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ABSTRACT Genotyping microarrays are an important and widely-used tool in genetics. I present argyle, an
R package for analysis of genotyping array data tailored to Illumina arrays. The goal of the argyle package is
to provide simple, expressive tools for nonexpert users to perform quality checks and exploratory analyses
of genotyping data. To these ends, the package consists of a suite of quality-control functions,
normalization procedures, and utilities for visually and statistically summarizing such data. Format-
conversion tools allow interoperability with popular software packages for analysis of genetic data including
PLINK, R/qtl and DOQTL. Detailed vignettes demonstrating common use cases are included as supporting
information. argyle bridges the gap between the low-level tasks of quality control and high-level tasks of
genetic analysis. It is freely available at https://github.com/andrewparkermorgan/argyle and has been sub-
mitted to Bioconductor.
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High-throughput genotyping of tens of thousands of single nucleotide
polymorphisms (SNPs) using microarrays is common practice in both
laboratory and population genetics. Genotypes at a dense panel of biallelic
markerswitha lowrateofmissingdataareavaluable resource forbreeding,
marker-assisted selection, genetic mapping, and analyses of population
structure. The Illumina Infinium system is one popular and cost-effective
(approximately $100/sample) platform. Custom Illumina arrays are avail-
able for many organisms of research, agricultural, or ecological interest
including mouse (Morgan et al. 2015, this issue), dog, cat (Willet and
Haase 2014), chicken, cow, pig, horse, sheep (Kijas et al. 2009), salmon
(Johnston et al. 2013), and cotton (Hulse-Kemp et al. 2015).

Infinium arrays consist of many thousands of short invariant
oligonucleotide probes conjugated to silica beads. Sample DNA is
hybridized to the probes and a single-base, hybridization-dependent
extension reaction is performed at the target SNP. Alternate alleles
(herein denoted A and B) are labeled with different fluorophores
(Steemers et al. 2006). Raw fluorescence intensity from the two color
channels is processed into a discrete genotype call at each SNP, and

both the total intensity from both channels, and the relative intensity in
one channel vs. the other, are informative for copy number.

Many tools, both open-source and proprietary, already exist for post-
processingofrawhybridizationintensitydata.Rpackagesincludebeadarray
(Dunning et al. 2007), lumi (Du et al. 2008), and crlmm (Ritchie et al.
2009) among others. Illumina’s proprietary BeadStudio software is widely
used by commercial laboratories and core facilities. BeadStudio applies a
six-step “affine normalization” (Peiffer 2006), which pools data across
many probes and many arrays. Intensities from the two color channels
(herein denoted x and y) are transformed to lie in the standard coordinate
plane, with homozygous genotypes near the x and y axes, heterozygous
genotypes approximately on the x ¼ y diagonal, and R ¼ x þ y � 1.
Biallelic genotypes are then called by clustering in this space.

Fewer tools exist for downstreamquality control, exploratory analysis
and interpretation of genotype calls jointly with underlying hybridization
intensitydata.Tofill thisgap, Ipresentargyle, apackage for theRstatistical
computing environment. The purpose of argyle is to provide simple and
flexible tools for programmatic access to data from SNP arrays, with an
emphasis on visualization. Although some functionality is tailored to
Illumina arrays,manyof the features are general enough to accommodate
any dataset that can be expressed as a matrix of genotypes at biallelic
markers. The main text of this paper outlines the key features of argyle;
detailed code vignettes are provided as supplementary material.

METHODS
The design of argyle is inspired by the PLINK software [https://www.
cog-genomics.org/plink2/; Purcell et al. (2007)]. A PLINK fileset has
three parts: a genotype matrix, a marker map, and a “pedigree” (sample
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and family metadata) file. Likewise, the central data structure in argyle
(the genotypes object) stores amatrix of genotype calls, and hybridization-
intensity data when available, in parallel with a marker map and
sample metadata. A genotypes object is therefore a self-contained and
largely self-describing representation of a genotyping dataset. Installa-
tion of the package is described in Supporting Information, File S1, and
the genotypes object is described in further detail in File S2.

This package explicitly favors simplicity and readability of code over
raw efficiency. It is appropriate for the “medium-sized” data—tens of
thousands of markers and hundreds of individuals—regularly encoun-
tered in experimental contexts. Users with larger datasets such as those
routinely collected in human genetics—millions of markers and thou-
sands of individuals—that do not fit comfortably in memory should
explore more sophisticated R packages (such as the GenABEL suite:
http://www.genabel.org/).

Data availability
Source code for argyle and example datasets used to generate the fig-
ures in this manuscript are available on GitHub: https://github.com/
andrewparkermorgan/argyle.

QUALITY CONTROL
Removal of poorly-performing markers and poor-quality samples is an
important precursor to genetic analysis. Failed arrays are characterized
by aberrant intensity distributions, excess of missing and heterozygous
calls, or both. A summary plot (Figure 1) facilitates the identification of
low-quality samples. Concordance between biological sex and sex
inferred from calls on the sex chromosomes is also useful for identifying
contaminated or swapped samples. Failed arrays can be flagged and
removed using global or subgroup-specific thresholds. See File S3 for a
worked example.

Figure 1 Quality-control summary plot. Distribution of
genotype calls is shown in upper panel, and a contour
plot of intensity distributions across samples is shown in
lower panel. Samples failing quality thresholds are
marked with an open dot in the upper panel.

Figure 2 Cluster plots for individual markers. Each
point represents a single sample; points are colored
according to genotype call, expressed as number of
copies of the nonreference allele. The marker on the
left performs as expected: the three canonical clusters
are present in the expected locations. The marker on
the right may be genotyped incorrectly: the homozy-
gous reference cluster (red) is missing, and the nomi-
nally heterozygous samples (blue) fall into two clusters.
This marker merits further inspection. For example, one
nominally heterozygous cluster may correspond to
homozygosity for the reference allele or, the marker
may be detecting paralogous variation at off-target loci.
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In addition to global summaries, argyle provides easy access to hybrid-
ization intensity data from individual probes. Inspection of “cluster plots”
for individual probes is useful for confirming the accuracy of genotype calls
and diagnosing poorly-performingmarkers (Figure 2). A dotplot (Figure 3)
permits direct inspection of genotype calls at multiple markers over small
genomic regions.

ARRAY NORMALIZATION
IlluminaBeadStudio uses an “affinenormalization” algorithm toperform
within- and between-array adjustments to x- and y-hybridization inten-
sities before calling genotypes. However, further normalization is helpful
for analyses of sample contamination and copy number. Two standard
metrics are the log2R=R0 ratio (LRR), which captures total hybridization
intensity (R) relative to a reference level (R0); and B-allele frequency
(BAF), which captures the relative signal from the A and B alleles (Peiffer
2006). For an uncontaminated euploid sample, the expected value of
LRR is 0, and the expected value of BAF is 0.5 at heterozygous markers.

The argyle package implements the thresholded quantile normali-
zation (tQN) approach described in Staaf et al. (2008) and Didion et al.
(2014). Briefly, tQN performs within-array quantile normalization of
the x channel against the y channel to account for dye biases specific to
the Infinium chemistry, but places an upper bound on the difference
between normalized and unnormalized intensity values. LRR and BAF
are then computed using known cluster positions computed from a set
of reference samples. The tQN procedure may optionally be preceded
by preliminary between-array quantile normalization using routines
implemented in the preprocessCore package (Bolstad et al. 2003). A
joint plot of BAF and LRR (Figure 4) is valuable for assessing hetero-
zygosity, ploidy, sample purity, and sex-chromosome karyotype.

Copy-number inference from Illumina arrays is a well-studied
problem for which good solutions already exist—for instance, the
standalone software PennCNV (Wang et al. 2007), or the R package
genoCN (Sun et al. 2009). Most of these packages take BAF and LRR
values as input and so are easily integrated downstream of argyle.

Systematic batch effects on intensity distributions are possible when
analyzing samples processed that were not processed concurrently. The
reliabilityofdiscrete genotypecallsmaybeunchangedbetweenbatches, but
downstream analyses thatmake use of hybridization intensities [e.g., copy-
number analyses, or hidden Markov models (HMM) for haplotype in-
ference inmultiparental populations (Fu et al. 2012; Gatti et al. 2014)]may
benefit from a further batch correction. One possibility, given k nonover-
lapping batches, is quantile normalization of batches 1; . . . ; k2 1 against
the kth batch. Although between-batch normalization is not yet imple-
mented in argyle, it is slated for inclusion in future releases.

GENETICS TOOLS
Utilities are provided for efficient calculation of allele frequencies,
heterozygosity and missingness by sample and by marker. When
genotypes of both parents and offspring are available, pedigree rela-
tionships can be confirmed via checks for Mendelian inconsistencies.
Separate datasets can be concatenated or merged using functions that
ensure consistency of allele encoding and detect strand swaps [e.g., an
(A/G) vs. a (T/C) SNP].

Figure 3 Dotplot representation of genotypes among nine wild-
caught mice on proximal chromosome 19 (from Yang et al. 2011).
Genotype calls are coded as counts of the reference allele, and points
are colored according to genotype call. Blank spaces indicate missing
calls. Markers are plotted with constant spacing in the main panel; gray
lines indicate physical position along the chromosome in megabases
(Mbp).

Figure 4 Joint plot of B-allele frequency (BAF, upper panel) and log2 intensity ratio (LRR, lower panel) for an outbred male mouse. The
autosomes are almost entirely heterozygous, while the X chromosome is hemizygous: no points appear near BAF = 0.5 on the X chromosome
and its LRR is decreased relative to the autosomes. Red traces are a local smoothing of underlying points.
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To facilitate analysis of genotypes from experimental crosses,
argyle provides functions for recoding alleles with respect to
parental lines. A general-purpose HMM allows for reconstruction
of haplotype mosaics, given a panel of reference samples and a
genetic map—although users are cautioned that more sophisti-
cated implementations are available for some special cases
(Broman et al. 2003; Fu et al. 2012; Gatti et al. 2014). Mature tools
for genetic mapping in the R environment already exist (e.g., R/qtl;
Broman et al. 2003). Genotypes processed with argyle can be
readily converted to R/qtl format to create a unified pipeline for
quantitative-trait locus (QTL) mapping. One- and two-locus
“mosaic plots” allow joint visualization of allele frequencies and
phenotype at candidate QTL (Figure 5). A worked example is
provided in File S4.

Genome-wide patterns of relatedness can be explored using built-in
functions for efficient kinship estimation (Figure 6) and principal com-
ponents analysis (Figure 7). See File S5 formore detailed demonstration
of functions useful for population-genetic analysis.

DATA EXPORT
The argyle package provides functions to convert genotypes objects
to other formats eitherwithin the R session (for R/qtl andDOQTL) or
on disk. Currently argyle supports export to either PLINK binary
format (�.fam/�.bim/�.bed) or Stanford HGDP format. PLINK pro-
vides command-line utilities to convert its file format to many
others, including VCF, LINKAGE (�.map/�.ped), Haploview,
STRUCTURE, and fastPHASE. In addition, since genotypes objects
are regular R matrices, users can adapt them to bespoke input for-
mats required by other tools for genetic analysis.

PERFORMANCE
argyle and its dependencies are compatible with R ($ 2:14) on Win-
dows orMac OS X. The performance of argyle benefits from optimized
code in several existing R packages including data.table and
Rcpp (Eddelbuettel 2013). Reading a dataset of realistic size – 96
samples · 77; 808 markers (164 Mb ZIP-compressed on disk)—from
Illumina BeadStudio output into an R session takes about 30 sec. The full

Figure 5 (A) One-way mosaic plot. Width of each bar is
proportional to the frequency of the corresponding
genotype; fill colors indicate phenotype, here case or
control status. (B) Two-way mosaic plot. Area of each
block is proportional to two-locus genotype frequency,
and fill colors indicate phenotype mean for each two-
locus genotype.
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dataset, including hybridization intensities and sample and marker
metadata, occupies 202.4 Mb; without hybridization intensities, the size
drops to 77.9 Mb. Memory usage scales approximately linearly with
either the number of samples or the number of markers (Figure 8A).
The most computationally-intensive component of argyle is the tQN
procedure, and is implemented in C++. Its running time is compared
to the quantile normalization routine from the preprocessCore package
in Figure 8B. These resource requirements are well within the range of a
typical laptop or desktop computer.

R’s internal limit of 231 2 1 entries for any matrix or vector places
an upper bound on the dimensions of a genotypes object. For arrays
with between 10; 000 and 150; 000 markers, this translates to a limit of
between 14; 000 and 21; 000 samples.

Tests were performed in R 3.1.2 (64-bit) on a MacBook Air, with a
single 1.7 Ghz Intel Core i7 processor, and 8 Gb RAM. ACKNOWLEDGMENTS
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Note added in proof: See Morgan et al. 2015 (pp. 263–279) in this
issue, for a related work.
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