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Energy metabolism in the heart is affected during states of dysfunction. Understanding

how the heart utilizes substrates in cardiomyopathy may be key to the development of

alternative treatment modalities. Myocardial insulin resistance has been proposed as a

possible barrier to effective glucose metabolism in the heart. Extensive literature on the

topic in adult individuals exists; however, review in the pediatric population is sparse. The

pathophysiology of disease in children and adolescents is unique. The aim of this paper

is to review the current knowledge on insulin resistance in dilated cardiomyopathy while

also filling the gap when considering care in the pediatric population.
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INTRODUCTION

Children with cardiomyopathy are a vulnerable population and understanding the factors that
contribute to cardiac dysfunction are of great importance. The annual incidence of pediatric
cardiomyopathy in the United States is ∼1.13 cases per 100,000 children aged 18 years or
younger which is similar to other major population studies (1–3). Among cardiomyopathies
seen in children, dilated cardiomyopathy (DCM) is the most common. From the Pediatric
Cardiomyopathy Registry, the annual incidence of DCM in patients under 18 years old was 0.57
cases per 100,000 per year (4). Most individuals have idiopathic disease, thus limiting potential
disease-specific treatments (4). While rare, pediatric cardiomyopathy has high morbidity and
mortality. Pediatric cardiomyopathy is the leading cause of heart transplantation after 1 year
of age (5). It also has a high health-care burden that is significantly greater in children than
compared to adults. In an analysis of cardiomyopathy and heart failure-related hospitalizations
in the United States, pediatric patients were hospitalized for significantly longer durations with
overall greater mortality resulting in higher costs than adult patients (6). Thus, other modalities to
improve care of cardiomyopathy in children are needed. At the biochemical level, understanding
energy utilization by cardiomyocytes during stress may provide insight into the progression of
cardiomyopathy. There is a large body of literature that describes insulin resistance in adults
with cardiomyopathy. Insulin resistance is classically defined as the body’s impaired ability to
respond to the actions of the hormone insulin on glucose homeostasis (7, 8). It is well known
that insulin resistance is an intrinsic part of type 2 diabetes which in turn is a risk factor for
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coronary artery disease and atherosclerosis leading to
cardiovascular dysfunction (9, 10). It is also known with diabetes
that there can be impairment of the cardiac muscle itself, which is
termed diabetic cardiomyopathy. Interestingly, insulin resistance
is also present in individuals with cardiomyopathy without
diabetes, which suggests a potential bi-directional relationship
between cardiomyopathy and insulin resistance. The purpose of
this review is to discuss the interplay between DCM and insulin
resistance and its applicability to the pediatric patient.

ENERGY HOMEOSTASIS IN THE HEART

In healthy hearts, during the fasting state, energy is primarily
derived from the oxidation of free fatty acids (FFA) (60–
70%), followed by glucose (∼20%) and lactate (∼10%). In
the post-prandial state, glucose is the preferred substrate (60–
70%) (11, 12). It has been shown that during increased cardiac
workload (physical exertion or stress testing), the heart can
exhibit metabolic flexibility and switch predominately to glucose
oxidation (13–15). Since glucose is a more efficient substrate,
this ability confers an adaptive advantage. Of interest is whether
this metabolic flexibility is preserved in cardiac disease states
such as DCM. Dávila-Román et al. (16) used positron emission
tomography (PET) to demonstrate that in adults with idiopathic
dilated cardiomyopathy (IDCM) there was greater myocardial
glucose uptake and utilization while having decreased fatty acid
uptake and utilization in the fasting state (16). Neglia et al.
(17) also showed that in IDCM there was a baseline preference
of glucose utilization over fatty acids in the resting state
compared to control subjects however, during physical exertion
further adaptation was reduced. During atrial pacing, there
was an increase in glucose uptake in control subjects however
this was not seen in subjects with IDCM and instead lactate
production increased (17). These results suggested a maladaptive
response to substrate utilization in subjects with IDCM during
physical stress. Interestingly, Tuunanen et al. (18) found that
in individuals with IDCM FFA metabolism was reduced at
baseline compared to controls but with worsening left ventricular
(LV) function myocardial FFA uptake and oxidation increased.
Insulin resistance [using the homeostasis model assessment index
(HOMA index)] was found to be positively correlated with FFA
oxidation (18).

The healthy heart has metabolic flexibility to vary substrate
utilization based on the cardiac workload. In IDCM, that
metabolic flexibility may be decreased or lost secondary to
insulin resistance.

INSULIN SIGNALING IN THE HEART

The activation of insulin signaling pathways in cardiac muscle
is similar to that in striated muscle (12, 19). The function
of insulin is to promote translocation of the insulin-sensitive
GLUT4 transporter from the cytosol to the plasma membrane,
which in turn facilitates glucose utilization by the cell. Binding
of insulin to its receptor activates a cascade of intracellular
signaling pathways, the mitogenic-activated protein kinase

(MAPK) pathway and the metabolic phosphatidylinositol 3-
kinase (PI3K) pathway. The MAPK pathway is involved in cell
growth and differentiation while activation of the PI3K pathway
regulates nutrient metabolism. Activation of PI3K pathway
leads to activation of Akt, also known as protein kinase B
(PKB). Akt/PKB plays an essential role in translocation of the
GLUT4 transporter to the cell membrane (20). In the heart,
the most common glucose transport isoforms are GLUT1 and
GLUT4. Other less common isoforms also exist (21). GLUT1
is predominately expressed in the developing embryonic heart
but then declines postnatally. In one animal model, inducing
LVH by aortic banding, it was found that basal glucose uptake
increased and was associated with increased GLUT1 levels.
Additionally, overall total GLUT4 expression was reduced but
the proportion in the cellular membrane was increased (22). The
mechanisms of intracellular insulin signaling in humans with
cardiac dysfunction is complex and incompletely understood.
Cook et al. (23) showed that in patients with LV dysfunction,
there was an increase in cardiac PI3K activity and increase in
sarcolemmal GLUT4 (23). Conversely, another study by Chokshi
et al. (24) demonstrated in advanced heart failure (in need
of ventricular assist device), there was evidence of reduced
activation of the insulin signaling cascade and it correlated with
increases in toxic lipid intermediates (24).

In stable DCM, increases in glucose oxidation may be related
to increased translocation of GLUT4 to the cell membrane,
however with advanced disease there may be reduced activation
of the insulin signaling cascade.

CARDIOMYOPATHY AND HEART FAILURE
AS AN INSULIN RESISTANT STATE

It is widely known that insulin resistance and diabetes mellitus
can lead to cardiomyopathy (25–28). It has also been suggested
that cardiac dysfunction seen in IDCM without diabetes is
also associated with both whole-body and myocardial insulin
resistance (19, 29). In canine models, where DCM was induced,
increasing severities of LV dilation and dysfunction were
associated with myocardial and whole-body insulin resistance as
evidenced by a reduction in both whole-body and myocardial
glucose uptake while insulin levels increased significantly (30). In
humans, Swan et al. (31) found that adults with congestive heart
failure (CHF) had marked insulin resistance as demonstrated by
elevated insulin and c-peptide levels during fasting as well as
response to glucose load on tolerance test, when compared to
controls with similar BMI (31). Witteles et al. (32) showed similar
results in patients with IDCM as compared to BMI-matched
controls (32).

The pathophysiology of insulin resistance in cardiomyopathy
is multifactorial. Cardiac dysfunction leads to increased
activation of the sympathetic nervous system (SNS). Increased
levels of proinflammatory cytokines, catecholamines, growth
hormone, and cortisol are all associated with insulin resistance
(see Figure 1) (19). Paolisso et al. (33) demonstrated that
insulin resistance was associated with CHF and found associated
elevated plasma norepinephrine and tumor necrosis factor-α
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FIGURE 1 | A proposed bi-direction relationship of insulin resistance and dilated cardiomyopathy. FFA, free fatty acid; SNS, sympathetic nervous system.

(TNF-α) concentrations (33). Sakai et al. (34) also showed that
individuals with DCM had significantly higher HOMA-IR when
compared to individuals with valvular heart disease. There was
also an observed trend toward higher TNF-α concentrations in
individuals with DCM (34).

There is a potential bi-directional relationship between IDCM
and insulin resistance. In states of cardiac dysfunction, increased
activation of the SNS and increases in proinflammatory cytokines
may lead to insulin resistance.

IMPLICATIONS FOR THE PEDIATRIC
PATIENT

It is often said that “children are not little adults” and
that conditions in pediatric patients are different from their
counterparts in adults. The natural history of IDCM in children
can be highly variable, including more rapid and severe disease,
such that IDCM is the most common indication for heart
transplant in children older than 1 year (35). Literature shows
that after IDCM diagnosis, 5-year survival is 76% and 10-
year survival is 74%. Avoidance of death or transplantation
at 5-years is 47% and at 10-years is 42% (4). Moreover,
the treatments used in adults are not always as effective in
children. One study demonstrated that unlike adults, children
with DCM do not undergo adverse cardiac remodeling and thus
typical medications that target cardiac remodeling in adults are
ineffective in children (36). The Pediatric Randomized Carvedilol
Trial in Children with Heart Failure did not find significant
improvement in clinical heart failure outcomes with use of
carvedilol in children and adolescents with symptomatic systolic

heart failure though this medication is commonly used to
treat adults with heart failure (37). Interestingly though, while
pediatric cardiomyopathy can be an aggressive disease, unlike
adults, some children may experience recovery. One large multi-
center study showed that ∼20% of children after 2 years of
diagnosis with IDCM had normalization of cardiac function.
Normalization was associated with younger age (<10 years old)
and less severe LV dilation at diagnosis (38). Research into
specific biomarkers than can predict recovery is important and
provides promise for potential therapeutic approaches.

One physiologic difference to highlight in children and

adolescents as compared to adults is the onset and progression
of pubertal development. Rising growth hormone levels can

contribute to insulin resistance. Puberty has been shown to
be associated with a decrease in insulin-stimulated glucose

metabolism in patients with and without diabetes (39). When
elucidated further, it seems that rising growth hormone and not
sex steroids influence insulin resistance (39, 40). It is also known
that growth hormone is a counter-regulatory hormone to the
action of insulin and thus has an influence on insulin sensitivity
(41). In one comprehensive study, it was shown that across
Tanner stages, the rise and fall in IGF-1 levels corresponded to
changes in insulin resistance as measured during an euglycemic
hyperinsulinemic clamp study (42). Additionally, in patients
born small-for-gestational age treated with growth hormone
therapy, long-term treatment was associated with increases in

insulin resistance as measured by HOMA-IR and insulinogenic

index (43). Thus, children and adolescents have factors that

promote insulin resistance, and this may have a compound effect
on insulin resistance seen in cardiac dysfunction.
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Disease progression in children with IDCM can be more
rapid and severe than in adults. Among other factors,
physiologically rising growth hormone during puberty can
increase insulin resistance.

ANTIHYPERGLYCEMIC AGENTS AND
HEART FAILURE OUTCOMES

Given the knowledge that insulin resistance may be a
contributing factor to worsening cardiac function, there is
interest in using medications that can improve insulin sensitivity,
glucose homeostasis and in turn possibly also have beneficial
cardiac effects. There have been several studies that evaluated
the effect of anti-hyperglycemic agent classes on risk for heart
failure and other major adverse cardiovascular events (MACE),
including risk of cardiovascular death, non-fatal myocardial
infarction, and non-fatal stroke in patients with and without
diabetes (44, 45). Of the multitude of agents available to adults,
only metformin and liraglutide have been approved by the
Food and Drug Administration (FDA) for use in the pediatric
population with type 2 diabetes. While not approved for use in
pediatric age group yet, one agent class, the SGLT-2 inhibitors
show promise in both improving glycemic control as well as
cardiovascular function.

Metformin is a widely used oral anti-hyperglycemic agent
for type 2 diabetes, and randomized clinical trials have
shown an association with reduced macrovascular events (46).
Metformin exerts its effect by decreasing hepatic glucose
production, decreasing intestinal absorption of glucose as well
as promoting the translocation of GLUT1 and GLUT4 to the
sarcolema to increase peripheral glucose uptake and utilization
(47). Bjornstad et al. (48) showed that in adolescents and
young adults with type 1 diabetes, use of metformin was
associated with improvements in key measures of vascular health
including decreases in maximal wall shear stress, pulse wave
velocity in the ascending aorta and far-wall diastolic carotid
intima-medial thickness (48). Another randomized control trial,
EMERALD (Effects of Metformin on Cardiovascular Function
in Adolescents with Type 1 diabetes), with results underway,
looks to compare change in cardiac function as measured by
echocardiogram in patients received metformin compared to
placebo (49).

Glucagon-like peptide-1 receptor agonists (GLP-1 RA)
act by stimulating glucose-dependent insulin secretion. In
murine models of DCM, treatment with exenatide was found
to impact glucose homeostasis through improved glucose
tolerance, increased myocardial GLUT4 expression and 2-
deoxyglucose uptake, and greater cardiac contractility (50).
The LIVE study (Liraglutide on Left Ventricular Function
in Chronic Heart Failure Patients with and without Type 2
Diabetes) did not show improvement in LV systolic function
compared with placebo, in patients with and without type
2 diabetes, and was in fact associated with increased heart
rate and more serious cardiac adverse events (51). In other
studies of adolescents and adults with and without cardiac

dysfunction, increased heart rate was also observed in association
with liraglutide treatment (52, 53). There are also several
randomized control trials evaluating agents in this drug class
in individuals with type 2 diabetes and their risk for MACE
(54–58). Results showed that the agents were not inferior
to placebo and in some showed a reduction in MACE
however none showed any difference in hospitalization for heart
failure (54).

The most promising antihyperglycemic agents for
improvement in cardiac function are the sodium-glucose co-
transporter-2 (SGLT-2) inhibitors, also called gliflozins. SGLT-2
is in the renal proximal tubule to facilitate movement of glucose
and sodium. Inhibition of this co-transporter inhibits glucose
reabsorption from the kidney, causing glycosuria and thereby
lowering blood sugar. There are several studies that examined
the effect of SGLT-2 inhibitors on cardiovascular outcomes in
patients with type 2 diabetes. Both EMPA-REG OUTCOME
(Empalifilozin, Cardiovascular Outcomes, and Mortality in
Type 2 Diabetes) and CANVAS (Canagliflozin Cardiovascular
Assessment Study) trials found that in individuals with type
2 diabetes, use of SGLT-2 inhibitors was associated with a
reduction in death from cardiovascular causes, hospitalization
for heart failure, and all-cause mortality when compared with
placebo (59–61). Recent studies exploring the role of SGLT-2
inhibitors in patients with HF without diabetes have also shown
promising results. The DAPA-HF trial (Dapagliflozin and
Prevention of Adverse-Outcomes in Heart Failure) showed
that in individuals with and without diabetes, dapagliflozin
was clearly superior to placebo at preventing heart failure
events and cardiovascular deaths (62, 63). There are several
mechanisms proposed for the cardiovascular benefits seen
with SGLT-2 inhibitors (64). Possible mechanisms for improved
cardiovascular functionmay be attributable to the effect of SGLT-
2 inhibitors on volume status which may result in increased
natriuresis, decreased myocardial fibrosis, and increased cardiac
contractility (65, 66). However, results from the EMPEROR-
reduced trial (Empagliflozin Outcome Trial in Patients with
Chronic Heart Failure with Reduced Ejection Fraction) did
not show a difference in outcomes in patients with recent
volume overload and those without. Thus, it was concluded that
increased natriuresis was unlikely to be the predominant factor
in the clinical benefits of the medication (67). SGLT-2 inhibitors
have also been shown to cause an increase in ketone levels which
presumably is due to glucosuria and thus energy deficiency.
Another proposed mechanism of how SGLT-2 inhibitors benefit
cardiovascular function is through changing the heart’s substrate
utilization to adapt to ketone oxidation (68). There is emerging
literature that supports the proposal of ketone oxidation as
an alternative fuel source in the failing heart (69). There may
be a role for antihyperglycemic agents in modulating insulin
resistance and secondarily on cardiac function. Clinical studies

are currently underway in the pediatric population in patients

with diabetes mellitus. Future studies will be important in

examining the cardioprotective nature of these agents in patients
without diabetes.
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CONCLUSIONS

The heart undergoes adaptivemetabolic changes in times of acute
and chronic stress. Understanding cardiac energy homeostasis
may be key in unraveling causes of progressive dysfunction in
disease states. In cardiomyopathy and heart failure, there is loss of
metabolic flexibility. It has been suggested that cardiomyopathy
is an insulin resistance state and this limits cardiac metabolic

efficiency. Cardiomyopathy in the pediatric population is

especially delicate with high morbidity and mortality and is in

dire need of alternative therapies. Current research investigating

the cardiovascular benefits of anti-hyperglycemic agents is
promising, particularly SGLT-2 inhibitors. Soon, medications

that benefit cardiac energy homeostasis may add a new class of
therapeutics to the arsenal to treat pediatric cardiomyopathy.
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