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For decades, research in neuroscience has supported the hypothesis that brain dynamics

exhibits recurrent metastable states connected by transients, which together encode

fundamental neural information processing. To understand the system’s dynamics it

is important to detect such recurrence domains, but it is challenging to extract them

from experimental neuroscience datasets due to the large trial-to-trial variability. The

proposed methodology extracts recurrent metastable states in univariate time series

by transforming datasets into their time-frequency representations and computing

recurrence plots based on instantaneous spectral power values in various frequency

bands. Additionally, a new statistical inference analysis compares different trial recurrence

plots with corresponding surrogates to obtain statistically significant recurrent structures.

This combination of methods is validated by applying it to two artificial datasets. In a

final study of visually-evoked Local Field Potentials in partially anesthetized ferrets, the

methodology is able to reveal recurrence structures of neural responses with trial-to-trial

variability. Focusing on different frequency bands, the δ-band activity is much less

recurrent than α-band activity. Moreover, α-activity is susceptible to pre-stimuli, while

δ-activity is much less sensitive to pre-stimuli. This difference in recurrence structures in

different frequency bands indicates diverse underlying information processing steps in

the brain.

Keywords: trial-to-trial variability, time-frequency analysis, local field potentials, recurrence plot analysis,

statistical inference, surrogate data, anesthesia, ferret

1. INTRODUCTION

Investigation of metastable states (MS) and transients of complex dynamical systems has become
increasingly important over the last decades. In this context, dynamical systems spend longer
time intervals in MSs than in transients between MSs. The large interest in studying such states
comes from the belief that a complex temporal behavior of systems may be decomposed into
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a simple sequence of alternating MSs and transients between
them. This reduced description is a model that captures
the essential dynamic elements of rather complex underlying
dynamics. Applications range from spin glasses (Larralde and
Leyvraz, 2005) to molecular configurations (Deuflhard and
Weber, 2005) and geoscientific applications (Froyland et al.,
2007). In neuroscience, the related concept of sequential
metastable attractors has received increasing attention in the last
years (Friston, 1997; Oullier and Kelso, 2006; Rabinovich et al.,
2008b; Yildiz and Kiebel, 2011; Hudson et al., 2014; Tognoli and
Kelso, 2014). Primarily, works are motivated by the experimental
observation of signal features showing alternations of dynamical
behavior at fast and slow time scales (Hutt and Riedel, 2003; Hutt,
2004; Mazor and Laurent, 2005; Allefeld et al., 2009).

Originally the concept of metastability refers to slow
relaxation dynamics in statistical physics (Larralde and Leyvraz,
2005; Tokman et al., 2011). In a much wider sense, this notion
is nowadays used for regions in the phase space of a dynamical
system with relatively large dwell that are connected by transients
(Friston, 1997; Rabinovich et al., 2008b; Tognoli and Kelso,
2014). Paradigmatic examples for those MSs are almost invariant
sets (Froyland, 2005) and recurrence domains (beim Graben and
Hutt, 2013), such as saddles connected by heteroclinic trajectories
(Rabinovich et al., 2008a) or the “wings” of the Lorenz attractor
(Lorenz, 1963). For this attractor in particular, it is attractive itself
and has two recurrence domains centered around two unstable
foci. Geometrically, these domains are spatially separated and the
system’s trajectory alternately approaches to and departs from
the foci. The system spends much longer time in the vicinity of
a focus compared to transient intervals between the two foci.
Therefore, one may refer to a Lorenz wing as to a MS: the system
remains for a longer time in one partition cell of the phase space
before it performs a rapid transition to another partition cell
of the phase space. A MS is thus identified with a recurrence
domain, while non-recurrent portions of a trajectory can be
compared with transients.

In neuroscience, metastability assumed increasing
experimental evidence over recent years. Lehmann et al.
(1987), Wackermann et al. (1993) observed sequences of
metastable electroencephalogram (EEG) topographies, which
they called brain microstates. Hutt and Riedel (2003), Hutt
(2004), beim Graben and Hutt (2015) argued that components of
the event-related brain potentials (ERPs) reflecting perceptional
and cognitive processes could be identified with metastable brain
states. Mazor and Laurent, for instance, reported sequences
of metastable states in a reconstructed activation space of the
locust’s neural odor circuit (Mazor and Laurent, 2005). Allefeld
et al. (2009) were able to detect metastable states in epileptic
EEG time series through spectral clustering methods, and most
recently, Hudson et al. (2014) revealed metastable transition
networks in the recovery from anesthesia. Consequently, to
understand underlying neural mechanisms much better, it
is necessary to develop advanced techniques to detect these
recurrence structures in experimental time series.

For the identification of metastability in time series, their
characteristic slow time scales must be separated from the fast
dynamics of phase space trajectories. The method known as

Perron clustering (Deuflhard and Weber, 2005), separates the
system’s phase states into partitions that can approximateMarkov
chain states (Deuflhard and Weber, 2005; Froyland, 2005;
Larralde and Leyvraz, 2005; Gaveau and Schulman, 2006; Allefeld
et al., 2009). Applying spectral clusteringmethods to the resulting
transition matrix yields the time scales of the process, while their
corresponding (left-)eigenvectors allow the unification of cells
into a partition of metastable states (Gaveau and Schulman, 2006;
Allefeld et al., 2009). Another approach byHutt and Riedel (2003)
utilizes the slowing-down of the system’s trajectory in the vicinity
of saddles by means of phase space clustering. Most recently,
beim Graben and Hutt suggested to combine recurrence plot
techniques and symbolic dynamics in order to partition a system’s
phase space into its recurrence domains (beim Graben and Hutt,
2013, 2015). The application of the latter method to experimental
event-related potentials has identified metastable attractors to so-
called ERP-components, known to reflect cognitive processing
stages in neural information processing.

Developing novel analysis tools for representation and
tracking of non-linear transient patterns faces numerous
challenges, such as reducing the signal dimensionality while
preserving the information significant for the detection task
or building methods robust to acquisition noise. Recurrence
analysis has been used for identifying transient patterns in
experimental EEG (Shalbaf et al., 2015), for classifying patients
based on EEG time series (McCarthy et al., 2014) and for
prediction of responses during anesthesia (Huang et al., 2006). A
key feature of recurrence analysis is to identify sequential states
in a multi-dimensional signal space, as shown in most previous
studies (beim Graben and Hutt, 2013, 2015). If the experimental
data under study is multi-dimensional, for instance a multi-
channel EEG recording, the data serves directly as the input
to the recurrence analysis. However, it is not valid to compute
recurrence plots in the case of univariate time series and hence
the data can not be analyzed directly. Therefore, it is necessary
to transform the univariate signal to a multivariate (multi-
dimensional) signal. Typically this is done by delay-embedding
techniques (Webber and Zbilut, 1994; Iwanski and Bradley, 1998)
inspired by Takens’ theorem (Takens, 1981). The corresponding
embedding dimension and delay time in these techniques are
chosen rather independent from the dynamic features of the data
since typically these are not known a priori.

In neuroscience, patterns occurring in certain frequency
bands play distinct roles in neural information processing
(Kandel et al., 2000; Schnitzler and Gross, 2005). We argue
that this additional knowledge can be taken into account and
the present work proposes a novel technique based on time-
frequency representations of univariate signals. Here, the signal
is transformed into its time-frequency representation of spectral
power which spans a new phase space in which the signal
trajectory evolves. Hence, one may call this transformation
spectral power embedding since the new phase space encodes
instantaneous power in certain frequency bands. The additional
advantage of this approach is that it permits to analyse the
recurrence structure of data in selected frequency bands. For
completeness, we mention that a signal is fully defined by its
instantaneous amplitude and phase.
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In this work we propose a new method for the detection
of metastable states in univariate neural signals. To obtain
statistically significant evidence of recurrence structures in
signals, we conduct a statistical test over the set of novel,
frequency-selective recurrence plots (RP). Below we describe
methodologies for building such frequency-selective RPs and
performing statistical inference tests. These tests indicate how
stable the recurrence plots are with respect to trial-to-trial
variability. This novel statistical evaluation is necessary in the
analysis of neurophysiological data, since trial-to-trial variability
is a well-known experimental finding in such signals. In our
work we analyse synthetic transient oscillations and one state
variable of the Lorenz attractor involving acquisition noise to
validate the methodology. Finally, the study of experimental
Local Field Potentials obtained in partially anesthetized ferrets
(Mustela putorius furo) during a visual stimulus experiment
allows to extract new insights into neural information processing.
For instance, we show that temporal recurrence occurs in the
α-frequency band but not in the δ-frequency band. This result
suggests that in the α-band the brain processes the information
step-wise (state by state) while no step-wise process is performed
in the δ-band.

2. MATERIALS AND METHODS

In this section we introduce the novel method for studying
temporal recurrences common in recurrence plots of different
trials. Section 2.1 introduces classical recurrence plots and
describes corresponding parameters. Then, we provide a novel
method to compute recurrence plots from their time-frequency
representations. In Section 2.2 we propose the statistical test
method that analyses the similarity of RPs and finds their
statistically significant parts. Finally, in Section 2.3 we describe
the datasets used in this work.

2.1. Recurrence Plots and Novel
Time-Frequency Representations
Recurrence is a fundamental property of dynamical systems
which characterizes the behavior of the system in phase
space (Poincaré, 1890). A recurrent signal instance is a moment
in time when the trajectory returns to a neigborhood of a location
in phase space it has already visited previously.

Deterministic dynamical systems are described by their
trajectory. A trajectory x(t) ∈ R

n, t ∈ R is sampled at times
t = i1t, i ∈ {1, 2, . . . ,N}, where1t is the sampling time interval
and N is the total number of samples. For notation simplicity, in
this paper we denote the signal sample x(i1t) by x(i). Then, a
recurrence plot (RP) is defined as the N × N matrix R, whose
elements ri,j take values ri,j = 1 when two trajectory samples lay
within the open ball B(ǫ) of radius ǫ

ri,j =
{

1, if d(x(i), x(j)) < ǫ,
0, otherwise,

(1)

where d(·, ·) is a distance function and i, j ∈ {1, . . . ,N}. Hence,
recurrence plots are two-dimensional binary matrices obtained
by distance based thresholding and its elements take values ri,j ∈

{0, 1}. In this work, pixels in RPs will be color-coded white for
values ri,j = 0 and black otherwise.

For an arbitrary chosen ǫ value we can not guarantee that
some of the significant dynamic features are not discarded
by thresholding. To minimize such a thresholding error, we
compute the optimal threshold value ǫ∗ which maximizes the
symbolic entropy for a given distance function, as proposed
in beim Graben and Hutt (2013). In more detail, under the
assumption that recurrence domains are uniformly distributed
for a given recurrence plot, the method constructs disjunct and
transitive symbolic recurrence plot matrices from multivariate
data. This method permits to identify MSs in a recurrence plot
and maps each state (and the transients between the states) to a
symbol. Consequently, onemaps the high-dimensional dynamics
of the system to a sequence of symbols. Let pk be the probability of
the occurrence of the state k, i.e., the number of the occurrences
of the symbol k divided by the total number of occurrences of all
symbols. Then maximizing the entropy

H(ǫ) = − 1

Sk,ǫ

Sk,ǫ
∑

k=1

pklog(pk), (2)

for a range of ǫ-values yields that value of ǫ for which
the distribution of occurrence probabilities {pk} approaches
uniformity, i.e., for which all states are equally probable. Here,
Sk,ǫ is the number of states for a given ǫ. Then the optimal value

ǫ∗ = argmax
ǫ

H(ǫ)

maximizes the entropy of the extracted symbolic sequence and
hence the recurrence structure of the data. This optimal value is
computed for each dataset separately.

After defining conventional RPs and computation of the
optimal parameter ǫ, the remaining part of this section focusses
on how to build frequency-selective recurrence plots. Many
biophysiological signals have characteristic frequency signatures.
For example, the human heart beats about sixty times per minute
in average, i.e., at the frequency of 1 Hz. Another example
are eye blinks that induce signal changes in the α-frequency
band (frequencies in the interval 8–12 Hz) in EEG recordings.
To take into account the distinct signatures of spectral bands
present in neural signals, we propose a novel concept for building
recurrence plots from time-frequency signal representations,
instead of building them directly from univariate data or
constructing them by employing delay-embedding techniques.
Such representations, in general adapted for non-stationary
signal analysis, give insights into frequency bands of importance
and provide additional flexibility to recurrence plot analysis that
is not present in time-domain, for e.g., the possibility to weight
the importance of some frequency bands. In the literature there
are several ways to choose values of the frequency bands. We
use the following frequency interval definitions: the δ-frequency
band denotes the interval [0.5 Hz; 4 Hz], the θ-frequency band
the interval [4 Hz; 8 Hz], α-band [8 Hz; 12 Hz], β-band [12 Hz;
20 Hz], and the γ -band denotes the interval [20 Hz; 40 Hz].

We build novel recurrence plots in three steps, as shown
in Figure 1: (i) we expand the set of T univariate trials
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FIGURE 1 | Building frequency-selective recurrence plots from T time series. Processing blocks are represented by arrows: (i) SSQ is a synchrosqueezing

transform block used to obtain time-frequency representations of signals; (ii) the MPS block computes mean values of the power spectrum for each of the chosen

frequency bands, which reduces the signal dimensionality; (iii) This signal is the basis for the recurrence analysis leading to recurrence plots {RPk}Tk=1.

{x1, x2, . . . , xT} to their corresponding time-frequency domains;
(ii) we compute the mean power of the spectrum over certain
sets of frequencies. These mean power time series may be called
yj(t) ∈ R

S, j = 1, . . . ,T, where S is the number of frequency
bands; (iii) we compute recurrence plots by computing distances
between vectors y(i) and y(j), i, j ∈ {1, . . . ,N} as in Equation
(1). In the following paragraphs we describe these blocks in more
detail.

The first block in Figure 1 provides a time-frequency
representation of the signal. In classical spectrogram calculations,
the stronger (weaker) is the localization of signals in time, the
larger (smaller) are their localization windows in frequency. This
effect is called the uncertainty principle implied in the Fourier
transform. A synchrosqueezing (SSQ) transform overcomes this
deficiency by performing wavelet-based filtering and signal
power reassignment to the appropriate frequencies. In addition,
Meignen et al. (2012) and Auger et al. (2013) show that SSQ
is superior for processing neural signals when compared to
conventional spectral analysis methods, such as continuous
wavelet transform or spectrogram. Hence, we use the SSQ
transform defined in Section 2.1.1 as the processing block (i) in
Figure 1.

The second block in Figure 1 computes the mean value of
the power spectrum (MPS) for sets of frequencies, see Section
2.1.2 for details. This is one of the basic features for studying
neural signals. We assume that the dynamics of the neural system
encoded in frequencies is proportional to the power spectrum
in sets of frequencies. This analysis step provides multi-variate
time series whose dimension is equal to the resulting vector of
averaged frequency bands.

Finally, in the third processing block in the figure we compute
recurrence plots from the obtained time-frequency dataset as in
Equation (1). If we do not explicitly mention otherwise, we use

features from all the frequency bands to compute recurrence
plots. In the experimental ferret dataset, we additionally present
cases when recurrence plots are calculated from the single
frequency band features such as δ- or α-frequency bands, since
these bands play an important role in the loss of consciousness
under anesthesia.

To summarize, the proposed method for building recurrence
plots from time-frequency representations grasps band-related
features and allows flexibility in the analysis of particular
frequency bands, which is not possible in the classical RP analysis.
Our approach however requires additional computations of the
synchrosqueezing transform and mean power of the spectrum.

2.1.1. Synchrosqueezing Transform
For completeness of this work, in this section we provide
the mathematical definition of the synchrosqueezing transform
(Meignen et al., 2012; Auger et al., 2013), that we use as a
processing block in the proposed algorithm, see Figure 1. We
presume that input signals are composed of several components
with time-varying oscillatory characteristics. In other words, we
assume that signals f (t) can be well approximated with K signal
components, f (t) =

∑K
k=1 fk(t) + e(t), fk(t) = Ak(t)e

2π iφk(t),

where Ak(t) and φ
′
k
(t) = 1

2π
dφk(t)
dt

denote the amplitude and
the instantaneous frequency (IF) of each component and e(t)
represents a small error. We assume that the components fk have
slowly time-varying amplitudes Ak(t) and sufficiently smooth
IFs. These conditions assure that signal components are well
separated in frequencies and the complete definition is available
in Thakur et al. (2013), Def. II.1 (codes available online in Thakur,
2013).

Let a wavelet ψ(t) be a square integrable and normalized

function. Then, its scaled and time-shifted variants ψ( t−b
a )

represent a set of scaled bandpass filters. In the following,
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we denote the frequency of one signal component by ωk ≈
2π

dφk(t)
dt

. A Continuous wavelet transform (CWT) of the function
f at scale a and time shift b is defined by Wf (a, b) =
1√
a

∫ ∞
−∞ f (t)ψ( t−b

a )dt, which represents a convolution of scaled

and band-passed filters with the signal. The shifts of wavelet
function are driven by the scale value a. For example, for
the first signal component with frequency ω1, the value of
the wavelet coefficient Wf (a1, b) spreads around the scale

factor a1 = ωψ
ω1

, where ωψ is the central wavelet frequency.
Therefore, the estimated IF in the neighborhood of this value
of the scale is equal to the frequency ω1. The synchrosqueezing
transform T(ωq, b) uses estimates of the instantaneous frequency
ωf (a, b), computed for each scale-time pair (a, b) by ωf (a, b) =
−iWf (a, b)

∂Wf (a,b)

∂b
to reallocate the energy of the wavelet

coefficients. Let 1ap (1ω) denote resolution steps in scale
(frequency). Then, this transform, defined by T(ωq, b) =
∑

ap:|ωf (ap,b)−ωq|≤1ω/2Wf (ap, b)a
−3/21ap enhances frequency

localization of oscillating components of the signal and provides
more precise time-frequency representations of the signal. In
analogy to the spectrogram used in classical short-time Fourier
analysis, we plot values

S(ωq, b) = |T(ωq, b)|2 (3)

for each pair (ωq, b) in time-frequency plots, see Figures 5A,E,
6A,C.

2.1.2. Mean power spectrum
For each frequency band with Q components, the mean power
spectrum value is defined by

MPS(t) = 1

Q

Q
∑

q=1

S(ωq, t), (4)

where S(ωq, t) is defined in Equation (3), ωq are frequencies of
one frequency band and t is time.

2.2. Statistical analysis
We study statistical properties of frequency-selective RPs
obtained from time-frequency trial representations. By virtue of
noise effects and an expected trial-to-trial variability, recurrence
plot structures are expected to vary from trial to trial. To
evaluate the recurrence plots statistically, we perform a statistical
inference analysis based on a classical chi-squared test (Yates,
1934). To this end, we construct surrogate recurrence plots and
employ an inference test.

Classically, surrogate sets of univariate signals (Schreiber
and Schmitz, 2000) preserve some of the important features of
the original time series, for example the spectrum magnitude,
while they replace the phase values by a random sequence
of values. The reasoning behind this randomization is that
time domain reshaping destroys non-stationarities, so the local
spectral components will vary while the global spectrum remains

the same. As a consequence, the mean and variance of the signal
do not change (Borgnat et al., 2010; Richard et al., 2010).

In this work, we build the surrogate dataset with the same
power spectrum as in the original data, where the information
component encoded in time is randomized, cf. Figure 2A. For
each time index of the signal we randomly select a novel index
value, such that all the index values are chosen exactly once
(permutations without repetition). Then, we rearrange the time-
frequency representation of trials according to the chosen index
values and compute recurrence plots of surrogates by repeating
steps (ii) and (iii) shown in Figure 1. This procedure is repeated
S times per trial. Figure 2A illustrates how to obtain the surrogate
set from T trials. Examples of an original RP and a corresponding
surrogate RP are provided in Figure 2B.

We compare pixel-related statistical measures between the
set of the original recurrence plots from different trials and
their surrogates to determine whether original RPs preserve the
common underlying signal dynamics in statistically significant
way. This comparison is illustrated in Figure 2C. In detail, we
denote the set of T recurrence plots obtained from the original
trial data by {RPk}Tk=1

and its surrogate set by {SRPk}S·Tk=1
. In our

simulations, there are T = 10 trials in total, where the number of
surrogates generated per trial is S = 100. The full set of surrogates
counts S ·T = 1000 surrogate RPs. At first, we perform pixel-wise
statistical analysis tests between the corresponding pixels of the

original and the surrogate recurrence plots. Let B̄ = {r{k}i,j }Tk=1
be

the vector that consists of the set of pixels with same coordinates

in the original RPs and B̂ = {r{k}i,j }S·Tk=1
is the corresponding

vector of pixel values for surrogates. Vectors B̄ and B̂ consist of
values from the set {0, 1}, since RP elements ri,j by definition take
binary values, cf. Equation (1). To perform a chi-square test for
categorical data, we build a two-by-two contingency table. For
explanation, this tables first row takes values from the original
RPs and the second row contains values from surrogate RP. The
first table column marks the number of values ri,j = 1 and the
second column the number of elements ri,j = 0. The elements
of this table (two rows and two columns) have the coordinates
(l,m), l,m ∈ {1, 2}. Then, the chi-square statistics for the pixel
(i, j), i, j ∈ {1, . . . ,N} is computed by

χ2(i, j) =
∑

l∈{1,2}

∑

m∈{1,2}

(f
(i,j)
o (l,m)− f

(i,j)
e (l,m))2

f
(i,j)
e (l,m)

.

Here, f
(i,j)
o (l,m) is the observed table value at the coordinate

(l,m) for the pixel (i, j) and f
(i,j)
e (l,m) is its expected frequency.

The latter value is computed as f
(i,j)
e (l,m) = nr(l)nc(m)/q, where

nr(l) is the total number of elements in the row l, nc(m) is the
number of elements in the columnm and q is the total number of
elements in the two-by-two table. The calculated chi-square value
is compared with the result in the chi-square table for predefined
values of the degree of freedom df = 1 and the significance
level αs = 0.05. If the calculated chi-square value is larger than
the value in the table, the hypothesis that signals share the same
distribution is rejected, see Yates (1934) for more details. In this
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FIGURE 2 | (A) Surrogate set construction: for each of T time-frequency signal representations used for computing the original set of RPs, one computes S surrogate

RPs. The resulting S surrogate recurrence plots have the same energy in time-frequency domain. In total, there are S · T surrogates. (B) Examples of the RP (top) and

the surrogate RP (bottom) for the transient oscillations dataset. (C) Illustration of the pixel-wise χ2 statistical test, more details in the text.

work, the outcomes of chi-square tests are visually represented as
matrices A = [ai,j], i, j ∈ {1, . . . ,N} whose elements take values

ai,j =







1, if distributions of trial and surrogate sets
are different,

0, otherwise.
(5)

In this work all the figures follow the same color code as for
illustrating recurrence plots, i.e., white pixels denote values ai,j =
0 and black pixels stand for ai,j = 1.

Since single elements in RPs are correlated to neighboring
elements caused by the underlying dynamics, the underlying
assumption of independent recurrence matrix elements does not
hold and corrections of the significance test should be applied,
such as the Bonferroni correction. To this end, in the examples
of artificial datasets, we have performed a t-test which is based on
the hypothesis that original and surrogate signals have the same
distribution of mean values. The statistics are computed based on
the pixels and their mean values in a 5× 5 neighborhood around
each pixel. In addition, we have applied a Bonferonni correction.

2.3. Datasets
To illustrate different analysis steps and to validate the power
of the proposed method, we first apply the proposed algorithm
to two artificial datasets. Then, the methodology is applied to
experimental datasets. Single trials of these datasets are illustrated
in Figure 3 and their origin is described in detail below. For
both artificial datasets, we model the tria-to-trial variability by
a temporal shift of the data in time combined with additive
measurement noise.

2.3.1. Transient Oscillations
A modified Lotka-Volterra model with n = 3 interactive
elements (Rabinovich et al., 2008a,b)

dxi(t)

dt
= xi(t)



σi −
n

∑

j=1

ρi,jxj(t)



 , (6)

serves as an abstract model of event-related brain
potentials (beim Graben and Hutt, 2015). Here xi(t) ≥
0, i ∈ {1, 2, 3} is the activity rate of the element i, σn is the
growth rate of the n-th population and ρi define interactions
between elements. In our setup, σ1 = 1, σ2 = 1.2 and σ3 = 1.6,
ρii = 1, ρ12 = 1.33, ρ13 = 1.125, ρ21 = 0.7, ρ23 = 1.25,
ρ31 = 2.1, and ρ32 = 0.83. The output signal s(t) is a linear
superposition of transient oscillations with frequencies ν1 =
170Hz, ν2 =20Hz, ν3 =75 Hz, where at one time instance,
only one of these three components is dominant, see more details
below. We point out that these frequencies are chosen rather
arbitrarily for an optimal illustration. The activity rate xi defines
the amplitude of the component ai with frequency νi and the
output signal obeys

s(t) =
3

∑

i=1

ai(t) sin(2πνit)+ ξ (t) , ai(t) = e−(xi−σi)2/2η2i ,(7)

with η1 = 0.5, η2 = 0.33, η3 = 0.4. By this construction, the
amplitudes ai increase and decrease in a certain time window
outside of which they almost vanish. These windows of the three
oscillation modes i = 1, 2, 3 do not overlap and the transitions
between them are rather rapid. The variable ξ (t) represents
measurement noise and its random values are i.i.d. Gaussian
noise with zero mean and variance 0.5. The sampling rate is 450
Hz. We generate 10 trials which are time-jittered by shifting the
trials by 1 sample to later instances, while each trial is subject
to additive noise different in each trial. A single trial is given in
Figure 3A.

2.3.2. Lorenz dataset
The Lorenz system (Lorenz, 1963) is a well-studied three-
dimensional differential equation system

dx

dt
= −σx+ σy , dy

dt
= ρx− y− xz ,

dz

dt
= −βz + xy
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FIGURE 3 | Illustration of the first trial in each of the three time series under study. (A) Transient oscillations (B) Lorenz attractor (C) Ferret dataset: trial from

the set session one is recorded at a granular layer electrode. The vertical solid lines denote the stimulus onsets and the set of dashed lines mark the stimulus offsets.

with σ = 10, ρ = 28, β = 8/3. Its solutions show non-
trivial transient dynamics and their wings represent metastable
states as explained above (cf. beim Graben and Hutt, 2013). We
study the univariate time series x(t), which is the solution of the
above given system of equations. This time series may represent a
macroscopic measured signal such as EEG recording (Skarda and
Freeman, 1987; Basar, 2006), capturing activity from different
metastable sources. The sampling rate is equal to 2100 Hz. We
generate ten signal trials time-jittered by shifting the signal by 1
sample to later instances and add i.i.d. zero mean Gaussian noise
with unity variance to the signals. One trial signal is illustrated in
Figure 3B.

2.3.3. Ferret Dataset
The experimental dataset under study in the present work are
Local Field Potential (LFP) measurements collected as described
in Sellers et al. (2013, 2015a,b). Briefly, female ferrets were
anesthetized, intubated, and underwent surgery to gain access
to primary visual cortex (V1, ∼3 mm anterior to lambda and 9
mm lateral to the midline). Anesthesia induction was achieved
with an intramuscular injection of ketamine (30 mg/kg) and
xylazine (1–2mg/kg), and anesthesia maintenance was achieved
with 1.0% isoflurane (10–11 cc, 50 bpm, 100% medical grade
oxygen), with continuous IV infusion of xylazine (1.5mg/kg/h
xylazine with 4.25mL/h 5% dextrose lactated ringer’s). Animals
were head-fixed in front of the presentation screen and a 32-
channel depth probe was acutely inserted into cortex (50 microns
contact spacing along the z-axis, NeuroNexus, Ann Arbor, MI)
and was positioned to cover all cortical layers. The reference

FIGURE 4 | Experimental paradigm of the ferret experiment. In the

original recording protocol (Sellers et al., 2013, 2015a,b), 10 visual stimuli are

interleaved by several types of different stimuli, represented by numbers in the

figure. Our dataset consists of the responses to sine-wave luminance gratings

only. Other types of stimuli are the black screen (intervals marked by {4,6,9}),
checkerboard noise for {2,7} or fox images stimuli. The latter set consists of

the weakly spatially filtered image of foxes in the intervals marked by {3,5} and
strongly spatially filtered image of foxes in the interval set {1,5, 10}.

electrode was located on the same shank (0.5mm above the top
recording site) and was positioned in 4% agar in saline above
the brain. The full-field visual stimulus was presented on a 52 ×
29 cm monitor with 120Hz refresh rate and full high-definition
resolution (1920 × 1080 pixels, GD235Hz, Acer Inc, New Taipei
City, Taiwan) at 47 cm distance from the animal. Each trial was
30 s long and consisted of three parts: (i) recording interval
[0− 10)s is a baseline (screen is black); (ii) ts ∈ [10− 20) s is the
presentation of the sine-wave luminance gratings; (iii) [20−30) s
is “post-baseline” (screen is again black). Visual stimuli were
interleaved with other types of stimuli (all in randomized order),
for instance with a black screen or with a strongly spatially filtered
image of foxes (foxes are natural enemies of ferrets), see Figure 4.
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The sine-wave luminance grating was presented at a rate of 1Hz
for 10 s (during each 1 s period, progressive frames transitioned
from black to white to black and all the screen pixels had the
same color for any given frame). In the subsequent analysis, we
consider a subset of recordings. The dataset under study starts 0.5
s before stimulus onset and lasts until 3 s at the end of the third
stimulus cycle. This stimulus is a black screen at t = 0, 2, and 3 s
with luminance maxima at t = 0.5, 1.5 s, and 2.5 s. A single trial
is illustrated in Figure 3C.

Electrophysiological recordings were conducted during
stimulus presentation. Unfiltered signals were first amplified
with MPA8I head-stages with gain 10 (Multichannel Systems,
Reutlingen, Germany), then further amplified with gain 500
(Model 3500, A-M Systems, Carlsborg, WA), digitized at 20 kHz
(Power 1401, Cambridge Electronic Design, Cambridge, UK),
downsampled to 1 kHz afterwards, and digitally stored using
Spike2 software (Cambridge Electronic Design). In total, 20 trials
across two sessions conducted on different days were analyzed,
the session sets of 10 trials are called session one and session two
in the following. Datasets are downsampled to the sampling rate
equal to 100Hz. All procedures were approved by the University
of North Carolina-Chapel Hill Institutional Animal Care and
Use Committee (UNC-CH IACUC) and exceed guidelines set
forth by the National Institutes of Health and U.S. Department
of Agriculture.

3. RESULTS

In this section, we first apply the proposed method to two
artificial datasets to verify if it reveals dynamics given the noisy
set of trials. After validation of the method, we apply it on the
experimental dataset (ferret dataset) and study whether it well
extracts the dynamics from the recorded trials.

To understand the results, we first shortly describe recurrence
plots for several simple test signals. As previously mentioned,
black pixels denote recurrence events and white ones its absence.
All recurrence plots have a black diagonal line, by definition
(see Equation 1). Signals without any recurrence have a white
square RP with a black diagonal line. Random noise signals
have a random distribution of black pixels in the plot, with the
exception of the black diagonal line. A simple periodic signal
has a recurrence plot that consists of the black diagonal line
and other black lines that are parallel to the diagonal, where the
distance between them will reveal the period of the signal. More
complex signals that have recurrent states may show different
structures in RPs, for example, checkerboard-like patterns. These
black colored fields, to which we refer as to recurrence domains,
may have different sizes and shapes. For two artificial datasets
we expect to observe repetitive black patterns that correspond to
repetitive states within signal components. For the experimental
dataset, we expect to observe recurrence patterns that are directed
by the onset of the visual stimulus.

3.1. Artificial datasets
We demonstrate our methodology in Figure 5, which shows
the analysis steps for the examples of transient oscillations
(Figures 5A–D) and the Lorenz attractor (Figures 5E–H).

The time-frequency representation of one transient oscillation
trial is shown in Figure 5A. As previously mentioned in
Section 2.3.1, the corresponding signal exhibits three periodic
components. We visually inspect the figure and observe high
power spectrum values around the following time windows: (i)
{(0, 11), (42, 54), (85, 97)}ms around ν1 = 170Hz (dark red
horizontal line segments); (ii) {(19, 26), (64, 72)}ms around ν2 =
20Hz (broad orange areas); (iii) {(24, 38), (74, 87)}ms around
ν3 = 75Hz (dark red horizontal line segments). Note that for
other trials these values may fluctuate because the frequency
and time window of the current active component vary due
to noise that models trial-to-trial variability. Figure 5B shows
recurrent blocks (in black) in a single trial which correspond well
to the dynamics observed in the data, cf. Figures 5A, 3A. For
explanation, these recurrence blocks correspond to MSs and the
white parts represent transients between them.

The time-frequency representation of one Lorenz attractor
trial is given in Figure 5E. The approximate time intervals during
which the system stays in each of the two wings are visually
inspected from the power spectrum values. For the wing in
time intervals {(0, 30), (90, 100)} ms, Figure 5E shows a peak at
∼30Hz corresponding to the oscillation frequency in the Lorenz
wing, see Figure 3B. The other wing is reached in the time
intervals {(40, 60), (65, 80)}ms in accordance to the power peak
at about 40Hz. Note that for other trials time intervals may
be different due to varying trials in the set. Figure 5F shows
recurrent blocks in a single trajectory. The recurrence blocks
repeat in the correct time windows and represent the different
wings, i.e., the MSs.

Time-frequency representations of single trials are the basis
for the recurrence analysis leading to recurrence plots given in
Figures 5B,F for the respective datasets. These plots show the
metastable dynamics of the transient oscillations and the Lorenz
trajectories in the corresponding time windows as recurrent
structures. The recurrent, i.e., repetitive, structure is visible in
the illustrated trial of the corresponding data. Now, considering
several trials these recurrent structures may vary due to the
trial-to-trial variability. Nevertheless, to study the recurrent
structure common to all trials, we employ the statistical inference
method and extract statistically significant areas of recurrence
plots, as shown in Figures 5C,D,G,H. The recurrent structure
is obvious in these plots, reflecting the underlying recurrence
structure in the artificial signals. In addition, these results
demonstrate that the methodology extracts recurrence structures
common in several trials, although the recurrent structure is
less obvious in single trials, Figures 5B,C. Figures 5D,H show
the multiple comparison-test results for both artificial datasets.
The white area increases and the black areas are more focussed
on the red squares, i.e., spurious recurrences (black dots) are
removed and and separated well from transient (white areas).
Hence the multiple-comparison test improves the statistical
inference.

We point out again, that the extraction of the recurrent
structure from the univariate data shown in Figure 5 is possible
only by the spectral power embedding, i.e., the transformation
of the univariate data into multivariate data. The subsequent
preliminary statistical inference allows to identify the recurrent
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FIGURE 5 | Illustration of time-frequency (A,E), optimal recurrence plot (B,F) for the trials of two artificial datasets shown in Figures 3A,B, statistically

significant recurrence plots (C,G) based on 10 trials and classical t-test results (D,H). Values plotted in black represent areas where the original and the

surrogate set differ significantly (rejected test). (A–D) Transient oscillations; (E–H) Lorenz attractor. The red boxes mark recurrent metastable states.

MSs which are common in all trials with a confidence of 0.95.
By virtue of the spectral power embedding, the method permits
to select certain frequency bands to study recurrence structure in
specific frequency bands. This new element renders the spectral
power embedding more flexible and hence superior to previous
embedding techniques, such as the delay embedding based on
Takens theorem. To illustrate this, the subsequent section shows
results from experimental data in different frequency bands.

3.2. Experimental Data
After studying artificially generated trials and verifying that the
proposed method extracts well the dynamics features given by
repetitive black structures, we now investigate whether such
structures can be found in the experimental data as well.

Figure 6 provides the time-frequency representations of
two single trials of the same session Figures 6A,C and the
corresponding recurrence plots Figures 6B,D. We observe a
high trial-to-trial variability between both trials. This can be
observed both in the time-frequency representations and the
resulting recurrence plots. For instance, Figure 6B shows a single
recurrent state in the data except in the time window during the
first stimulus at t ∈ [0.25 s; 1 s]. Hence the system remains close
to the resting state (t < 0) during the first stimulus. Conversely,
Figure 6D reveals that the baseline activity, i.e., activity before
stimulation in the time interval [−0.5 s; 0 s], recurres in the
interval [2.5 s; 3 s]. In addition, the activity at about t = 2 s
resembles the activity just after t = 2.5 s. These different findings
for two trials are surprising since the experimental presentation
of the visual stimulus is well-controlled and the stimulus is simple
enough to expect almost identical neural responses.

To reveal the recurrent structure that is common in all trials,
we now study the trial-to-trial variability of recurrence plots
and aim to reveal whether the signal trials preserve the same

dynamical behavior, cf. Figure 7. Applying the statistical method,
we investigate the similarities of the results obtained from ten
trials measured by a single granular sensor and from the set
of 10 averaged signal trials, where the average is taken over
eight granular layer sensors. This analysis is done for both ferret
datasets. Moreover, we detail the analysis considering particular
frequency bands which are of interest for anesthesia. To this
end, we compute recurrence plots using the values of the power
spectrum coefficients in the corresponding frequency bands as
illustrated in Figure 1.

Figure 7 shows the statistically significant parts of the
recurrence plots for the δ- and the α-frequency band and for
all frequencies (chi-square and t-test results). The figure reveals
that there is no statistically significant recurrent structure in
the δ frequency band in signals under study. Conversely, the
α-frequency band exhibits significant recurrent structures in
the single granular electrode in both datasets, cf. Figures 7A,B.
For instance, in session one the first response to the stimulus
at t = 0 s returns at t = 1 s. Results for all frequency
bands differ to results obtained in the α frequency band.
The differences are dependent on the experimental sessions
suggesting the presence of strong recurrences in bands different
to α and δ or strong noise artifacts. To gain further insights
into the dependence on frequency bands, we consider single
trials which represent spatial averages of time series from
adjacent granular layers. This average denoises the time series.
Figures 7C,D shows the corresponding results. Figures 7C,D
show results from data in both experimental sessions revealing
a similar recurrence structure now. Considering all frequency
bands yields recurrences similar to the one obtained in the α-
band. Specifically, the prominent cross-shaped structure located
at t = 0.5 s indicates a MS common to all data with t ≥ 0.5 s.
Additional recurrences occur in the time intervals [−0.5; 0],
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FIGURE 6 | Illustration of trial variability for the experimental dataset session one. (A,C) The logarithm values of the power spectrum for two trials measured

at an electrode in the granular layer; (B,D) the corresponding recurrence plots. Non-zero values of recurrence plots are encoded in black. Red boxes denote recurrent

metastable states.

[1.7; 2.2], and [2.7; 3.0]ms. These results are consistent in the
chi-square significance tests and the t-test involving corrections
for multiple comparison. At last, we mention the prominent
lack of recurrence in the baseline time interval observed in a
single electrode in session one, cf. Figure 7B. Since it does neither
occur in session one nor in the spatially averaged data shown in
Figures 7C,D, it appears to be spurious and is neglected.

The experimental paradigm includes visual presentations of
stimulus types in a randomized order. The previous paragraphs
show neurophysiological responses to the sine-wave stimulus
only. To gain further insight into the trial-to-trial variability
subject to various pre-stimuli, we have selected two subsets
of sine-wave trials that have two different preceding stimuli,
namely the “black screen” subset denoted by subset one and the
subset of “strongly spatially filtered version of foxes” denoted
by subset two. Subset one includes the trials {4, 6, 9}, while
subset two is composed of the trials {1, 5, 10} of datasets session
one and session two. The comparison of various pre-stimuli
data is done by the chi-squared difference measure based on
recurrence plots of both subsets. Figure 8 shows the statistically
significant recurrences that are common in stimulus responses
on both types of pre-stimuli. The diagonal lines are absent from
figures, which suggests that at each time instance two comparison
signals differ. Poor but visible recurrent structures in δ-band are
grouped into two distinct blocks which distinguish the activity
before the stimuli (around t = 0 s) and during the stimuli,
for t ∈ (1, 3) s. In α-band, the figure shows more prominent
recurrences, such as the patterns around t = 1.5 and 2.7 s.
We point out that recurrences within δ- and α-bands do not
overlap, except in the pre-stimuli period, for t ∈ {−0.5, 0} s.
Finally, considering all the frequency bands together does not

reveal significant similarities of two pre-stimuli. Results from
the chi-square test and the t-test involving multiple comparison
correction are similar. However, it is interesting to note that the t-
test reveals more significant common recurrences than obtained
with the naive chi-square test.

4. DISCUSSION

The present work introduces a new recurrence analysis
methodology for univariate time series. The first new element
is the transformation to a time-frequency representation leading
to a multivariate time series of spectral power. This new
technique generates a new high-dimensional phase space in
which the instantaneous power of the signal evolves. This high-
dimensional phase space is mandatory to apply recurrence
analysis. In addition, it permits to compute recurrence plots
for specific frequency bands. The second new element is the
statistical analysis of recurrence plots that takes into account
spurious recurrence structures and allows to suppress them. The
combination of the two methods permits to extract temporal
recurrence structures in data which may reflect underlying
transient dynamics in a certain range of frequencies that
would have been hidden in conventional methods. To our
best knowledge these two techniques have not been considered
before.

The first results for two artificial datasets illustrate the
methodology and indicate that method detects recurrences in a
variable dataset (noise-induced trial variability) by the statistical
analysis as seen in Figure 5. These results on artificial datasets
prove that the method reveals underlying recurrences in a set of
trials if they are present in these trials.
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FIGURE 7 | Statistically significant parts of recurrence plots for different ferret datasets. (A) Results from a dataset of session one that consists of 10 trial

recordings of the single granular sensor s10. (B) Same as in (A) for the dataset session two. (C) Results are calculated based on 10 averaged trials in dataset session

one, where each trial is averaged over 8 granular layer time series. (D) Same as in (C) for dataset session two. Red boxes indicate MSs, blue boxes in (B) indicate a

prominent lack of recurrence in the α−band.

The subsequent analysis of single Local Field Potentials
measured experimentally in ferret visual cortex reveals a high
trial-to-trial variability, cf. Figure 6. The trial-to-trial variability
is surprising due to the well-controlled experiment revealing
an intrinsic ongoing activity (Arieli et al., 1995). This result
demonstrates that it is mandatory to take into account recurrence
variability in several trials. This is done by the methodology
proposed. Detailed recurrence analysis of specific frequency
bands in Figure 7 reveals missing recurrences in the δ band
whereas α-activity exhibits statistically significant temporal
recurrence. This important finding reflects a fundamental
difference of the nature of δ- and α-activity which has been
shown in previous experimental studies on the neural origin
of both signal features (Alkire et al., 2000; Ching et al.,
2010; Hashemi et al., 2014). Our results suggest that the
brain may decode information processing steps in different
frequency bands. This might be of importance in previous
studies and may shed some new light on neural processes, such
as on metastable states in EEG during the emergence from
unconsciousness (Hudson et al., 2014) and metastable states in
bird songs (Yildiz and Kiebel, 2011).

The effects of pre-stimuli have been hypothesized (Van Rullen
et al., 2011; Lundqvist et al., 2013) and we have investigated
the effect of pre-stimuli. The performed analysis is based on
a rather small set of trials reflecting the responses to identical
stimuli. To have sufficiently large dataset for tests, we merged
trials coming from two recording sessions. We note that trials
coming from two sessions may not be independent, which may
introduce errors. We found negligible effects in the δ frequency
bands but differences in the temporal recurrence structure in
the α frequency band. This result indicates that α-activity is
more sensitive to pre-stimuli than δ-activity in the experimental
setup under study. This finding is in full line with previous
theoretical (Lundqvist et al., 2013) and experimental (Romei
et al., 2008) studies on the importance of phase and power of
prestimulus α-activity. In addition, we notice the absence of
the diagonal line and other strong recurrence patterns visible in
Figure 7. This may be the result of merging trials from different
sessions, which was necessary to obtain larger test set for the
analysis.

The present work shows that trial-to-trial variability in
neurophysiological data occurs in spite of well-controlled
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FIGURE 8 | Illustration of the influence of different visual pre-stimuli on resulting plots in experimental dataset. Statistically significant areas of recurrence

plots are obtained by (A) pixel-wise chi-square tests and (B) t-test between trials with pre-stimulus black screen and those whose pre-stimulus is fox image. The data

is taken from a single granular layer electrode in datasets session one and session two together. Both the pre-stimulus black screen and fox image have occurred

three times among the 10 trials in each dataset. Significantly different values are coded as white pixels, statistically similar values are coded as black pixels.

and simple response-driven experimental conditions and
demonstrate how to extract recurrent structures nevertheless.
The methodology proposed makes it necessary to choose
a well-adapted technique to transform the univariate times
series to a multivariate time frequency signal. In addition
to our current choice of a spectral reassignment technique,
we have employed a conventional wavelet technique using
complex Morlet mother wavelets and performed the same
recurrence analysis (results are not shown). It turns out that this
conventional method does not provide high-quality extraction
of transient recurrent structures, given by the reassignment
method. This may result from the worse time-frequency
resolution of conventional Morlet wavelets. Future work will
further investigate the best choice of multi-resolution time-
frequency methods. Moreover, the methodology considers
surrogate data generated by a temporal random shuffling of
data and hence destructing all temporal structure. Future work
may include the destruction of the recurrence structure by
phase randomization in certain frequency bands (Li et al.,
2010).

To conclude, in this work we propose a novel analysis method
for trial-to-trial variability of recurrence plots in univariate
time series applying a novel statistical analysis technique. This
extension of recurrence analysis by a statistical technique is
motivated by the fact that many physiological datasets have
a limited number of trials but posses the intrinsic recurrence

property of patterns of interest. Inspired by the fact that
particular physiological patterns very often occur in specific
frequency bands, we first build novel recurrence plots from a
time-frequency signal representation. A low dimensional time-
frequency signal that is built by the band median filter is
then used to obtain original trial recurrence plots. Next, we
use a chi-squared statistics to obtain statistically important
areas of recurrence plots. The work reveals a strong trial-to-
trial variability of recurrences in experimental data in spite of
the well-controlled experimental paradigm. Moreover, it turns
out that recurrences occur in the α-frequency band, whereas
activity in the δ-frequency band does not exhibit a temporal
recurrent structure indicating frequency-dependent metastable
states.

5. DATA SHARING

We provide the time-series of the transient oscillation dataset
and Lorenz dataset on the webpage of the corresponding author
(https://sites.google.com/site/tamtos/datasets).

AUTHOR CONTRIBUTIONS

The majority of the analysis steps and the implementations
have been performed by TT. KS and FF have provided the
experimental data and neurophysiological insights. MF has

Frontiers in Systems Neuroscience | www.frontiersin.org 12 January 2016 | Volume 9 | Article 184

https://sites.google.com/site/tamtos/datasets
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive
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