
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21609  | https://doi.org/10.1038/s41598-021-00678-9

www.nature.com/scientificreports

Band‑based similarity indices 
for gene expression classification 
and clustering
Aurora Torrente

The concept of depth induces an ordering from centre outwards in multivariate data. Most depth 
definitions are unfeasible for dimensions larger than three or four, but the Modified Band Depth (MBD) 
is a notable exception that has proven to be a valuable tool in the analysis of high-dimensional gene 
expression data. This depth definition relates the centrality of each individual to its (partial) inclusion 
in all possible bands formed by elements of the data set. We assess (dis)similarity between pairs 
of observations by accounting for such bands and constructing binary matrices associated to each 
pair. From these, contingency tables are calculated and used to derive standard similarity indices. 
Our approach is computationally efficient and can be applied to bands formed by any number of 
observations from the data set. We have evaluated the performance of several band-based similarity 
indices with respect to that of other classical distances in standard classification and clustering tasks 
in a variety of simulated and real data sets. However, the use of the method is not restricted to 
these, the extension to other similarity coefficients being straightforward. Our experiments show 
the benefits of our technique, with some of the selected indices outperforming, among others, the 
Euclidean distance.

Quantification of gene expression data has become a benchmark in biomedical research for the study of numer-
ous diseases. High-throughput techniques have been developed to monitor the level of expression of thousands 
of genes simultaneously across different samples. The potential heterogeneity of such samples is enormous, as 
they might include a variety of tissues of origin, cell types or diseases, as well as diverse time points or experi-
mental conditions, such as stress, treatments or viral infections. This typically makes gene expression profiles 
very irregular and complex.

The nature of this type of data has raised tremendous statistical interest as it can be used to gain insight into 
human genetics by revealing hidden patterns or by providing accurate predicting models. Biological informa-
tion about genes and samples can be incorporated into the data in the form of labels or “annotations” and used 
at some point of the analysis. If they are used from the beginning, the technique is said to be a supervised one, 
whereas in unsupervised approaches, they are ignored and just used to interpret the results. Many supervised 
and unsupervised methodologies have been tailored for the exploration of gene expression data1–4. Nevertheless, 
classical classification and clustering methods for their analysis are also widely extended, as they have permitted 
major advances such as identification of novel tumor subtypes5–7, prediction of gene functions8,9 or discrimina-
tion of patients with good or poor prognosis10,11. There are many studies that address the problem of identifying 
the most suitable technique for gene expression data among the plethora of possibilities (see, e.g.,12–15), which 
is, indeed, a difficult issue. But this is just the first step.

Most classification and clustering techniques have in common their need for quantifying pattern proxim-
ity, according to a certain criterion. The conventional approach consists in considering each gene as a point in 
an m-dimensional vector space, where m is the number of samples, or considering each sample as a point in 
an n-dimensional vector space, where n is the number of genes. In either case, this perspective allows using 
concepts and techniques from linear algebra for the analysis of gene expression data. In particular, the resem-
blance between two genes, for instance, can be stated in terms of a certain dissimilarity measure D between 
the respective vectors (or dually with a similarity measure S between them) in a metric space. A dissimi-
larity D(yi1 , yi2) between vectors yi1 and yi2 in a sample {y1, . . . , yn} is characterised by being non-negative: 
D(yi1 , yi2) ≥ 0 , symmetric: D(yi1 , yi2) = D(yi2 , yi1) and reflexive: D(yi , yi) = 0, ∀i = 1, . . . , n . If in addition it 
satisfies the triangular inequality: D(yi1 , yi2) ≤ D(yi1 , yi3)+D(yi3 , yi2) ∀i3 ∈ {1, . . . , n} , and is additively strict: 
D(yi1 , yi2) = 0 ⇐⇒ yi1 = yi2 , then it is called a metric. In general, classification and clustering algorithms can 
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be used with any (dis)similarity measure. Yet, the selection of such a measure according to the specific problem 
is a pivotal decision to the quality of the analysis outcome, which has been traditionally overlooked (as put 
forward, for example, in16–18).

A well known example of dissimilarity is the Euclidean distance—indeed a metric—which is commonly used 
in every research discipline when the patterns to be compared have continuous features. However, this distance 
assumes a clean (noise-free) experimental vector space, which is an overly stringent premise for gene expression 
data. Another popular choice for quantitative data is the Pearson correlation distance, which has the drawback 
of presuming a linear relationship between similar vectors. These and many other distances in the literature (see, 
e.g.,19) commonly yield different results on the same expression data and the identification of the most suitable 
dissimilarity for a particular problem is still an open question.

On the other hand, other types of data, like qualitative or binary data, can be found in the gene expression 
context, with 1s representing expressed genes and 0s corresponding to not expressed ones, for instance. In this 
situation, there are better dissimilarity measures that account for their singular nature. In particular, numerous 
pairwise similarity indices have been proposed in the literature for binary data (e.g., refer to20–24). Though they 
are widely used in other applications, many of them have arisen in the ecology and geology fields for presence-
absence data, where 1 designates a present attribute and 0 an absent one. There are several studies that compare 
similarity indices (see, for example25–28), but they commonly report different conclusions. This has motivated 
the general acceptance that the performance of similarity coefficients is also data-specific.

As a consequence, new ways of measuring proximity between pairs of objects (of diverse nature) have been 
further investigated in different contexts (e.g.,29–33).

In this work, we propose to construct a new (dis)similarity measure for multivariate quantitative observations 
by “transferring” quantitative information in the (gene or sample) vector space into a different space of binary 
matrices. This new space encodes the relative position of each original vector with respect to the other observa-
tions, which can be used to assess how similar profiles are.

Our methodology consists in first associating d binary vectors to each d-dimensional data point by borrowing 
certain elements from the finite-dimensional version of the Modified Band Depth (MBD)34: the bands defined 
by two or more distinct elements in the data set. The MBD is a particular definition of multivariate depth, a 
concept conceived to generalise univariate order statistics, ranks and medians to higher dimensions, that allows 
ordering multivariate data from center outwards.

A number of depth notions can be found in the literature (35–37 among others), but most of them have the 
drawback of being unfeasible for dimensions larger than 3 or 4. In contrast, the MBD is specially suitable for 
high dimensional observations and has been used in the DS and TAD methods38 to successfully classify gene 
expression data or in the BRIk algorithm39 to initialise k-means by making a smart use of the information con-
veyed by the data.

However, the ordering provided by this or alternative depth notions cannot be easily turned into a measure 
of proximity between multivariate points. Thus, addressing for instance the problem of clustering such observa-
tions by making use of some depth definition is not straight forward. As an exception to this, Jornsten40 proposed 
two depth-based methods, DDclust and DDclass, to efficiently cluster and classify, respectively, multivariate 
data, with a special application to gene expression. These are based on the L1 depth41, which represents, for an 
observation yi in a data set, the amount of probability mass needed at yi to make this observation the multivari-
ate median of the set.

Recently, Tupper et al.33 introduced a distance based on finding “informative” bands, defined by pairs of 
elements in the data set, and adapting the Jaccard index20 for set similarity. Such a distance was used to cluster 
non-stationary time series but was reported to be computationally expensive.

With a philosophy similar to that of33, but with a different and more general perspective, we propose to use 
bands defined by any number j of distinct elements –here referred to as j-bands–, to derive a similarity/dissimi-
larity measure for multivariate observations and to investigate its adequacy for gene expression data. In order to 
obtain these band-based indices we identify the position of each coordinate k of a data point yi in a sample of n 
d-dimensional elements {y1, . . . , yn} , with respect to each possible j-band, and assign a bit to describe inclusion 
(1) or exclusion (0) inside it. In this way, each d-dimensional observation has an associated binary matrix of 
size 

(n
j

)

× d.
From the columns of these matrices, a collection of d contingency tables—one for each coordinate—can be 

computed for each pair of data points, and used to evaluate, coordinate by coordinate, how “resembling” they 
are, according to some conventional index. In our proposal, the computational cost of evaluating all 

(n
j

)

 bands is 
bypassed by making use of a simple combinatorial strategy, as described in the Methods section. Also, we show 
that these—exponentially large—matrices do not need to be explicitly found or stored, as the corresponding 
contingency tables can be directly calculated from the observations.

Though there is a manifest interest in thoroughly examining the implications of choosing one of the many 
different similarity coefficients found in the literature in the analysis of gene expression data, here we just aim 
at illustrating the usefulness of the information summarised in the band-based matrices associated to each 
observation and its applicability to different techniques.

With this in mind, we propose to use—some—typical (dis)similarity measures for binary data as an alterna-
tive to classical distances for multivariate data in benchmark algorithms such as k Nearest Neighbours (kNN)42, 
k-means43 or Partitioning Around the Medoids (PAM)44, by identifying which ones are suitable for the analysis 
of gene expression data.

The rest of the manuscript is organised as follows. The Methods Section includes a detailed description of the 
proposed theoretical methodology and its efficient implementation to derive different (dis)similarity measures. 
The Results Section evaluates the use of such measures in classification and clustering tasks when compared 
to standard distances, for both synthetic and real data. The Discussion Section summarises the main findings 
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and enhances the potential of the proposed band-based indices for the analysis of gene expression data. Final 
conclusions are reported in the last section.

Methods
Notation.  In the context of binary data, given two objects i1 and i2 , with respective associated binary vectors 
xi1 and xi2 , the information required to compute a similarity index between xi1 and xi2—to describe the proximity 
of i1 and i2—can be summarised in a 2 ×2 contingency table (see Fig. 1a). With the usual notation, a is the number 
of attributes present at both objects i1 and i2 (or equivalently, the number of binary features or bits equal to 1 in 
both xi1 and xi2 ); b is the number of attributes present at object i1 and absent at i2 ; c is the number of attributes 
absent at object i1 and present at i2 ; and d is the number of attributes absent at both i1 and i2 . Clearly, the sum 
n = a+ b+ c + d is the total number of attributes, and the fractions pi1 =

a

a+ b
 and pi2 =

a

a+ c
 represent the 

proportion of attributes present at both objects i1 and i2 , among the number of attributes present at i1 and i2 , 
respectively. Note that in the context of information retrieval or machine learning these ratios correspond to the 
terms precision and recall.

On the other hand, given a sample of n d-dimensional observations {y1, . . . , yn} , where yi = (yi,1, . . . , yi,d) , 
we define the j-band determined by the j distinct elements yi1 , . . . , yij , with 2 ≤ j ≤ n , as the d-dimensional 
interval delimited by the minimum and maximum of their coordinates,  in the form 
[yi1 ; . . . ; yij ] =

{

(y1, . . . , yd) ∈ R
d : min{yi1,k , . . . , yij ,k} ≤ yk ≤ max{yi1,k , . . . , yij ,k}, k ∈ {1, . . . , d}

}

 . However, 
for referring to j-bands in the cases where it is irrelevant to identify which elements define them, we simplify the 

notation by letting B(j) be the set of all j-bands β(j)
p  , p = 1, . . . ,

(n
j

)

 : B(j) =
{

β
(j)
1 , . . . ,β

(j)

(nj)

}

.

Such j-bands are the basic elements for defining the MBD. This depth notion computes and averages the 
proportion of coordinates of element yi lying within the limits of all possible j-bands, with 2 ≤ j ≤ J ,   2 ≤ J ≤ n . 
More precisely, given J ∈ {2, 3, . . . , n} , the MBD for yi is given by

where

(1)MBDn,J (yi) =

J
∑

j=2

MBD
(j)
n (yi),

Figure 1.   Computation of binary matrices. (a) Contingency table for binary vectors xi1 and xi2 , associated to 
objects i1 and i2 respectively. (b) Representation of four quantitative observations with five variables that define 
six possible 2-bands, namely, β(2)

1
= [y1; y2] , β(2)

2
= [y1; y3] , β

(2)
3

= [y1; y4] , β(2)
4

= [y2; y3] , β(2)
5 = [y2; y4] , 

β
(2)
6

= [y3; y4] . The gray region between the black curves is the band β(2)
5  . The first coordinate of curve y1 

(green dot) is outside the band; this corresponds to a 0 in the entry (5,1) of its associated Boolean matrix M(2)
1

 . 
The first coordinate of curve y3 , in red, is inside the band; the entry (5,1) in matrix M(2)

3
 is 1, accordingly. The 

corresponding Boolean product is 0, meaning that the band does not include both coordinates. (c) Binary 
contingency table for coordinate k and the number j of curves forming a band, constructed from the matrices 
sketched in (b).
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For each j, we can associate to each yi an 
(n
j

)

× d binary matrix M(j)
i  , whose (p, k) element equals 1 if yi,k lies 

within the k-th (one-dimensional) interval determined by the p-th j-band in B(j) , and 0 otherwise. The number 
of 1s within the k-th column represents the number of bands in B(j) whose k-th interval contains yi,k . Let us 
denote this number by N (j)

k (yi).
In a similar way, given the pair of distinct elements (yi1 , yi2) , we can construct the matrix M(j)

i1,i2
 as the Boolean 

product of M(j)
i1

 and M(j)
i2

 to identify the bands in B(j) whose k-th interval contains the k-th coordinate of both 
points yi1 and yi2 . The number of 1s in the k-th column of this matrix is denoted by N (j)

k (yi1 , yi2).

Similarity indices for binary data.  Some of the most widely used similarity indices for binary data are 
described below.

•	 Simple matching (SM) coefficient: Introduced by23, it provides the simplest similarity measure as the pro-
portion of matching binary attributes, both present and absent, of items i1 and i2 : 

•	 Jaccard (J) coefficient: It was introduced in20 and is one of the most frequently used indices. In fact, the dis-
similarity index derived from it is a metric. It counts the number of matching present attributes and compares 
it to the number of attributes that are present at least at one of the objects: 

•	 Simpson (S) coefficient: This popular index was introduced in22 to measure set similarity as the proportion 
of the smallest set included in the largest one. It is often referred to as Lennon’s coefficient45, and corresponds 
to the largest of proportions pi1 and pi2 : 

•	 Forbes (F) coefficient: It was derived in the ecology field as the observed-to-expected ratio of the number of 
species in two random samples21. Despite its good general properties, this index has been routinely excluded 
from studies and discussions on similarity indices. Nevertheless, it has recently raised interest28,46,47 and it 
has been shown to outperform other indices in several situations. The corresponding formula is: 

•	 Dice (D) coefficient: Presented in48, and also known as S φrensen or Czekanowski coefficient, it is computed 
like the Jaccard index, but giving double weight to matching attributes with value 1: 

•	 Anderberg (A) coefficient: It was used in24. It is another variation of the Jaccard coefficient that gives double 
weight to mismatching attributes: 

•	 Ochiai (O) coefficient: This index is described in49. It represents the geometric mean of pi1 and pi2 . In several 
studies (see e.g.27) it has outperformed other indices. Its expression is: 

•	 Russell and Rao (RR) coefficient: Introduced in50, it represents the proportion of positive matching attrib-
utes: 

All these coefficients are symmetric and non-negative similarity indices. When an index S with such properties 
lies in the interval [0, 1] it is possible to base on it the definition of a symmetric and non-negative index which 
measures dissimilarity as D = 1− S . Note that this is not the case for F, which is not always bounded by 1; 
however, this issue can be circumvented by rescaling the values of F as in28. Also, note that DRR = 1− SRR is 
not reflexive (i.e., not a proper dissimilarity) as DRR(xi , xi) is not 0 for vectors xi not identically equal to 1. Thus 
it is easy to anticipate that, normally, it will not produce good results.

(2)MBD
(j)
n (yi) =

1

d ×
(n
j

)

∑

1≤i1<···<ij≤n

d
∑

k=1

I{
min

{

yi1,k ,...,yij ,k

}

≤yi,k≤max

{

yi1,k ,...,yij ,k

}} .

SSM(xi1 , xi2) =
a+ d

a+ b+ c + d
.

SJ(xi1 , xi2) =
a

a+ b+ c
.

SS(xi1 , xi2) =
a

min{a+ b, a+ c}
.

SF(xi1 , xi2) =
a× (a+ b+ c + d)

(a+ b)× (a+ c)
.

SD(xi1 , xi2) =
2a

2a+ b+ c
.

SA(xi1 , xi2) =
a

a+ 2(b+ c)
.

SO(xi1 , xi2) =
a

((a+ b)(a+ c))1/2
.

SRR(xi1 , xi2) =
a

a+ b+ c + d
.
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Proposed band‑based similarity measure for quantitative data.  Given the multivariate, quantita-
tive data set under study {y1, . . . , yn} and the number j used to define the bands, we can associate to each data 
point yi a binary matrix M(j)

i  , as previously explained. Figure 1(b) exemplifies the computation of these matrices 
through a toy data set with four 5-dimensional observations. These vectors define six different 2-bands, labelled 
β
(2)
1 , . . . ,β

(2)
6  , where β(2)

1  is the region determined by y1 and y2 ; β(2)
2  is delimited by y1 and y3 , and so on. We focus 

on elements y1 , in green, and y3 , in red, and examine their first coordinate: these are outside and inside, respec-
tively, the band β(2)

5 = [y2; y4] , defined by the other two elements (gray region). Accordingly, the corresponding 
values in matrices M(2)

1  and M(2)
3  are 0 and 1, respectively, as highlighted in gray in Fig. 1(b). If we consider all 

other bands, we find that three of them contain the coordinate y1,1 and five bands contain y3,1 ; however, only two 
bands contain both coordinates simultaneously.

The key idea behind our method is the following. We expect that two observations whose coordinates are 
simultaneously embedded in many bands are more similar than those with coordinates located in few bands at 
the same time. Note that such similarity is dependent on the data set, i.e., two given elements will have different 
similarities when the other elements in the set change, in the same way the depth of a point is modified when 
the data set is altered.

Next, for each coordinate k and for each j, with 2 ≤ j ≤ J ,   2 ≤ J ≤ n (following the construction of the 
MBD), we can build a contingency table as the one shown in Fig. 1(c), where

and

In our toy example, a(2)k = 2 , b(2)k = 1 , c(2)k = 3 and d(2)k = 0.
At this point, for a given j, it is possible to summarise the information contained in these d tables in two differ-

ent manners: a) by adding corresponding values in all the tables and plugging the results in the chosen index, or 
b) by computing the chosen index component-wise and averaging across coordinates. To keep track of similarities 
between yi1 and yi2 , it is more informative to use the second approach, as confirmed experimentally. Therefore, 
we used these counts to compute, coordinate by coordinate, the indices described in the previous subsection.

Finally, for a given J, if we denote by Sk,j the selected index computed for the pair (k, j), the band-based 
similarity measure that we proposed is simply the average of the coordinate-wise indices across the different 
values of j:

Note that this similarity index is related to shape rather than to spatial proximity, which is appropriate for gene 
expression data. Note as well that each coefficient built in this way is obviously affine invariant and provides 
a sample-dependent similarity measure, making them suitable for data-driven tasks such as classification or 
clustering.

Efficient computation of MBD and contingency tables.  A direct implementation of expressions (1) 
and (2) to compute the MBD leads to nested for loops that become time-consuming as J increases. To over-
come this problem, current applications of the MBD51,52 use the value J = 2 because it is computationally faster 
and also because the order induced in the sample is very stable in J34. However, the effective construction of the 
(n
j

)

 j-bands formed by j distinct observations from the sample becomes intensive as n increases, even for j = 2.
To speed up computations, Torrente et al.53 provided an implementation of MBDn,2 that avoids nested loops. 

Instead of exhaustively searching for all pairs of points in the sample, the alternative calculations are based on 
storing the data in an n× d matrix Y and increasingly ordering each column. Then

where ηk = ηk,yi is the multiplicity of yi,k within the k-th column of Y , and lk = lk,yi is the first occurrence of yi,k 

in the same column of the reordered matrix. Also, we assume that 
(

ηk

2

)

= 0 whenever ηk = 1.

For a fixed k with 1 ≤ k ≤ d , a simple combinatorial strategy allows counting the number of pairs of elements 
from the sample such that the k-th coordinate of yi is inside the interval defined by the k-th coordinates of those 
pairs. The complement principle states that

a
(j)
k = N

(j)
k (yi1 , yi2 ),

b
(j)
k = N

(j)
k (yi1)− N

(j)
k (yi1 , yi2 ),

c
(j)
k = N

(j)
k (yi2 )− N

(j)
k (yi1 , yi2 )

d
(j)
k =

(

n

j

)

+ N
(j)
k (yi1 , yi2 )− N

(j)
k (yi1)− N

(j)
k (yi2 ) =

(

n

j

)

−

(

a
(j)
k + b

(j)
k + c

(j)
k

)

.

S =

J
∑

j=2

d
∑

k=1

Sk,j

d(J − 1)
.

MBDn,2(yi) =
1

d ×
(n
2

)

d
∑

k=1

(

(n− lk + 1)(lk − 1+ ηk)− η2k +

(

ηk

2

))

,

N
(2)
k (yi) =

∑

1≤i1<i2≤n

I{min
{

yi1,k ,yi2,k
}

≤yi,k≤max
{

yi1,k ,yi2,k
}} =

(

n

2

)

−

(

lk − 1

2

)

−

(

n− lk − ηk + 1

2

)

,
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where again we assume 
(

α

2

)

= 0 whenever 0 ≤ α < 2.

This principle can also be used to count the number of j-tuples from the sample such that the k-th coordinate 
of yi lies within the minimum and the maximum of the k-th coordinates of the j elements:

with 
(

α

j

)

= 0 whenever 0 ≤ α < j . Thus, the MBD for J > 2 can be computed, with the computational cost 

linearly—instead of exponentially—scaling with J, as

Finally, given two points from the sample, yi1 and yi2 , we make use of the principle of inclusion-exclusion to 
compute the number of j-tuples containing the k-th coordinate of both points. Thus we write

and

where m = min{yi1,k , yi2,k} and M = max{yi1,k , yi2,k}.
These calculations reveal the shortcut in the method workflow displayed in Fig. 2 (as black blocks): instead 

of computing each j-band and each binary matrix (red blocks), we can obtain the numbers N (j)
k (·) and N (j)

k (·, ·) 
directly from the observations.

Application to classification and clustering tasks.  Finally, we describe how to examine the efficiency 
of the proposed dissimilarities indices in different standard techniques to be run on either simulated models or 
real data (see the Results section).

A straight forward application of the similarity indices to classification is given through the well known k 
Nearest Neighbours (kNN) algorithm42, a simple, widely-used rule that has proven to be very powerful. Though 
the Euclidean distance is the dissimilarity measure most frequently used with this method we also assess it when 
using other classical distances, namely: the Manhattan distance, the Minkowski distance, for p ∈ {0.25, 0.5, 

N
(j)
k (yi) =

∑

1≤i1<···<ij≤n

I{
min

{

yi1,k ,...,yij ,k

}

≤yi,k≤max

{

yi1,k ,...,yij ,k

}} =

(

n

j

)

−

(

lk − 1

j

)

−

(

n− lk − ηk + 1

j

)

,

MBDn,J (yi) =

J
∑

j=2

MBD
(j)
n (yi) =

J
∑

j=2

1

d ×
(n
j

)

d
∑

k=1

N
(j)
k (yi).

N
(j)
k (yi1 , yi2) =

∑

1≤i1<···<ij≤n

I{
min

{

yi1,k ,...,yij ,k

}

≤yi1,k ,yi2,k≤max

{

yi1,k ,...,yij ,k

}} =

(

n

j

)

−

(

lk,M − 1

j

)

−

(

n− lk,m − ηk,m + 1

j

)

+

(

lk,M − lk,m − ηk,m

j

)

, ifm �= M,

N
(j)
k (yi1 , yi2) =

(

n

j

)

−

(

lk,M − 1

j

)

−

(

n− lk,m − ηk,m + 1

j

)

, ifm = M,

Figure 2.   Method workflow. Calculations relative to red blocks can be skipped to alleviate the computational 
cost.
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0.75, 3, 4, 5} , and Pearson’s correlation-based distance. The assessment of how each of the selected dissimilarity 
measures affects the algorithm’s performance is carried out in terms of the classification error rates (i.e., the 
percentage of observations the method misclassifies). To have a common value for all measures, the number k 
of nearest neighbours used in the simulations was selected by the rule of thumb of setting k equal to the largest 
odd integer smaller than or equal to the square root of the number of training samples. The only exception to this 
is considered in one of the real datasets, where two of the classes are very small and the selection of k according 
to such a rule resulted in high classification error rates. Ties were broken by choosing the group containing the 
neighbour closest to the sample to be classified (that is, as if k = 1).

For artificial data, we generated Ba = 200 pairs of independent training and test sets, and used the test sets 
to evaluate the classification error. For real data, we estimated this error with 10-fold internal cross-validation 
Br = 200 times (see54).

Additionally, we have selected PAM, a deterministic method, to illustrate the performance of the dissimi-
larities indices in clustering artificial data with respect to the distances mentioned above. For each dissimilarity 
measure, the partitions produced by the algorithm were compared to the true ones using the clustering error rate 
described in1; that is, for each partition, we permuted the cluster labels and selected the minimum proportion 
of samples with labels disagreeing with the true ones. In addition to this, we computed the adjusted Rand index 
(ARI)55 to assess the quality of the clustering output by comparing the labels provided by the PAM algorithm 
to the real ones.

For real data, we considered complete-linkage hierarchical clustering instead, as the biological results yielded 
by this method are easier to visualise and interpret.

All these methods were used as implemented in the statistical R environment (http://www.R-project.org), in 
packages class, cluster and stats, respectively.

Results
Simulation study.  For the simulated data, we considered normally distributed models with different 
dimension and number of groups, as detailed in Table 1.

Application to classification.  We evaluated the performance of kNN with the band-based similarity indices with 
respect to that resulting from the use of the standard distances. However, prior to such a comparison, we carried 
out an analysis of the influence of the value of J on the classification performance. To that end, we considered 
J ∈ {2, 3, . . . , 10} for the models proposed.

For each of these models, we generated 200 training sets with 100 observations in each group, and 200 
independent test sets with 25 elements in each class. We computed the classification error rate in each test set.

Supplementary Figure S1 shows the average classification error rate for each model along with the correspond-
ing standard errors. This evinces the stability of all the methods (except for RR) as J increases, in agreement 
with the ordering induced by the MBD in the data, for different values of J34. This is also true even for values of 
J that have not been previously reported in the literature. Also, we can establish a rather persistent ranking of 
these indices for the selected models. Clearly, S is the best option, followed by O, whereas RR and A stand on the 
opposite side. However, there is a slight trend to deteriorate the performance, which is more remarkable for some 
indices than for others. According to these results, hereinafter in the comparison with classical distances we will 
report only results corresponding to J = 2 and 3, which are the ones suggested to be used in practical situations.

Model 1: It is taken from56 to mimic simple gene expression data and consists of two overlapping groups of 
points with 100 independent variables, drawn from normal distributions N(0100, I100) and N(0.5100, I100) , where 
αs is a vector of s identical components α and Is is the identity matrix of size s × s.

Here, most of the methods have an appropriate behaviour; see Fig. 3, upper-left panel. The classification error 
rates of the Euclidean distance, S, the Manhattan distance and the Minkovski distance, with p = 0.75, 3, 4 , are 
similar and very low, with averages below 0.03. Only A, SM and RR have errors one order of magnitude higher, 
and the Pearson distance has drastically bad results.

Table 1.   Description of the model parameters. The matrix In is the identity of dimension n. The matrix Ai;n 
is an n× n matrix with all entries equal to zero, except the i-th position in the main diagonal, which equals 1. 
Models 1 and 2 consist of two Gaussian clusters; models 3–5 are Gaussian mixture models with fixed levels of 
overlap.

Model Dimension Means Covariance Matrices

Model 1
G = 2

100
µ1 = 0100

�1 = �2 = I100
µ2 = 0.5100

Model 2
G = 2

10
µ1 = 010

�1 = �2 = σ I10 + δA6;10; σ = 0.1; δ ∈ {0, 1, 2}
µ2 = (1, 0.8, . . . , 0.2, 05)

MixSim G Dimension Average Overlap

Model 3 3 15 0.01

Model 4 4 25 0.005

Model 5 5 35 0.002



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21609  | https://doi.org/10.1038/s41598-021-00678-9

www.nature.com/scientificreports/

Model 2: It also has two groups, now with 10 independent variables; the last five ones are noise. The stand-
ard deviation of a single noise variable is increased an amount δ ∈ {0, 1, 2} . The results corresponding to both 
extremes are displayed in Fig. 3, top-middle and top-right panels.

When δ = 0 the classical distances classify the new observations better than the band-based dissimilarity 
indices, but they are closely followed by S. If sorted from lowest to highest average error rates, S ranks 7 and 9 for 
J = 2 and 3, respectively. Nevertheless, all the band-based measures except for RR yield average error rates lower 
than 0.05. Again, the Pearson correlation has the worst results. However, this model poses a critical scenario for 
the classical distances as the parameter δ rises. For δ = 2 , the corresponding error rates deteriorate and S becomes 
the best option, whereas, notably, the band-based alternatives (except RR) remain robust against the value of δ.

Figure 3.   Classification error rates in the simulated models. Distribution of the classification error rates over 
200 test sets from Models 1–5 after running kNN, using the classical distances and the dissimilarity indices 
based on bands, for J = 2 and 3. Best and second best means are indicated with dark and light gray boxes, 
respectively. The number of observations in each class of the train and test sets is 100 and 25, respectively.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21609  | https://doi.org/10.1038/s41598-021-00678-9

www.nature.com/scientificreports/

Models 3–5: These are models simulated by MixSim, a method proposed by57 that allows generating Gaussian 
mixture models with fixed levels of overlap between groups (in terms of probability). The respective number 
of groups are 3, 4 and 5; the respective number of variables are 15, 25 and 35 whereas the respective average 
overlaps are 0.01, 0.005 and 0.002.

These models are difficult scenarios for classification. The error rates are higher than in the previous cases 
and their distributions have larger interquartile ranges and contain many outliers (see the lower panels of Fig. 3) 
for all the methods. Despite that, the best techniques are again S and the Euclidean distance, followed by the 
Manhattan and Minkovski ( p = 3, 4 ) distances.

Application to clustering.  Next we evaluated the performance of the band-based indices for clustering methods. 
We generated 50 samples independently for each cluster, and simulated 200 data sets for Models 1–5. We applied 
PAM with all the band-derived measures and distances selected.

An inspection of the consistency of the results of each method across different values of J also shows they 
have a stable behaviour; Supplementary Figures S2 and S3 illustrate respectively clustering error rates and ARIs, 
again with a trend to deteriorate as J increases. As in the classification case, note that Supplementary Figs. S2 and 
S3 allow ranking the methods from best to worst consistently, regardless of the simulated model we consider.

With respect to the overall comparison, Tables 2 and 3 display clustering error rates and ARIs, averaged over 
the 200 simulated data sets, along with their standard errors (in brackets).

The best similarity measures to cluster Model 1 are S and the Euclidean distance, followed by the Minkovski 
( p = 3 ) and Manhattan ones. Pearson, RR, A, F and (surprisingly) J have the worst performance, with average 
clustering errors above 35% and average ARIs below 0.1.

For Model 2, the performance of the different methods resembles that they had in classification. The Euclid-
ean distance, followed by the Manhattan and the Minkowski distances—for most of the reported values of p–, 
and then by S, are the best alternatives when δ = 0 . However, when δ = 2 , the Euclidean and Minkowski (for 
p ≥ 3 ) distances yield drastically high clustering error rates and low ARI values, as reflected in Tables 2 and 3; 
the Manhattan and Pearson distances also deteriorate remarkably their behaviour. However, S stays rather stable 
and appears as the best option. The other band-based indices improve their performance, but yet they are not 
capable of beating S.

With respect to Models 3-5, only the Pearson distance, amongst the classical distances, is a competitor for S, 
with ARI values slightly smaller than those of S ( J = 3 ) and a better clustering error rate in Model 5. The other 
classical distances follow these techniques, whereas the use of the other band-based indices, specially A and RR, 
is clearly discouraged.

Table 2.   Average clustering error rate over 200 simulations for all the simulated models; standard errors are 
written in brackets. Best and second best performance are highlighted in bold and italics, respectively.

Dissim. M1 M2 ( δ = 0) M2 ( δ = 2) M3 M4 M5

A2 0.3877 (0.0685) 0.2461 (0.0701) 0.2186 (0.0800) 0.4020 (0.0817) 0.5440 (0.0817) 0.6095 (0.0484)

A3 0.3875 (0.0679) 0.2502 (0.0724) 0.2159 (0.0813) 0.4024 (0.0845) 0.5474 (0.0845) 0.6108 (0.0495)

D2 0.3326 (0.0839) 0.1747 (0.0659) 0.1524 (0.0668) 0.2975 (0.0833) 0.4476 (0.0833) 0.5171 (0.0675)

D3 0.3310 (0.0842) 0.1782 (0.0762) 0.1550 (0.0681) 0.2950 (0.0833) 0.4467 (0.0833) 0.5195 (0.0684)

Eucl 0.2072 (0.0821) 0.0268 (0.0199) 0.3945 (0.0844) 0.1486 (0.0559) 0.2476 (0.0559) 0.3004 (0.0813)

F2 0.3611 (0.0769) 0.2080 (0.0710) 0.1782 (0.0695) 0.3482 (0.0800) 0.4924 (0.0800) 0.5612 (0.0576)

F3 0.3594 (0.0791) 0.2019 (0.0743) 0.1742 (0.0687) 0.3397 (0.0845) 0.4889 (0.0845) 0.5530 (0.0605)

J2 0.3618 (0.0769) 0.2102 (0.0729) 0.1794 (0.0714) 0.3495 (0.0819) 0.4979 (0.0819) 0.5637 (0.0582)

J3 0.3609 (0.0763) 0.2110 (0.0761) 0.1813 (0.0735) 0.3472 (0.0816) 0.4975 (0.0816) 0.5653 (0.0596)

Manh 0.2300 (0.0875) 0.0372 (0.0252) 0.1492 (0.1184) 0.1721 (0.0610) 0.2828 (0.0610) 0.3397 (0.0874)

Mk0.25 0.3064 (0.0923) 0.1022 (0.0441) 0.1097 (0.0533) 0.2699 (0.0809) 0.4060 (0.0809) 0.4742 (0.0745)

Mk0.5 0.2774 (0.0950) 0.0694 (0.0337) 0.0868 (0.0548) 0.2207 (0.0743) 0.3472 (0.0743) 0.4152 (0.0873)

Mk0.75 0.2536 (0.0948) 0.0484 (0.0280) 0.0954 (0.0748) 0.1900 (0.0662) 0.3064 (0.0662) 0.3727 (0.0898)

Mk3 0.2272 (0.0932) 0.0290 (0.0212) 0.4356 (0.0479) 0.1556 (0.059)0 0.2650 (0.0590) 0.3231 (0.0802)

Mk4 0.2566 (0.0918) 0.0324 (0.0239) 0.4436 (0.0439) 0.1659 (0.0579) 0.2948 (0.0579) 0.3508 (0.0821)

Mk5 0.2816 (0.0854) 0.0363 (0.0250) 0.4492 (0.0375) 0.1795 (0.0619) 0.3171 (0.0619) 0.3846 (0.0824)

O2 0.3132 (0.0866) 0.1592 (0.0650) 0.1404 (0.0625) 0.2753 (0.0821) 0.4153 (0.0821) 0.4828 (0.0733)

O3 0.3124 (0.0888) 0.1578 (0.0702) 0.1433 (0.0677) 0.2752 (0.0819) 0.4159 (0.0819) 0.4862 (0.0754)

Pears 0.4630 (0.0282) 0.2374 (0.0329) 0.4340 (0.0464) 0.1311 (0.0489) 0.2323 (0.0489) 0.2530 (0.0498)

RR2 0.3998 (0.0620) 0.2640 (0.0889) 0.2456 (0.1030) 0.4491 (0.0877) 0.5738 (0.0877) 0.6358 (0.0459)

RR3 0.4064 (0.0600) 0.2680 (0.0902) 0.2592 (0.1048) 0.4541 (0.0869) 0.5785 (0.0869) 0.6408 (0.0447)

S2 0.1838 (0.0768) 0.0645 (0.0440) 0.0799 (0.0397) 0.1268 (0.0518) 0.2231 (0.0518) 0.2736 (0.0649)

S3 0.1795 (0.0744) 0.0598 (0.0461) 0.0842 (0.0506) 0.1234 (0.0550) 0.2142 (0.0550) 0.2615 (0.0634)

SM2 0.3187 (0.0717) 0.1989 (0.0585) 0.1376 (0.0453) 0.2968 (0.0718) 0.4286 (0.0718) 0.5021 (0.0613)

SM3 0.3498 (0.0706) 0.1988 (0.0543) 0.1342 (0.0470) 0.2975 (0.0715) 0.4273 (0.0715) 0.5128 (0.0625)
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Thus, in this context, the band-based dissimilarity index S reveals to be consistently competitive with the 
classical distances, specially the Euclidean one, outperforming it in some of the simulated scenarios. It also beats 
D, F, O and, notably, the popular Jaccard index, though these have a reasonable performance. On the other hand, 
RR, A and SM are not efficient in order to reflect similarities between samples.

Real gene expression data.  To explore the effectiveness of the band-based indices with gene expression 
data in both classification and clustering techniques, we analysed different publicly available data sets, from both 
microarrays and RNA-seq technologies.

Microarray data.  All the raw data sets were preprocessed following the normalisation described in2.
In kNN, the number of genes considered in each iteration was reduced to 200 in a supervised manner, using 

the B/W criterion58. This feature selection was performed for each training set.
For the (unsupervised) clustering approach, we kept the 200 most variable genes and clustered the samples, 

for which we knew the group labels (i.e., the annotations). We do not report here the results corresponding to 
the use of PAM, because it produced poor results in all the cases when the number of clusters was set equal to 
the number of classes. This is a common situation in gene expression data when samples are clustered. Therefore, 
instead of PAM, we used hierarchical clustering in conjunction with heatmaps, as these can be visually examined.

Lymphoma data set. It is a subset of the set presented in6; it contains 62 samples from three of the most 
prevalent lymphoid malignancies: 42 diffuse large B-cell lymphomas (DLBCL), 9 follicular lymphomas (FL) and 
11 chronic lymphocytic leukemias (CLL).

Figure 4, top-left panel, displays the distribution of the 10-fold cross-validation classification errors made 
by kNN, that is, the proportion of wrongly classified elements, for the band-based indices and for the classical 
distances. A, D, J, all Minkovski distances and also F (when J = 2 ) and O (when J = 3 ) produce zero error rates in 
most of the iterations, being notably better than the classical Euclidean, Manhattan or Pearson distances. On the 
contrary, SM and—strikingly—S are slightly worse; RR misclassifies much more samples than the other methods.

On the other hand, after filtering the genes for clustering, we computed, for each pair of samples, the band-
based dissimilarity measures, as well as the other classical distances. We used these to build a hierarchical tree 
using complete linkage.

We illustrate some of the results produced by the different indices in Fig. 5. In particular, we display the 
dendrograms and heatmaps corresponding to the Euclidean distance and to S and O, with J = 2 , as they are, in 
general, the best choices. The plots corresponding to the other measures are included in Fig. S4 from the Sup-
plementary material.

Table 3.   Average ARI over 200 simulations for all the simulated models; standard errors are written in 
brackets. Best and second best performance are highlighted in bold and italics, respectively.

Dissim. M1 M2 ( δ = 0) M2 ( δ = 2) MS1 MS2 MS3

A2 0.0598 (0.0702) 0.2702 (0.1356) 0.3356 (0.1619) 0.1945 (0.0917) 0.1064 (0.0504) 0.0825 (0.0337)

A3 0.0597 (0.0697) 0.2632 (0.1361) 0.3427 (0.1635) 0.1953 (0.0960) 0.1050 (0.0491) 0.0833 (0.0343)

D2 0.1317 (0.1126) 0.4351 (0.1660) 0.4960 (0.1687) 0.3418 (0.1223) 0.2074 (0.0754) 0.1672 (0.0572)

D3 0.1341 (0.1145) 0.4318 (0.1782) 0.4896 (0.1730) 0.3458 (0.1222) 0.2076 (0.0769) 0.1652 (0.0571)

Eucl 0.3636 (0.1722) 0.8962 (0.0745) 0.0641 (0.1215) 0.6188 (0.1171) 0.4818 (0.1087) 0.4293 (0.1006)

F2 0.0917 (0.0962) 0.3549 (0.1574) 0.4276 (0.1613) 0.2637 (0.1018) 0.1553 (0.0622) 0.1235 (0.0436)

F3 0.0950 (0.1000) 0.3712 (0.1703) 0.4380 (0.1608) 0.2769 (0.1117) 0.1633 (0.0659) 0.1312 (0.0475)

J2 0.0910 (0.0946) 0.3508 (0.1620) 0.4259 (0.1625) 0.2627 (0.1029) 0.1518 (0.0640) 0.1216 (0.0435)

J3 0.0917 (0.0945) 0.3507 (0.1692) 0.4221 (0.1659) 0.2656 (0.1044) 0.1543 (0.0635) 0.1204 (0.0453)

Manh 0.3155 (0.1788) 0.8576 (0.0909) 0.5436 (0.2817) 0.5698 (0.1185) 0.4289 (0.1050) 0.3742 (0.1013)

Mk0.25 0.1757 (0.1376) 0.6371 (0.1370) 0.6168 (0.1529) 0.3887 (0.1242) 0.2543 (0.0820) 0.2095 (0.0668)

Mk0.5 0.2266 (0.1597) 0.7438 (0.1147) 0.6918 (0.1581) 0.4738 (0.1293) 0.3318 (0.0922) 0.2795 (0.0886)

Mk0.75 0.2716 (0.1724) 0.8172 (0.1000) 0.6739 (0.2020) 0.5333 (0.1236) 0.3904 (0.0989) 0.3328 (0.0978)

Mk3 0.3257 (0.1760) 0.8882 (0.0792) 0.0165 (0.0353) 0.6043 (0.1192) 0.4539 (0.1066) 0.3963 (0.0956)

Mk4 0.2632 (0.1582) 0.8754 (0.0878) 0.0110 (0.0281) 0.5804 (0.1153) 0.4070 (0.1000) 0.3563 (0.0946)

Mk5 0.2121 (0.1341) 0.8612 (0.0913) 0.0064 (0.0214) 0.5526 (0.1203) 0.3714 (0.0949) 0.3135 (0.0877)

O2 0.1613 (0.1283) 0.4761 (0.1700) 0.5283 (0.1649) 0.3773 (0.1244) 0.2437 (0.0793) 0.2031 (0.0675)

O3 0.1641 (0.1346) 0.4828 (0.1757) 0.5225 (0.1771) 0.3782 (0.1239) 0.2444 (0.0834) 0.2014 (0.0693)

Pears 0.0014 (0.0143) 0.2745 (0.0701) 0.0163 (0.0336) 0.6568 (0.1090) 0.5891 (0.0832) 0.5746 (0.0814)

RR2 0.0464 (0.0610) 0.2469 (0.1619) 0.2945 (0.1921) 0.1467 (0.0913) 0.0818 (0.0466) 0.0659 (0.0302)

RR3 0.0404 (0.0567) 0.2406 (0.1620) 0.2690 (0.1902) 0.1419 (0.0900) 0.0794 (0.0477) 0.0630 (0.0304)

S2 0.4177 (0.1805) 0.7952 (0.1371) 0.8093 (0.1258)  0.6771 (0.1072) 0.5841 (0.0982) 0.5604 (0.0864)

S3 0.4272 (0.1786) 0.8117 (0.1456) 0.7989 (0.1480) 0.6865 (0.1075) 0.5989 (0.0943) 0.5800 (0.0869)

SM2 0.1433 (0.1030) 0.3699 (0.1326) 0.5286 (0.1272) 0.3370 (0.1040) 0.2206 (0.0671) 0.1778 (0.0507)

SM3 0.1011 (0.0912) 0.3684 (0.1238) 0.5392 (0.1329) 0.3342 (0.1027) 0.2215 (0.0709) 0.1678 (0.0514)
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The class labels are colour encoded. The Euclidean distance misplaces 2 DLBCL samples and 2 FL samples in 
a distinct branch of the dendrogram, which includes all the CLL ones. On the contrary, S separates the 3 groups 
for both values of J, but misplaces 2 DLBCL cells, one in each of the other groups. On the other hand, the band-
based index O, as well as indices A ( J = 3 ), D and F, completely restore the three groups in three neat branches, 
and J and SM misplace 1 sample. The Minkovski distance, with p = 4 and 5 works poorly, as it confounds FL and 
CLL groups. None of other classical distances behaves better than the band-based indices, where the number of 
wrongly allocated samples is between 1 and 5.

Colon data set. It consists of 2000 genes measured on 40 colon cancer patients and 22 healthy patients59.

Figure 4.   Classification error rates in real data sets. Distribution of kNN classification error rates for the 
lymphoma (top left), colon (top middle), leukemia with two (top right) and three classes (bottom left), RNAseq 
storage conditions (bottom middle) and pan-cancer (bottom right) data sets, using 10-folds cross-validation, 
with selection-bias correction.
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With respect to classification, we report in Fig. 4, top-middle panel, the distribution of the classification error 
rates for the compared methods. Clearly, all Minkovski options provide the best results, with average error rates 
below 0.02, whereas RR with J = 3 has the worst behaviour. The classical distances Manhattan, Euclidean and 
Pearson have a performance similar to that of most of the band-based indices, with average error rates ranging 
between 0.15 and 0.18, except for S, whose error rate is slightly below 0.15.

Figure 6 displays the hierarchical clusterings using the Euclidean distance and the band-based indices S and 
O, with J = 2 . The Euclidean distance creates a dendrogram where the two main branches contain both normal 
and cancer samples; the leftmost branch contains two well separated sub-branches (normal and cancer) whereas 
the rightmost one mixes both types. The heatmap evinces that both groups are indeed difficult to tell apart. This 
is not surprising as gene expression in normal gastrointestinal tissues is known to be similar to that of neoplastic 
samples (see, for example60).

The use of S results in a similar situation, regardless of the value of J: both main branches in the tree contain 
normal and cancerous samples, but the second one contains two neater sub-branches, roughly corresponding 
to both classes. An analogous behaviour can be observed for most of the other methods, as illustrated in Fig. S5 
of the Supplementary material. Nevertheless, SM and the Minkovski distance for p = 3 reflect the similarities 
between observations in a more accurate way and find a clearer structure in the data according to the disease 
status. Most of the samples from each type are placed together in the dendrogram, forming two distinct branches, 
with only a few misclassified leaves.

Leukemia data set. This data set was made publicly available in61, and contains the gene expression levels in 72 
leukemia samples, 25 of which were AML and 47 were ALL; additionally, 38 ALL samples originated from B-cells 
and 9 from T-cells. After the preprocessing steps, the expression matrix included 3571 genes and 72 samples. We 
first analysed the data considering two classes, AML and ALL, and next, also distinguishing the three groups.

The results corresponding to classification are illustrated in Fig. 4, top-right and bottom-left panels. The 
Minkovski distances have the best behaviour in kNN for the 2-class case. The Manhattan and the Pearson 
distances and also most of our band-based indices outperform the Euclidean distance; only S and SM (when 
J = 2 ) are not better, in addition to RR, which, as before, is much worse. With respect to the 3-class case, the 
performance of S is drastically improved, reaching error rates comparable to or even better than those of the 
Minkovski options. Setting RR aside, the Euclidean, Manhattan and Pearson distances are the worst choices.

Figure 5.   Clustering the lymphoma data set. Dendrograms and heatmaps for the lymphoma data set, using the 
Euclidean distance (left), the Simpson index (middle) and the Ochiai index (right), for J = 2 . The Euclidean 
distance merges 2 DLBCL and 2 FL samples with the CLL group. S identifies the structure better, misplacing 1 
DLBCL in the FL group and 1 DLBCL in the CLL group. O completely restores the three classes.

Figure 6.   Clustering the colon data set. Dendrograms and heatmaps for the colon data set, using the Euclidean 
distance (left), the Simpson index (middle) and the Ochiai index (right), for J = 2 . The types of samples are 
difficult to separate and one branch with mixed leaves emerges in the three dendrograms.
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With respect to clustering, the top dendrogram in Fig. 7, left panel, shows that the Euclidean distance does 
not correctly restore the biological truth of the data, as it allocates some of the ALL samples (and in fact, all the 
T-ALL samples—see the hierarchical tree in the vertical axis) together with the AML samples. Also, the Euclid-
ean distance misplaces one more AML sample in the dendrogram. However, the Simpson index finds the AML/
ALL structure, wrongly assigning only 2 samples for J = 2 . Also, S identifies the subclusters containing T-cell 
ALL and B-cell ALL samples. O ( J = 2 ) also separates the three classes, though wrongly assigning 6 samples.

Results corresponding to alternative band-based indices and classical distances are shown in Fig. S6 of the 
Supplementary material, where we can see that most of the similarity measures used are capable of retrieving the 
2-group structure. The exceptions are RR, SM and Minkovski with p = 5 , which mix both types of cells. How-
ever, only F and J and the Manhattan distance identify the three groups—with some wrongly allocated samples.

RNA‑seq data.  Next Generation Sequencing (NGS) provides more accurate data than microarrays, though 
their analysis is more challenging and complex. In this section, we additionally test the performance of the pro-
posed indices with two NGS data sets.

Pan-cancer data set. This is a subset of the PANCAN data set62, downloaded from the UCR Time Series 
Classification Archive63. It contains the RNA-Seq gene expression levels of 20531 genes, measured by Illumina 
HiSeq platform and monitored in 801 tissue samples, randomly withdrawn from the original standardised dataset 
named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) set. Alignments were performed on the 
GRCh38 reference genome; read counts were measured on a gene level using HTSeq and normalised using the 
Fragments Per Kilobase of transcript per Million mapped reads (FPKM). The set comprises five types tumor: 
breast (BRCA), kidney (KIRC), colon (COAD), lung (LUAD) and prostate (PRAD) carcinomas. The groups are 
very distinct and easy to separate, as previously reported (see, for example64).

This leads to excellent classification results with the kNN algorithm. The Minkovski distances are capable of 
correctly classifying all the samples in 25% of the iterations, though their median (corresponding to 1 misclassi-
fied element) matches that of S. The other band-based indices, except for RR, have a slightly worse performance, 
but better than that of the Pearson, Manhattan and Euclidean distances.

On the other hand, due to the massive size of the data set, in Fig. 8 we only visualise, for clarity, the corre-
sponding dendrograms, where wrongly allocated samples are highlighted. The good separability of the samples 
allows all the methods to identify the five types of cancer with high accuracy. The Euclidean distance places two 
kidney cancer and one lung cancer samples inside the the breast cancer branch, and identifies the kidney cancer 
type as the most distinct one (last merging of the dendrogram). A similar performance can be observed for O 
( J = 2 ), with the same wrongly assigned KIRK and LUAD samples, but this time they are found to have some 
differences, as they are placed at different sub-branches of the BRCA branch. On the contrary, S ( J = 2 ) only 
assigns one of the KIRK samples to the BRCA branch, and finds KIRK to be more similar to COAD and LUAD.

None of the classical distances is capable of getting better results (see Fig. S7 of the Supplementary material). 
For most of them, the number of wrongly allocated samples ranges from 2 to 4, but the Minkovski distance with 
p = 0.25 splits the LUAD samples into two distinct branches in the hierarchical tree. The other band-based indi-
ces have a similar performance, although the use of J = 3 leads, in general, to slightly worse assignments, specially 
with the Jaccard index. Notably, RR and SM identify the correct structure, without any error for both values of J.

FFvsFFPE data set. This data set was downloaded from the ArrayExpress database65, under accession number 
E-MTAB-2523. The experiment included 86 RNA-seq samples representing six different human tissues: blad-
der carcinoma, prostate carcinoma, colon carcinoma, normal liver, normal colon and reactive tonsil66. These 
tissues were stored under two different conditions: formalin fixed, paraffin embedded (FFPE) and fresh frozen 
(FF), which affect nucleic acid extraction. The experimental design defines 9 known distinct classes indicated in 
Table 4, along with their size. The trimmed RNA-Seq reads were mapped against gene regions and transcripts 
were annotated using the RNA-Seq Analysis tool CLC Bio, version 6.0.1; the final processed files contained 
RPKM values for 19137 genes.

Figure 7.   Clustering the leukemia data set. Dendrograms and heatmaps for the leukemia data set, using the 
Euclidean distance (left), the Simpson index (middle) and the Ochiai index (right), for J = 2 . The colour labels 
in the columns and the rows correspond to the 2-class and 3-class scenarios, respectively.
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First, as mentioned before, if we stick to the given rule for selecting k, the classification error rates in kNN 
are remarkably higher than in previous data sets. This is because some of the groups are very small and do not 

Figure 8.   Clustering the Pan-cancer data set. Dendrograms for the Pan-cancer data set, using the Euclidean 
distance (top), the Simpson (middle) and the Ochiai (bottom) indices, with J = 2 . Wrongly assigned samples 
are coloured in the dendrogram.
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have enough representatives to get the majority vote. In such a case, average error rates are in the order of 0.25. 
Therefore, we show in Fig. 4, bottom-right panel the results corresponding to k = 3 for this dataset. As in previ-
ous data sets, the Minkovski distances have the best performance, followed by S and SM. The worse behaviour 
corresponds to the Euclidean and the Pearson distances and the RR index, whereas the other ones lie in between, 
with similar average error rates around 0.15.

Next, we built the heatmaps and hierarchical trees associated to the clustering procedure; see Fig. 9. The 
Euclidean distance leads to a heatmap with two differentiated parts, corresponding to FFPE and FF samples, 
respectively. These are indicated with a vertical black line; meaningful branches, identified by visual inspection, 
are highlighted with black dots. Inside the FFPE block, which includes some FF bladder carcinoma samples, we 
can identify a branch with all liver and tonsil samples and most FFPE bladder cancer samples; a neat difference 
between these cell types is not found, though. All FFPE prostate and most FFPE colon tumours are clustered 
together in another branch. On the FF side, the samples are correctly arranged according to the tissue of origin, 
except for a few FFPE samples. Cancer and normal colon tissues are placed in the same branch, as expected60.

Interestingly, the S and O indices, shown in the middle and right panels of Fig. 9, produce a different arrange-
ment. To the left of the tree we find a branch with tonsil samples, grouped in a more consistent manner than 
with the Euclidean distance; also most liver samples are closely located in the tree. There is a branch containing 
all prostate cancer samples, subclassified according to the storage condition, in contrast to the previous result. 
Another sub-branch contains colon samples, regardless of the disease condition. S separates both types of bladder 
samples in distinct sub-branches, whereas O finds a group with mostly FF samples, while spreading the FFPE 
ones along the hierarchical tree.

Figure S8 in the Supplementary material shows the behaviour of the other techniques. None of them is capable 
of producing a neat separation between the classes. All the classical distances yield to inaccurate branches, except 
for Minkovski with p = 0.25 and 0.5, which identify most of the tissues of origin but fail to retrieve the FFPE 
bladder carcinoma branch. On the other hand, most of the band-based similarities produce good results as they 
are also able to identify differences involving tissues of origin. This evinces that in this data set the band-based 
indices find, in general, more biologically meaningful similarities than the classical distances.

It is worth noting that since the class labels are known, it is possible to filter the genes using the B/W criterion 
also for clustering, but using the most variable ones suits the unsupervised philosophy better. Nevertheless, we 
repeated the analyses selecting the genes with that criterion. The results, in terms of structure recovery, were 
very similar to the ones previously discussed.

Table 4.   FFvsFFPE data. Experimental design according to the tissue of origin and the storage condition.

Tissue type Storage condition Number of samples

Bladder carcinoma
FF 18

FFPE 12

Colon carcinoma
FF 12

FFPE 16

Normal colon FF 6

Normal liver FFPE 4

Prostate carcinoma
FF 7

FFPE 7

Normal tonsil FFPE 4

Figure 9.   Clustering the FFvsFFPE data set. Dendrograms and heatmaps for the FFvsFFPE data set, using the 
Euclidean distance (left), the Simpson (middle) and the Ochiai (right) indices, with J = 2 . Main branches are 
highlighted with black dots.
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In summary, we conclude from the previous results that, even though not all the dissimilarity coefficients 
based on bands have an appropriate behaviour for every (simulated) dataset, when it comes to efficiently assess-
ing biological differences between samples they reveal as suitable alternatives, especially in clustering tasks. In 
particular, the Simpson and the Ochiai indices are, globally, the best options: they have consistently good or the 
best performance across our variety of experiments.

Discussion
Our findings from the Results section suggest that the proposed technique for constructing a similarity or dis-
similarity measure for quantitative data is effective for analysing gene expression data. However, it is clear that 
there are always scenarios where a particular dissimilarity/distance measure is not the best option, as it has been 
illustrated in this study.

We have first evaluated the performance of these indices in relation to J, the largest number of different 
observations considered to form the j-bands. This is computationally feasible due to the efficiency of the pro-
posed method. Our experiments show, as expected, that the results produced for different values of J are very 
similar, but sometimes with a tendency to deteriorate as J increases, a fact that has not been previously reported. 
Therefore, it is enough to set J equal to 2 or 3 to get satisfactory results fast. We can rank the band-based dis-
similarity indices that we have considered from best to worst and identify which of them have systematically a 
bad behaviour (or worse than the competitors) in the analysed simulated data sets, i.e., with distributions that 
are spherical or with ellipsoidal weighted components. These indices are the RR and A measures, which seem 
less suitable for classifying or clustering this kind of data; this is consistent to what has been reported in several 
studies with respect to RR. Surprisingly, despite being one of the most popular indices, J does not perform as 
well as expected. Instead, S is clearly the best option in most of the tested data sets, as it achieves lower classifica-
tion/clustering error rates and higher ARIs than every other dissimilarity measure, including, for instance, the 
benchmark Euclidean distance.

In the case of analysing gene expression data, the differences among the band-based methods are much 
smaller as most of them retrieve the underlying biological structure. The variety of analised data sets illustrates 
several situations where some of the band-based indices outperform the classical distances, especially for clus-
tering tasks, earning their right to be considered a suitable measure of similarity in the gene expression context. 
As an example, the ability to cluster together samples from the same tissue of origin but stored under different 
conditions, or to better arrange samples according to the disease status, appears to be of particular interest. As 
opposed to the simulated Gaussian data case, the Jaccard index has a more relevant behaviour in this context.

Conclusions
Different applications such as pattern recognition or classification of multivariate data require a similarity meas-
ure S or dissimilarity measure D . The choice of such an appropriate measure relies on the data to be analysed, 
and in particular on the nature of their variables. Thus, for example, the Euclidean distance is a common measure 
for continuous data whilst binary data is often examined with indices such as Jaccard’s or Simpson’s ones.

In this work we propose a similarity/dissimilarity measure for continuous data based on binary features asso-
ciated to the original observations. To that end, we make use of the idea underlying in the construction of the 
MBD, a data depth notion that has proven useful and efficient in the analysis of complex data, like gene expres-
sion data. More precisely, for each coordinate of a given observation we build a binary vector that helps count 
how many bands in the sample contain such coordinate. These vectors allow constructing contingency tables as 
in the presence-absence context, which become the input of standard similarity indices. The computation of the 
contingency tables is very efficient as it is possible to determine the corresponding values without evaluating each 
band. Instead, we use a combinatorial approach after reordering the columns of the data in an increasing way.

We have used this strategy for analysing a collection of simulated and real gene expression data sets using 
supervised and unsupervised classification. In summary, it is apparent that the binary matrices constructed from 
the bands keep track of similarities appropriately, though not all indices make a sound use of this information 
in every scenario. For simulated data sets, with (Gaussian) spherical or with ellipsoidal weighted-component 
distributions, the Simpson index is the best choice, followed by the Ochiai index. On the contrary, for more 
complex real gene expression data, additional band-based indices (e.g., the Dice index, the Forbes index—in 
agreement with recent work—or the popular Jaccard index) come to the fore as better alternatives than the 
widely-used Euclidean, Manhattan or Pearson distances. In some cases, S and O are not the best options, yet 
their performance is good enough to be considered as relevant choices. The different Minkovski distances are the 
most appropriate ones for classification tasks in these data sets, but are outperformed by S and O in clustering. 
In brief, S and O are sound options that produce competitive, sometimes complementary, outputs. Therefore, a 
joint analysis using them is suggested.

In either case, the technique presented in this study to construct a (dis)similarity measure based on bands 
from the MBD notion reveals as a suitable alternative, which can be extended to any of the multiple similarity 
indices defined for binary data and thus applied to quantitative data.
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