathways [17].

To improve our understanding of breast cancer heterogeneity,
we proposed a rank-based sample-specific gene interaction per-
turbation (named edge perturbation in the gene interaction net-
work) method, where the gene interaction relations were derived
from Reactome and other pathway and interaction databases
[18]. Different from previous pathway-based approaches, this
method utilizes not only the gene set information (nodes in
pathways) but also and more importantly the interaction infor-
mation (edges in pathways). The gene interactions in a biolog-
ical network are overall stable in a particular type of normal
human tissue but widely perturbed in diseased tissues [19, 20].
These perturbations in gene interactions (edge perturbations)
in each sample can be measured by the change in the relative
gene expression value. The edge perturbations at an individ-
ual level can be used to characterize the perturbation of the
biological network for each sample efficiently. Then, an unsu-
pervised cluster analysis of breast cancer based on the edge-
perturbation matrix can be performed to reveal the heterogene-
ity among breast cancer patients (Figure 1). Our results suggest
that the new network-based subtypes are significantly different
in prognosis, somatic mutations, phenotypic changes (measured
as scores in TCGA [21]) and enriched pathways. Moreover, our
network-based subtypes correlated with the PAM50 subtypes
and the IHC index. These findings will help us to understand
the mechanisms of breast cancer carcinogenesis from an inter-
actome perspective.

Figure 1. A framework identifying breast cancer subtypes. Gene interaction

perturbations for each individual sample are measured by an edge-perturbation

matrix, derived from the expression matrix and background network. The cancer

sample matrix represents selected edge perturbations for breast cancer sam-

ples. Then, the breast cancer samples are clustered by using a partition edge-

perturbation matrix to reveal new network-based subtypes. The identified sub-

types are characterized from different aspects, including prognosis, phenotypic

changes, somatic mutations, connection with PAM50 subtypes and enriched

pathways.

Materials and methods
Data sources

Transcriptomics data

The gene interaction perturbation program takes RNA sequenc-
ing (RNA-seq) data and clinical data as input. We downloaded
level three RNA-seq data in the form of FPKM and clinical data
from TCGA data set https://portal.gdc.cancer.gov/ by the Data
Transfer Tool. The expression data of 1093 breast cancer samples
were assigned as the case group. For the control group, RNA-
seq data of 290 normal breast tissues were obtained from the
Genotype-Tissue Expression (GTEx) database (https://gtexporta
l.org/). GTEx, an auxiliary TCGA data mining project, is an ongo-
ing effort to build a comprehensive public resource to study
tissue-specific gene expression. The samples from GTEx were
all from normal tissues but not tissues adjacent to carcinoma,
as in TCGA, which can avoid confusion with the tumor tissues.
The two data sets were both converted to TPM form with 33 562
genes in total, which were prepared for further analysis. In
addition, somatic mutations in 127 significantly mutated genes
of 772 breast cancer tumors in TCGA were obtained from the
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mutational landscape study in [30]. The independent validation
data were downloaded from GEO DataSets (GSE3494), which
contains 251 expression profiles of breast cancers by microarray.

Background network

A pathway-based analysis is needed for projecting candidate
genes onto protein functional relationship networks in the study.
We intended to acquire a human functional protein interac-
tion network derived from pathways. The Reactome Pathway
Database is a great option [22]. The core unit of the Reactome
data model is the reaction. Entities (nucleic acids, proteins,
complexes, anticancer therapeutics and small molecules) par-
ticipating in reactions form a network of biological interactions
and are grouped into pathways. ReactomeFIPlugIn app can help
us access the Reactome Functional Interaction network, a highly
reliable, manually curated pathway-based network by extend-
ing curated pathways with noncurated sources of information,
including protein–protein interactions, gene coexpression, pro-
tein domain interaction, Gene Ontology annotations and text-
mined protein interactions, which cover over 50% of human
proteins [18]. We downloaded all the gene interaction networks
(224 in total) of Reactome pathways by using the app reactomeFI-
PlugIn in Cytoscape 3.5.1 [23]. The prepared interaction networks
are in the form of three columns. The first column is the name
of a pathway, and the other two columns are the coding genes
connected in the pathway. All the networks were integrated into
a large network as the background network with 169 710 edges
in total (see the Supplementary Data).

Overview of the edge-perturbation-based approach

The motivation for our edge-perturbation-based approach stems
from the following idea. The lesion extent, which reflects the
physiological status of an individual with disease, can be mea-
sured by the perturbation degree of the background network.
Furthermore, the perturbation of the background network is
essentially the result of the gene interaction changes occurring
in the network. The edge perturbation in the gene interac-
tion network can ultimately characterize the interaction change
between two genes. Hence, the overall edge perturbations of all
gene pairs in the background network can be reasonably used to
reveal the pathological condition of an individual with disease.
To measure the perturbation in the whole background network
at an individual sample level, there are three major steps in our
method (see the flowchart in Figure 2): transfer the gene expres-
sion matrix into a gene expression rank matrix; calculate the
delta rank matrix and construct the edge-perturbation matrix,
which is used to measure the gene interaction perturbations
for each sample. As an effective quantization of the sample-
specific gene interaction perturbation, the edge-perturbation
matrix will be converted to a cancer sample matrix that is used
for subsequent clustering analysis.

Construction of the edge-perturbation matrix

First, each gene expression value was converted into its rank
within each sample (the smallest expression value corresponds
to the minimum rank, and the largest expression value cor-
responds to the maximum rank). As a result, the expression
matrix was transformed to a rank matrix (denoted by R with
element ri,s, which represents the rank of gene gi in sample
s) by ranking all genes according the expression values in all
samples. We then calculated the delta rank matrix whose rows

and columns represented edges in the background network and
samples, respectively. An element δe,s (delta rank) in the delta
rank matrix was calculated by subtracting the ranks of the two
genes connected by an edge (e) in the background network
(Equation 1).

δe,s = ri,s − rj,s (1)

where genes gi and gj are connected by edge e in the background
network.

Gene–gene interaction profiling shows high conservation in
normal samples, and there are few interaction perturbations
[24]. The within-sample delta ranks of gene pairs are highly
stable among samples under normal conditions but are often
widely disrupted after certain treatments, such as gene knock-
down, gene transfection, drug treatment and tissue canceration
[19]. Therefore, we could assume that the background network
system is stable across all normal samples. We ranked genes
according to their mean gene expression value among normal
samples and similarly calculated the delta rank as the bench-
mark delta rank vector with elements denoted by δe, where e
is an edge in the background network. This vector measures
the mean relative ranks of gene pairs in all normal samples.
Each sample should be compared with the benchmark vector,
and the corresponding difference represents the gene interac-
tion perturbations on the sample. Upon subtracting the bench-
mark delta rank vector from the delta rank of each sample, we
finally obtained the edge-perturbation matrix � with element
�es (Equation 2). For an edge e in the background network and an
individual sample s,

�e,s = δe,s − δe. (2)

The edge-perturbation matrix can measure the sample-
specific interaction perturbation in the same whole background
network effectively. Each column of the edge-perturbation
matrix represents the gene interaction perturbations for an
individual sample, i.e. the sample-specific perturbation of the
gene interaction.

Discovery and validation of the network-based
subtypes

We selected the clustering features based on two aspects: the
ability of the selected features to distinguish breast cancer sam-
ples from normal samples easily and that they can also maintain
heterogeneity within breast cancer samples. First, we calculated
the difference between breast cancer samples and normal sam-
ples for each edge in the edge-perturbation matrix by using the
Kruskal–Wallis test. The top 30 000 significantly different edges
(approximately 20%) were selected. Next, the SDs of the edge
perturbations of all breast cancer samples were calculated. We
also selected the top 30 000 edges with high SDs. Then, the
cancer sample matrix could be obtained by selecting the edges in
the intersection of the above two sets with 30 000 edges over all
cancer samples in the edge-perturbation matrix, which would be
used for clustering analysis. The columns of the cancer sample
matrix represent cancer samples, and the values in a column are
the perturbation degree on each feature edge for an individual
cancer sample.

Furthermore, we extrapolated the network-based subtypes
for the TCGA breast cancer samples using the consensus clus-
tering method [25], which was performed with the R package
ConsensusClusterPlus by subsampling a proportion of items and
features from the cancer sample matrix.
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Figure 2. Flowchart of the edge-perturbation-based method. The background network consists of four genes and four edges. There were three normal samples (blue)

and two cancer samples (orange). A rank matrix was obtained by ranking the genes according to the expression value of each sample. The rank matrix was converted

to a delta rank matrix with four rows and five columns representing edges and samples, respectively. The benchmark delta rank vector was calculated as the delta

rank of the mean expression value in normal samples. The edge-perturbation matrix was obtained by subtracting the benchmark delta rank vector from the delta rank

matrix.

To confirm the clusters of breast cancer samples in TCGA
based on the edge perturbations, we independently applied the
same analysis procedure on the validation data set. In addition,
we used in-group proportion (IGP) [26] to measure the cluster
consistency. IGP can be used to evaluate the reproducibility of
the clusters derived from two independent data sets by provid-
ing a quantitative value to measure the similarity between the
clusters. IGP will be 100% if the clusters are identical between two
data sets and will be 0% conversely. Because the expression data
generation methods are different in these two data sets, specifi-
cally, one based on RNA-seq and the other based on microarray,
the edge-perturbation values were normalized to Z-score prior to
the IGP analysis. The IGP analysis and the prediction of PAM50
subtypes were performed by using R packages clusterRepro and
genefu, respectively.

Identifying subtype-specific pathways

The cancer sample matrix was normalized by the Z-score
method, which scaled the mean of each row (corresponding
to feature edge) to zero and variance to one. First, the rows of
the matrix were clustered using hierarchical clustering based
on the complete linkage method with the cluster number set to
100, and clusters containing more than 30 edges were retained.
We then computed the mean values of perturbation for each
edge in each subtype through Z-scores. For each subtype, we
counted the percentage of edges whose absolute value of the

average perturbation was greater than 0.5 in each retained
cluster. A cluster with a percentage greater than 70% was
regarded as a perturbed cluster for this subtype. All edges in
all of the perturbed clusters for each subtype constituted the
subtype-specific networks. All genes involved in each subtype-
specific network were used for pathway enrichment analysis
by Metascape (http://metascape.org). The KEGG and Reactome
pathways with a P-value less than 0.01 were retained. Finally,
the subtype-specific pathways were identified.

Results
The constructed networks

The initial background network from the Reactome database
was composed of 169 710 edges and 7360 genes in total. After
filtering out genes that were not in the expression data, the
background network was decreased to having 161 276 edges and
7074 genes and was then used to calculate the edge-perturbation
matrix. Both the initial background network and the filtered
network used in this study are scale free, which means that the
fraction of nodes with degrees follows a power law distribution.
Supplementary Figure S1A and B illustrate the degree distribu-
tions of the two networks, and the determination coefficients
R2are 0.701 and 0.687, respectively. Here, R2is used to measure the
fitting level of the power law curve. The better the curve fitting
level is, the closer R2 is to 1. Both the degree distribution figures

http://metascape.org
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa268#supplementary-data
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Figure 3. Perturbation of gene interactions in normal and breast cancer tissues. (A) Distribution of log2-transformed edge perturbations in both normal and cancer

samples. Violin plots show the distributions of the edge perturbations of 1000 randomly selected edges in the edge-perturbation matrix in both the cancer and normal

groups. The distributions in these two groups were significantly different, as assessed by the Kolmogorov–Smirnov test. (B) The scatterplot for the log2-transformed

mean of the edge perturbations in the 1000 randomly selected edges in both normal (blue points) and breast cancer (red points) tissues. The edge perturbations of

normal samples are much denser and less than those of cancer samples.

Figure 4. Unsupervised consensus clustering of network-based subtypes. (A) Consensus matrix heatmap of the chosen optimal cluster number (k = 4) for the 1093

TCGA breast cancer samples. The rows and columns represent patient samples, and consensus matrix values range from 0 in white (meaning that patients are never

clustered together) to 1 in dark blue (meaning that patients are always clustered together). (B) The delta area plot for k changed from 2 to 10. The vertical axis is the

relative change in the area under the CDF curves when the cluster number varies from k to k + 1. The range of k changed from 2 to 10, and the optimal k = 4.

and the determination coefficients show that the networks used
in this study were all scale free.

Stable gene interaction in normal breast tissues

Both 290 normal samples from GTEx and 1093 breast cancer
samples from TCGA were used to evaluate the stability of the
edge perturbation in normal samples and variability in cancer
samples, as well as the difference between them. The edge-
perturbation matrix with 161 276 rows was constructed by the

edge-perturbation-based method (see the Materials and meth-
ods section for details).

Zero center normalization was performed on the delta rank
matrix by Equation (2), which was used to deduce the edge-
perturbation matrix. The edge-perturbation matrix can measure
the sample-specific perturbation in the same background net-
work effectively. For a given gene pair, the greater the abso-
lute value in the edge-perturbation matrix is, the greater the
perturbation is. The mean absolute magnitude of the edge per-
turbations in normal samples was 1692.3, and cancer samples
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Figure 5. Survival curves of the network-based subtypes. Kaplan–Meier plot of survival for the four network-based subtypes in 1087 breast cancer samples from TCGA

with prognosis information. The horizontal axis represents the survival time (days), and the vertical axis is the probability of survival. The log-rank test was used to

assess the statistical significance of the differences in prognosis among the four network-based subtypes.

doubled as expected. Furthermore, 90.4% of all 161 276 gene
pairs showed more dispersion in cancer samples than in nor-
mal samples by comparing the sum of the edge-perturbation
degrees. In addition, we selected 1000 features randomly from
all the gene interaction features, and the Kolmogorov–Smirnov
test was performed. The edge-perturbation distributions of the
1000 selected features in the normal and cancer groups were sig-
nificantly different, with P < 2e−16. We plotted the distribution
of edge-perturbation amplitude as log2(|�es| + 1)for both normal
and cancer samples, as shown in Figure 3A. To clearly show the
difference in the edge-perturbation distribution between normal
and cancer samples, the mean edge-perturbation amplitude,
as well as a similar log2 transformation of the 1000 selected
features, was plotted in a scatter plot, as shown in Figure 3B.
The edge perturbation of normal samples (blue points) is much
denser and less than that of cancer samples (red points). These
two plots reveal that the edge perturbations of normal samples
are more stable, whereas a wider variation exists in cancer
samples, making it possible to find the heterogeneity in breast
cancer samples through the edge-perturbation matrix of all
samples.

Network-based subtypes

The edge-perturbation matrix was converted to a cancer sample
matrix, which was used for the clustering of breast cancer sam-
ples. The rows of the cancer sample matrix are 1911 edges. These
edges form a network with 1461 genes, which was visualized in
Supplementary Figure S2, and the corresponding determination
coefficient R2 is 0.739, which means that it is also a scale-free
network.

Consensus clustering was performed using the Concensus-
ClusterPlus package in R [25] to explore the subgroups of breast
tumors based on the cancer sample matrix. Consensus matrix
heatmaps and delta area plots, which can be found in Figure 4A

and B, respectively, were drawn to determine k, the optimal num-
ber of clusters. The consensus matrix is a better visualization
tool to help assess the clustering number. The matrix is arranged
so that the samples belonging to the same cluster are adjacent to
each other. A color gradient of 0–1 is used, with dark blue corre-
sponding to a consensus score of 1 and white corresponding to a
consensus score of 0. The color-coded heatmap corresponding to
the consensus matrix obtained by applying consensus clustering
to these cases is shown in Figure 4A. The heatmap represents
the consensus for k = 4 and accordingly displays a well-defined
four-block structure. The four blocks are almost disjoint in the
heatmap, which means that the four clusters are distinguishably
clustered. The delta area plot in Figure 4B shows the relative
change in the area under the cumulative distribution function
(CDF) curve comparing k and k −1 (k ranges from 2 to 10). The
k at which there is no appreciable increase in consensus can
be considered as an optimal cluster number. The four-cluster
solution corresponded to the number with no large increase
(approximately 0.1). Thus, the optimal cluster number was set to
4. Of the 1093 breast cancer samples analyzed in this study, 162
were subtype-1, 407 were subtype-2, 334 were subtype-3 and 190
were subtype-4. Next, we used the four network-based subtypes
mentioned above for further analysis.

We independently applied the same analysis procedure on
the validation data set to confirm the clustering consistency
with the TCGA cohort. In total, 1536 features overlapped with
the 1911 feature edges in the TCGA cohort were used to perform
unsupervised consensus clustering. Interestingly, we observed
that the samples in the validation cohort were also clustered
into four optimal clusters (Supplementary Figure S3), which is
very similar to that identified in the TCGA data set (Figure 4).
The IGP values are 88.3, 76.7, 95.6 and 86.2% for subtype-1,
subtype-2, subtype-3 and subtype-4, respectively, indicating that
all subtypes show high consistency between the two data sets.
This suggests that these four network-based subtypes are robust
across different data sets of breast cancer.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa268#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa268#supplementary-data
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Figure 6. Phenotype heterogeneity among the network-based subtypes. Boxplots show differences in (A) tumor purity, (B) proliferation, (C) apoptosis, (D) cell cycle, (E)

hormone_a, (F) hormone_b, (G) PI3K/AKT, (H) DNA damage response, I TSC-mTOR, J EMT and K Ras/MAPK scores from TCGA among network-based subtypes. The data

from (A) were derived from ABSOLUTE in [27], which infers tumor purity and malignant cell ploidy directly from the analysis of somatic DNA alterations. The data from

B–K were from RPPA data-based scores published by TCGA. The Kruskal–Wallis test was performed to calculate the P-value, and those associations with P-value < 0.01

were considered significant. EMT = epithelial–mesenchymal transition.

Heterogeneity among network-based subtypes

Prognosis

We compared the prognosis differences among the network-
based subtypes. Kaplan–Meier survival analysis indicated that
the differences in survival among the subtypes were significant

(P = 0.0013, Figure 5). Subtype-2 has the worst prognosis com-
pared with other subtypes, whereas subtype-1 portends a more
favorable prognosis with a 5-year survival probability above 85%.
In addition, the survival curves of five PAM50 subtypes are
shown in Supplementary Figure S4. The Kaplan–Meier survival
analysis indicates that the differences in survival among PAM50

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa268#supplementary-data
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Figure 7. Comparison of the network-based subtypes and their PAM50 subtypes. (A) The distribution of the PAM50 subtypes in each of network-based subtype. (B) The

distribution of the network-based subtypes in each of PAM50 subtype.

subtypes are significant (P = 0.04 < 0.05) by log-rank test, whereas
the differences in survival among our four subtypes are more
significant.

Phenotypic heterogeneity

The tumor purity scores in Figure 6A were derived from the com-
putational method (ABSOLUTE) in [27, 28], which infers tumor
purity and malignant cell ploidy directly from the analysis of
somatic DNA alterations. ABSOLUTE can detect subclonal het-
erogeneity and somatic homozygosity and calculate statistical
sensitivity to reveal specific aberrations. Our analysis shows
that the tumor purity scores are significantly higher in both
subtype-1 and subtype-2 than in subtype-3 and subtype-4.

Next, we sought to investigate whether phenotypic changes
show differences among our network-based subtypes in breast
cancer tumors (Figure 6B–K). The pathway scores, which are
protein expression signatures of pathway activity, associated
with tumor lineage (Figure 6B–K) were from a reverse-phase
protein microarray (RPPA) as published by TCGA [21]. Our
analysis implies that the pathway scores for proliferation,
apoptosis, cell cycle, PI3K/Akt signaling, DNA damage response
and TSC-mTOR were significantly higher in subtype-4 than in
other subtypes. However, the pathway scores for hormone-a,
hormone-b (representing signatures associated with hormone
receptors [29]) and Ras.MAPK (Ras GTPase /MAP kinase signaling)
were significantly lower in subtype-4. On the other hand, the
pathway scores for proliferation, apoptosis, cell cycle and TSC-
mTOR were significantly lower in subtype-3. All phenotypes
from the TCGA data set were significantly associated with the
network-based subtypes except for the receptor tyrosine kinase

scores (Supplementary Table S1). These results suggest that
the network-based subtypes show differences in most breast
cancer-associated phenotypes.

Connection with PAM50, the IHC index and the TNM stage

The PAM50 subtypes, known as ‘intrinsic’ subtypes of breast can-
cer (including basal-like, luminal-A, luminal-B, HER2-enriched
and normal-like), have been identified and intensively studied
[2]. There were close relationships between our four network-
based subtypes and the PAM50 subtypes. Specifically, basal-
like tumors made up a significant share (96.2%) of subtype-4
tumors and most subtype-3 tumors were luminal-A (more than
86%). Subtype-2 was a mixed subtype mainly including luminal-
A, luminal-B and normal-like (accounted for 44.1%, 41.9% and
11.9%, respectively). Subtype-1 mainly contained luminal-A and
luminal-B (55% and 31%). Conversely, samples in luminal-B and
Her2 were mainly from subtype-2, and the ratios of subtype-
2 were 80% and 60%, respectively. Luminal-A is a mixed sub-
type that manly includes subtype-1, subtype-2 and subtype-3
(Figure 7).

Interestingly, we found a similar relationship between the
network-based subtypes and the PAM50 subtypes in the valida-
tion dataset (Supplementary Figure S5). Similar to the relation-
ship in the TCGA data set, subtype-1 mainly contained luminal-
A and luminal-B (41.67% and 36.67%), and samples in subtype-2
were mainly from luminal-A and luminal-B (16.28% and 60.47%).
Most subtype-3 tumors (74.44%) were luminal-A (Supplementary
Figure S5A). Conversely, subtype-4 tumors made up a significant
share (92%) of basal-like tumors, and most luminal-A tumors
were subtype-3 (65.69%). Luminal-B tumors mainly contained

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa268#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa268#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa268#supplementary-data
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Table 1. Contingency table for the network-based subtypes and the IHC indexes

Clinical factors Subtype-1 Subtype-2 Subtype-3 Subtype-4 P-value
(n = 162) (n = 407) (n = 334) (n = 190)

ER status (n = 94) (n = 301) (n = 238) (n = 130) <2.2e−16
ER+ 84 271 223 11
ER− 10 30 15 119
PR status (n = 94) (n = 301) (n = 236) (n = 129) <2.2e−16
PR+ 70 233 203 6
PR− 24 68 33 123
HER2 status (n = 67) (n = 203) (n = 169) (n = 91) 2.90E−10
HER2+ 16 76 15 13
HER2− 51 127 154 78

Note. The figures in this table are either the number of patients or the P-value of Pearson chi-square test.

subtype-1 (31.43%) and subtype-2 (37.14%) tumors, and normal-
like tumors mainly (81.25%) contained subtype-3 tumors (Sup-
plementary Figure S5B).

Furthermore, we explored the relationship between the
network-based subtypes and IHC indexes, including estrogen
receptor (ER), progesterone receptor (PR) and HER2 receptor
(HER2) status, by performing Pearson chi-square test (Table 1).
ER status, PR status and HER2 status were all significantly
different among the network-based subtypes (P < 0.001). Of
589 ER-positive tumors analyzed in this study (Table 1), 46%
were subtype-2 and 38% were subtype-3. Conversely, of 174 ER-
negative tumors, 68% were subtype-4 and 17% were subtype-
2. The majority of PR-positive tumors were subtype-2 (46%)
and subtype-3 (40%). The majority of PR-negative tumors were
subtype-4 (50%) and subtype-2 (27%). The majority of HER2-
positive tumors were subtype-2 (63%). In addition, we found
that our network-based subtype-4 tended to be ER-negative, PR-
negative and HER2-negative, which corresponded to TNBC. Both
subtype-1 and subtype-3 tended to be ER-positive, PR-positive
and HER2-negative. Though the network-based subtypes have
different distributions in ER, PR and HER2 statuses, these two
classifications of breast cancers have a close relation.

For the stage factor, we used the cutoff defined in [30] to
distinguish advanced breast from early breast cancer: the TNM
classification, with stages i and ii defined as early cancer and
stages iii, iv and x defined as advanced cancer. These two groups
were significantly different among the network-based subtypes
by Fisher test (P = 0.004155) in Supplementary Table S3.

Connection with somatic mutations

The progressive accumulation of somatic mutations over time
in crucial oncogenes or tumor-suppressor genes has been impli-
cated in many cancer types [31]. Recently, the somatic mutation
statuses of 127 genes have been shown to have significant
effects on breast cancer survival [32]. With the identification
of network-based subtypes using the edge-perturbation-based
method, the question arises as to whether the somatic muta-
tions occurring in cancer driver genes are significantly differ-
ent among these subtypes. To answer this question, for each
gene, we calculated the mutation ratios for each subtype based
on the mutation status of each sample. Then, the mutation
ratios were multiplied by 100 to construct a one-dimensional
contingency table. A chi-square goodness-of-fit test was per-
formed on the contingency table to see whether the mutation
probabilities were significantly different with respect to the
network-based subtypes. Genes with a P < 0.05 are shown in

Figure 8. The differences in somatic mutations among the network-based

subtypes. The genes with significantly different mutation ratios were obtained

by the chi-square goodness-of-fit test (P-value <0.05). The vertical axis repre-

sents the mutation ratios of the selected genes among the four network-based

subtypes.

Supplementary Table S2. Figure 8 shows the mutation ratios of
these genes in the four network-based subtypes. TP53 is a tumor
suppressor transcription factor with paramount clinical value
because of its ability to regulate cell division by keeping cells
from growing and dividing (proliferating) at an excessive rate
or in an uncontrolled way. TP53 is related to tumor progression,
metastatic potential, early relapse and response to chemother-
apy and ultimately has an impact on prognosis and survival
[33–36]. Our analysis found that the mutation ratios of TP53
were the most significantly different among the four network-
based subtypes. In addition, the mutation ratios of other genes,
such as PIK3CA, CDH1, Gata3, MAP3k1, BRCA1 and MAP2k4, were
significantly different. Mutations in PIK3CA, Gata3 and CDH1
are associated with the invasion and metastasis of breast can-
cer. MAP3k1 is a member of the family of mitogen-activated
protein kinases that regulates the apoptosis, survival, migra-
tion and differentiation of cells. As a tumor suppressor gene,
tumors with BRCA1 mutations have a higher risk of developing
breast cancer. These results demonstrate that our network-
based subtypes are linked to mutations in these cancer-related
genes.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa268#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa268#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa268#supplementary-data
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Figure 9. Clustering of the edge features of the cancer sample matrix. Every row in the matrix corresponds to one of 1911 edges; every column corresponds to one

of 1093 breast cancer samples. Each row was Z-score normalized. The color bars at the top indicate the network-based subtypes. The blue color represents a negative

perturbation, and the red color represents a positive perturbation. The black dotted boxes represent the identified blocks in the four subtypes.

Subtype-specific pathways
The heat map of edge clustering is shown in Figure 9. There are
two, one, four and six perturbed clusters in subtype-1, subtype-2,
subtype-3 and subtype-4, respectively. These perturbed clusters
can form red or blue blocks in the corresponding subtypes in

the heatmap, representing positive or negative perturbation
patterns, respectively. It is rather remarkable that all the blocks
in subtype-3 were also identified simultaneously in subtype-
4 but in the opposite perturbation direction. For example, the
first, second and third blocks are all blue in subtype-3 but
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Figure 10. Subtype-specific pathways. (A–D) are pathways enriched in subtype-1, subtype-2, subtype-3 and subtype-4, respectively. The horizontal axis represents the

negative log (base 10) of the P-value.

are red in subtype-4. The fourth block is red in subytpe-3 but
blue in subtype-4. Therefore, the four blocks in subtype-3 can
be used to distinguish subtype-3 and subtype-4 directly. In
view of the findings above, it is reasonable to assume that the
occurrences of subtype-3 and subtype-4 are due to the same
disorder mechanism but in different directions. Furthermore,
the expression of the ZBTB16 gene, which has the highest degree
in the subtype-specific networks, was significantly different in
subtype-3 and subtype-4 by the Wilcoxon rank-sum test (Sup-
plementary Figure S6). Mainly involved in pathways including
antigen processing, ubiquitination and proteasome degradation
and neddylation, ZBTB16 is likely to be a substrate-recognition
component of the E3 ubiquitin–protein ligase complex, which
mediates the ubiquitination and subsequent proteasomal

degradation of target proteins. In addition, it is interesting to
note that subtype-3 tends to be ER-positive (94%) and PR-positive
(86%), whereas subtype-4 tends to be ER-negative (92%) and
PR-negative (95%).

The subtype-specific pathways can be found in Figure 10.
Most pathways enriched in subtype-1 and subtype-2 are related
to genetic information processing, such as translation initiation
complex formation, RNA transport, mRNA surveillance pathway,
protein export, RNA polymerase II transcribes snRNA genes,
metabolism of RNA and so on. In addition, spry regulation of
Fibroblast growth factors (FGF) signaling enriched in subtype-
1 is closely associated with breast cancer. The E3 ubiquitin
ligases ubiquitinate target proteins, viral carcinogenesis and
transcriptional misregulation in cancer pathways are enriched

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa268#supplementary-data
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in subtype-2. Neddylation, which has been shown to be closely
related to the activation state and ER-expression in breast cancer
[37], is one of the enriched pathways in both subtype-3 and
subtype-4. Some immune-related pathways are also enriched
in subtype-3, such as antigen processing: ubiquitination and
proteasome degradation, synthesis of active ubiquitin: roles of
E1 and E2 enzymes and major histocompatibility complex (MHC)
class II antigen presentation. In addition, the P53 signaling path-
way, ER to Golgi anterograde transport and FBXW7 mutants and
NOTCH1 in cancer are also enriched in subtype-3. In addition
to immune and cancer-related pathways such as neddylation,
antigen processing: ubiquitination and proteasome degradation,
MHC class II antigen presentation and cell cycle, transcriptional
regulation by TP53 is also enriched in subtype-4.

Discussion
To avoid the instability of transcript analysis, we used a rela-
tively stable gene interaction network to explore the subtypes
of breast cancer from a new point of view in this study. For this
purpose, we developed a sample-specific gene interaction per-
turbation method based on relative gene expression profiles. We
identified four network-based subtypes based on gene interac-
tion perturbations at the individual level, revealing the substan-
tial heterogeneity reflected in the interactome in breast cancer
patients. The core biological characteristics of each subtype are
uniform, but the heterogeneity among the subtypes lies in many
aspects, including prognosis, phenotypes and somatic muta-
tions. Kaplan–Meier survival analysis showed that the differ-
ences in survival among the network-based subtypes were sig-
nificant (P = 0.0013). The new network-based subtypes of breast
cancer are closely related to the PAM50 subtypes and IHC index.
The phenotypic variations measured by pathway scores showed
differences among the network-based subtypes in breast cancer
tumors. Furthermore, the ratios of somatic mutations occurring
in cancer driver genes were significantly different among the
network-based subtypes.

Gene expression profiles are variables and may show differ-
ences if measured at different time points or under different
conditions, so that the subtypes based on expression data are
not stable, while the network-based subtypes should be more
stable and reliable. In addition, the network-based subtype sys-
tem reveals the fact that every molecular is not isolated but
interacting with each other to perform function, and it also
shows that there is a possibility to investigate the mechanism
of breast cancer from an interaction perspective.

Many studies have shown that network-based (or pathway-
based) features are more robust and effective than single-gene
features. The advantages of network-based methods have been
well documented and accepted in the analysis of noisy high-
throughput data. However, most of these methods merely uti-
lize the gene sets in a network (or pathway) but ignore the
interactions among genes. Therefore, these methods can only
be called gene set-based methods, not real network-based (or
pathway-based) methods. Different from the usual pathway-
based method, we made better use of the gene interaction
relations in the background network to explore new subtypes
of breast cancer. Specifically, perturbations in gene interactions
measured by the relative gene expression value were used to
represent the perturbation of the gene interaction network. The
perturbation of the network can be used to reflect the lesion
extent of an individual with disease, which was innovatively
measured by the edge perturbations in our study. Another high-
light of our study is the individual-specific analysis of the gene

interaction network. The precision medicine philosophy advo-
cates for an individual treatment plan that targets the unique
characteristics of the tumor. Therefore, it is important to focus
on the unique pattern shown in the individual tumor sample to
identify the most promising treatment strategy for the patient.
Our individual-specific edge perturbation analysis of breast can-
cer will promote the development of precision medicine.

Although our trial was carried out on breast cancer, the appli-
cation of our method should not be confined to this single cancer
type—the edge-perturbation method can be applied broadly to
any given cancer samples, as long as there are corresponding
normal samples that can be used to establish homeostasis. Thus,
it acts as a form of formidable resource that can unravel the
biological system changes that happen to in a single patient.
Therefore, this method is an ideal tool for personalized or preci-
sion oncology, which represents one potential research direction
of future development.

Availability and implementation

The edge-perturbation-based method introduced in this study
has been implemented in R and is available at https://github.
com/Marscolono/SSPGI.git

Key Points
• To avoid the instability of transcript analysis, we used

a relatively stable gene interaction network to explore
the subtypes of breast cancer from a new point of view.

• The network-based subtypes of breast cancer were
explored by using individual-specific edge perturba-
tions measured by the relative gene expression value.

• The new network-based subtypes of breast can-
cer show strong heterogeneity in prognosis, somatic
mutations, phenotypic changes and enriched path-
ways.

• The biomarker edges of the network-based subtype
were identified to have similar perturbation patterns.

Supplementary data
Supplementary data mentioned in the text are available to sub-
scribers in BRIBIO online.
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