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Coronavirus disease 2019 (COVID-19) is rapidly spreading. Researchers around the
world are dedicated to finding the treatment clues for COVID-19. Drug repositioning,
as a rapid and cost-effective way for finding therapeutic options from available FDA-
approved drugs, has been applied to drug discovery for COVID-19. In this study, we
develop a novel drug repositioning method (VDA-KLMF) to prioritize possible anti-SARS-
CoV-2 drugs integrating virus sequences, drug chemical structures, known Virus-Drug
Associations, and Logistic Matrix Factorization with Kernel diffusion. First, Gaussian
kernels of viruses and drugs are built based on known VDAs and nearest neighbors.
Second, sequence similarity kernel of viruses and chemical structure similarity kernel
of drugs are constructed based on biological features and an identity matrix. Third,
Gaussian kernel and similarity kernel are diffused. Forth, a logistic matrix factorization
model with kernel diffusion is proposed to identify potential anti-SARS-CoV-2 drugs.
Finally, molecular dockings between the inferred antiviral drugs and the junction
of SARS-CoV-2 spike protein-ACE2 interface are implemented to investigate the
binding abilities between them. VDA-KLMF is compared with two state-of-the-art VDA
prediction models (VDA-KATZ and VDA-RWR) and three classical association prediction
methods (NGRHMDA, LRLSHMDA, and NRLMF) based on 5-fold cross validations on
viruses, drugs, and VDAs on three datasets. It obtains the best recalls, AUCs, and
AUPRs, significantly outperforming other five methods under the three different cross
validations. We observe that four chemical agents coming together on any two datasets,
that is, remdesivir, ribavirin, nitazoxanide, and emetine, may be the clues of treatment
for COVID-19. The docking results suggest that the key residues K353 and G496
may affect the binding energies and dynamics between the inferred anti-SARS-CoV-2
chemical agents and the junction of the spike protein-ACE2 interface. Integrating various
biological data, Gaussian kernel, similarity kernel, and logistic matrix factorization with
kernel diffusion, this work demonstrates that a few chemical agents may assist in drug
discovery for COVID-19.

Keywords: anti-SARS-CoV-2 drug, virus-drug association, logistic matrix factorization, kernel diffusion,
molecular docking
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INTRODUCTION

A novel coronavirus disease named COVID-19, caused by
coronavirus SARS-CoV-2, is spreading around the globe. As of
3 December 2021, more than 263 million confirmed cases of
SARS-CoV-2 infection and 5,232 thousand confirmed cases of
SARS-CoV-2-caused death have been reported (WHO, 2021).
The rapid transmission of SARS-CoV-2 has become a severe
threat to public health worldwide (Baker et al., 2020; Hopman
et al., 2020; Khan M. T. et al., 2021). Although its vaccines have
been studied (Li et al., 2021), it is an immediate urgency to
find promising antiviral drugs for COVID-19 therapies (Mahdian
et al., 2020; Saxena, 2020).

However, under such an urgent situation, it is almost
impossible to research and develop a new drug for patients
with the COVID-19 infections since designing a new drug may
spend more than 10 years (Liu et al., 2020; Yang et al., 2020).
It might be an effective alternative to find possible therapeutic
clues from Food and Drug Administration (FDA)-approved
drugs, that is, drug repurposing (Liu et al., 2016; Yang et al.,
2016; Chu et al., 2020; Masoudi-Sobhanzadeh, 2020; Zhang
et al., 2020, 2021). Now, researchers worldwide have focused
on repositioning the FDA-approved drugs for COVID-19. Since
these drugs have been tested for the efficacy, safety, and toxicity
in the clinical trials, they can be fast applied as clinically available
drugs against COVID-19 (Wu et al., 2020). Multiple examples
of repositioned drugs, such as antiviral drugs and host-targeting
treatment, are or have been clinical trials for COVID-19 (Tang
et al., 2020). Computational methods for identifying potential
options against COVID-19 can be categorized into structure-
based virtual screening methods (Khan M. T. et al., 2021) and
network-based methods (Dotolo et al., 2020).

To capture possible antiviral drugs against SARS-CoV-2, a vast
amount of structure-based virtual screening methods are carried
out. The type of methods uses molecular docking and dynamics
simulation techniques to measure binding capabilities between
potential anti-COVID-19 drugs and targets. For example, Elfiky
(2020) and Muralidharan et al. (2020) combined molecular
docking and molecular dynamics simulation. Islam et al. (2021)
integrated docking with two approaches, molecular dynamics
simulation, and in silico absorption, distribution, metabolism,
excretion, and toxicity (ADMET) profile. Kandeel et al. (2020)
applied molecular docking, molecular dynamics simulation of
top 10 hits, and free energy calculation. Khan et al. (2020a)
designed an integrated computational framework for key residue
identification via an alanine scanning strategy and an extensive
simulation, a cryo-EM structure for novel drug identification
based on computational virtual screening and molecular docking
(Khan et al., 2020b), a multi-step drug screening method to
shortlist potential drugs (Khan S. et al., 2021), and a structural
and biomolecular simulation technique for revealing the impact
of specific mutations in the B.1.617 variant (Khan A. et al.,
2021). Wang et al. (2020) detected inhibition affect of human
defensin-5 against SARS-CoV-2 invasion combining molecular
dynamics simulation and statistical analysis. Elmezayen et al.
(2020) used molecular docking for top-ranked compounds,
molecular dynamics simulations, ADMET profile prediction, and

free energy computation. Wang C. et al. (2021) found a versatile
antimicrobial peptide that can be used as an inhibitor of SARS-
CoV-2 attachment based on dual mechanisms.

Network-based methodologies are widely applied to drug
repositioning by integrating multiple data sources. In these
methods, nodes denote drugs, diseases, or targets, while edges
denote interactions or associations between nodes. Network-
based methods contain network-based clustering methods and
network-based propagation methods (Messina et al., 2020;
Sadegh et al., 2020). Network-based clustering methods have
been developed to find novel drug-target interactions or
drug-disease associations by finding biological modules (for
example, drug-target, drug-disease, drug-drug) using clustering
algorithms. Network-based propagation methods used network
proximity and network propagation algorithms to model
associations between drugs, targets, and COVID-19-related
diseases. For example, Peng et al. (2020) and Zhou et al.
(2020) separately used bipartite local model and the KATZ
measurement to find potentially suitable drugs against COVID-
19 and validated the predicted results by molecular docking and
recent publications. Meng et al. (2021) proposed a similarity
constrained probabilistic matrix factorization method to find new
Virus-Drug Associations (VDAs). Fiscon et al. (2021) developed
a searching off-label drug and network method to uncover
interactions between targets and disease-specific proteins. Based
on the above studies, (Peng et al., 2021) developed a random walk
with restart-based VDA prediction model to discover possible
anti-SARS-CoV-2 drugs on the constructed three VDA datasets.
These methods effectively discovered possible antiviral drugs for
the treatment of COVID-19.

In this study, we develop a novel VDA prediction method,
VDA-KLMF, to find potential chemical agents for COVID-
19. VDA-KLMF integrates virus sequences, drug chemical
structures, known VDAs, Gaussian kernel, similarity kernel,
and Logistic Matrix Factorization with Kernel diffusion. VDA-
KLMF is compared with two state-of-the-art VDA prediction
models [VDA-KATZ (Zhou et al., 2020) and VDA-RWR (Peng
et al., 2021)] and three classical association identification models
[NGRHMDA (Huang et al., 2017), LRLSHMDA (Wang et al.,
2017), and NRLMF (Liu et al., 2016)] based on fivefold cross
validations on viruses, drugs, and VDAs on three VDA datasets.
Experimental results show that VDA-KLMF computes the
optimal recalls, AUCs, and AUPRs, significantly improving VDA
identification performance. Four chemical agents (remdesivir,
ribavirin, nitazoxanide, and emetine) coming together on any
two VDA datasets are inferred to be underlying anti-COVID-
19 drugs.

Molecular docking is an important drug discovery tool
applied to find the best appropriate intermolecular binding
between a chemical agent and a target or two proteins. It
can effectively elucidate fundamental biochemical processes
and characterize activity of ligands binding target proteins
(McConkey et al., 2002). In this manuscript, a molecule docking
software, AutoDock (Morris et al., 2009), is used to measure
the molecular activities of the predicted four antiviral small
molecules at the junction of the SARS-Cov-2 Spike (S) protein-
angiotensin-converting enzyme 2 (ACE2) interface. The dockings
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show that the four drugs have higher binding energies with two
key residues (K353 and G496).

MATERIALS AND METHODS

Materials
Three VDA datasets were provided by Peng et al. (2021). Dataset
1 contains 96 VDAs from 11 viruses and 78 drugs. Dataset 2
contains 770 VDAs from 69 viruses to 128 drugs. Dataset 3
contains 407 VDAs from 34 viruses and 203 drugs. The virus
sequences and drug chemical structures can be downloaded from
the NCBI (Sayers et al., 2021) and DrugBank (Wishart et al., 2018)
databases, respectively. Virus sequence similarity matrix Sv and
drug chemical structure similarity matrix Sd can be computed
by MAFFT (Katoh et al., 2019) and RDKit (Landrum, 2021),
respectively. The details are shown in Table 1.

All virus-drug pairs in a dataset can be characterized as a
matrix Y :

Yij =

{
1 if vi associates with dj
0 otherwise

(1)

where vi and dj represent the ith virus and jth drug, respectively.

Problem Formalization
Given virus similarity matrix Sv, drug similarity matrix Sd, and
VDA matrix Y , our task is to quantify the interplays between
viruses and drugs, which can be divided into four scenarios: (1)
known virus-known drug association, that is, a virus associates
with no less than one drug and a drug associates with no less
than one virus; (2) known virus-new drug association, that is, a
virus interacts with at least one drug and a new drug does not
interact with any virus; (3) new virus-known drug association,
that is, a new virus does not associate with any drug and a
drug interacts with at least one virus; (4) new virus-new drug
association, that is, both virus and drug have no any association
information. Our goal is to exploit a novel model to boost the
VDA prediction performance. In particular, the model assigns
an association probability to a virus-drug pair to measure the
likelihood of interplay between the virus and the drug. The higher
the probability is, the more likely the virus and the drug are
associated with each other. Figure 1 illustrates the flowchart of
the VDA-KLMF model.

Gaussian Kernel Construction
SARS-CoV-2 is a new single strand RNA virus and has no any
associated drug. That is, there may exist the scenario of new virus
(for example, SARS-CoV-2) and new drug when a VDA dataset is
split during cross validations. The nearest neighbor information

TABLE 1 | Statistics for three VDA networks.

Datasets Viruses Drugs VDAs

Dataset 1 12 78 96

Dataset 2 69 128 770

Dataset 3 34 203 407

of a virus/drug contributes to prioritizing VDAs related to the
virus/drug. To find interacting drugs for a virus vi, its Gaussian
kernel is constructed as follows.

First, its association profile is computed based on its nearest
neighbor information by Eq. (2):

Ya
v
(
i, j
)
=

∑
kεni

Y
(
k, j
)
× Sv

(
i, k
)

kεni (2)

where ni represents nearest neighbors of vi, and k is a hyper-
parameter and denotes the number of nearest neighbors of vi.

Second, the computed association profile is normalized by Eq.
(3):

Yn
v
(
i, j
)
=

Ya
v
(
i, j
)∑

kεni
Sv
(
i, k
) kεni (3)

Finally, Gaussian kernel KGIP
v of viruses is calculated via the

normalized association profiles by Eq. (4):

KGIP
v

(
vi, vj

)
= exp

(
−

∣∣∣∣Yn
v
(
i, k
)
−Yn

v
(
i, j
)∣∣∣∣2

σ

)
(4)

where σ is the kernel bandwidth. Similarly, Gaussian kernel KGIP
d

of drugs can be computed.

Similarity Kernel Construction
Sequence information of viruses and chemical structure
information of drugs help VDA candidate screening. To
comprehensively consider these data, original two similarity
matrices are transformed into two kernel matrices (Ksym

v and
Ksym

d ). First, original virus similarity matrix is converted to a
symmetric matrix Ssym

v by Eq. (5):

Ssym
v =

1
2

(
Sv + ST

v

)
(5)

Then, the symmetrized matrix Ssym
v is transformed into a

positive semi-definite matrix Ksym
v by Eq. (6):

Ksym
v = Ssym

v + εI (6)

where I is an identity matrix, and ε is a parameter. Similarly, Ksym
d

can be calculated.

Similarity Diffusion
For a virus, its Gaussian kernel only depicts the similarities
between the virus and its k nearest neighbors, the remaining
information is discarded. To characterize virus features, inspired
by a kernel technique proposed by Hao et al. (2016), we diffused
two different types of virus similarity into a final kernel matrix.

First, the local virus similarity matrices are built based on
Gaussian kernel and similarity kernel by Eqs (7) and (8),
respectively:

LGIP
v

(
i, j
)
=


KGIP

v (i,j)∑
kεni

KGIP
v (i,k)

j εni

0 otherwise
(7)
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Lseq
v
(
i, j
)
=


Ksym

v (i,j)∑
kεni

Ksym
v (i,k)

j εni

0 otherwise
(8)

Second, the global virus similarity matrices GGIP
v and Gseq

v are
produced by iteratively updating by Eqs. (9) and (10).

GGIP
v

(
h + 1

)
= LGIP

v Gseq
v
(
h
) (
LGIP

v
)T (9)

Gseq
v
(
h + 1

)
= Lseq

v GGIP
v

(
h
) (
Lseq

v
)T (10)

where GGIP
v (h + 1) and Gseq

v (h + 1) represent global Gaussian
kernel and similarity kernel matrices generated at h-th iteration,
respectively. And GGIP

v (1) = Ksym
v and Gseq

v (1) = KGIP
v .

Finally, virus similarity matrix Mv is integrated by Eq. (11):

Mv =
1
2
(GGIP

v
(
h + 1

)
+ Gseq

v
(
h + 1

)
) (11)

Similarly, drug similarity matrix Md can be computed.

Methods
After the diffused virus similarity matrix Mv and drug similarity
matrix Md are computed, a Logistic Matrix Factorization model
(VDA-KLMF) with Kernel diffusion (Liu et al., 2020) is then
designed for VDA discovery. Viruses and drugs are first randomly
mapped into two latent vector spaces AεRm × r and BεRn × r

with the dimension of r. And association probability for each
virus-drug pair can be calculated by Eq. (12):

P =
exp

(
αABT

+ βMvABT
+ γABTMd

)
1 + exp

(
αABT + βMvABT + γABTMd

) (12)

where α,β, and γ are smoothing coefficients with the summation
of 1, BT denotes the transpose of B. Inspired by the method
provided by Liu et al. (2016), under the assumption that all
samples are independent, interplays between viruses and drugs
can be rewritten by assigning each known VDA as a confident
value of c by Eq. (13):

p (Y | A,B) =
m∏

i = 1

n∏
j = 1

P
cYij
ij (1−Pij)

1−Yij (13)

where Pij denotes association probability between the i-th virus
and the j-th drug. Known VDAs are validated by wet experiments
and more reliable, therefore, c is assigned as a higher value.
Assume that the two vectors follow the zero-mean spherical
Gaussian distribution defined by Eqs. (14) and (15):

p
(
A
∣∣ σ2

v
)
=

m∏
i = 1

N
(
ai
∣∣ 0, σ2

vI
)

(14)

p
(
B
∣∣ σ2

d
)
=

n∏
j = 1

N
(
bj
∣∣ 0, σ2

dI
)

(15)

where σ2
v and σ2

d are two parameters used to control the variances
of Gaussian distribution, ai and bj refer to potential variables

for the i-th virus and the j-th drug, respectively. I is an identity
matrix. We can obtain the following distribution based on the
Bayesian inference by Eq. (16):

p
(
A,B

∣∣ Y, σ2
v, σ

2
d
)
∝ p (Y | A,B) p

(
A
∣∣ σ2

v
)

p
(
B
∣∣ σ2

d
)

(16)

The log formula of the posterior distribution can be
represented as Eq. (17):

ln p
(
A,B

∣∣ Y, σ2
v, σ

2
d
)

=

∑
i,j

(cY◦(αABT
+ βMVABT

+ γABTMD)

− (1 + cY−Y) ◦ ln[1 + exp(αABT
+ βMVABT

+ γABTMD)])

−
λA

2

m∑
i = 1

||ai||
2
2−

λB

2

n∑
j = 1

∣∣∣∣bj
∣∣∣∣2

2 + C (17)

where λA =
1
σ2

v
, λB =

1
σ2

d
, ||·||22 represents the spectral

norm, and ◦ denotes the Hadamard product. Thus the latent
variable virus matrix A and drug matrix B can be generated by
maximizing an objective function defined by Eq. (18):

maxA,B
∑

i,j

(cY◦
(
αABT

+ βMVABT
+ γABT MD

)
−

(1 + cY−Y) ◦ ln
[

1 + exp
((

αABT
+ βMVABT

+ γABTMD

))]
−

λA

2
||A||2F−

λB

2
||B||2F (18)

where ||·||2F represents the Frobenius norm.
According to the work provided by Liu et al. (2016), A and B

can be solved by Eqs. (19) and (20):

∂LL
∂A
= c

(
αI + βMT

v

)
YB

+ γ (cY−R)MT
dB−

(
αI + βMT

v

)
RB−λAA (19)

∂LL
∂B
= c (αI + γMd)YTA

+ β
(

cYT
−RT

)
MvA− (αI + γMd)RTA−λAB (20)

where R = (1 + cY−Y) ◦ 1
1 + exp(−(αABT + βMvABT + γABTMd))

,
A and B can be updated based on the AdaGrad algorithm
(Duchi et al., 2011).

Molecular Docking
Molecular docking is utilized to measure dynamics and binding
energies between the predicted antiviral compounds against
SARS-CoV-2 and the junction of the S protein-ACE2 interface.
Similar to the molecular docking process provided by Peng
et al. (2021), we first downloaded structures of the S protein
and ACE2 and chemical structures of drugs from the RCSB
Protein Data Bank (Rose et al., 2016) and the DrugBank
databases (Wishart et al., 2018), respectively. Second, solvent and
organic compounds were removed and the receptor proteins were
preprocessed based on PyMOL (Schrodinger, 2010). Third, atoms
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FIGURE 1 | The flowchart of the VDA-KLMF framework.

from receptors were set to the AD4 type. Finally, AutoDock
was applied to implement molecular docking. During docking,
the predicted anti-COVID-19 drugs was used as ligands and

the junction of the S protein-ACE2 interface was taken as
receptor. Binding pocket was set via AutoGrid4, the grid size was
126× 126× 126, and Lamarckian genetic algorithm was selected
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TABLE 2 | The optimal parameter combinations of six VDA prediction methods.

Method Dataset 1 Dataset 2 Dataset 3

NGRHMDA α = 0.4, β = 0.8 α = 0.6, β = 0.9 α = 0.9, β = 0.9

LRLSHMDA µM = 0.9, µD = 0.3 µM = 0.8,
µD = 0.1

µM = 0.6,
µD = 0.1

NRLMF r = 8, β = 1, α = 4,
θ = 0.5,

λt = λd = 0.03125

r = 5, β = 1,
α = 4,

θ = 0.125,
λt = λd = 2

r = 10, β = 1,
α = 4, θ = 0.25,

λt = λd = 2

VDA-KATZ β = 0.04,
w1 = w2 = 0.9,
γ
′

v = γ
′

d = 2.5

β = 0.06,
w1 = w2 = 0.3,
γ
′

v = γ
′

d = 1.0

β = 0.05,
w1 = w2 = 0.7,
γ
′

v = γ
′

d = 2.5

VDA-RWR r = 0.7, µ = 0.9,
α = 0.5

r = 0.5, µ = 0.9,
α = 0.9

r = 0.7, µ = 0.9,
α = 0.9

VDA-KLMF r = 6, c = 10,
α = 0.1, λA = 1,
λB = 4, K = 7

r = 45, c = 8,
α = 0.2, λA = 3,
λB = 2, K = 10

r = 35, c = 10,
α = 0.8, λA = 6,
λB = 5, K = 9

as the search method. The detailed processes were set the same as
ones provided by Peng et al. (2021).

RESULTS

Experimental Settings and Evaluation
Metrics
We perform experiments to evaluate the performance of the
VDA-KLMF method. Given a VDA matrix Yn × m between n
viruses and m drugs, inspired by Cross Validation (CV) provided
by Peng et al. (Peng et al., 2021), three different 5-fold CVs,
CV on viruses (CV1), CV on drugs (CV2), and CV on virus-
drug pairs (CV3), are implemented. Under CV1, in each round,
80% viruses are used to train VDA prediction models and the
remaining 20% of viruses are used to test the performance of
these models. Under CV2, in each round, 80% drugs are used to
train VDA prediction models and the remaining 20% of drugs

are used to test their performance. Under CV3, in each round,
80% VDAs are used to train VDA prediction models and the
remaining 20% of VDAs are used to test their performance. The
three CVs correspond to VDA prediction for a new virus, a new
drug, or based on known VDA data.

The number of iterations h is set as 100. The confident level c of
known VDA, the number of neighbors k, weights λA, and λB are
set in the range of [3, 10], [1, 10], [1, 10], and [1, 10], respectively.
We repeatedly implemented experiments for 100 times and used
random search approach to select the optimal parameters. The
optimal parameter combinations of VDA-KLMF and other five
VDA prediction methods (NGRHMDA, LRLSHMDA, NRLMF,
VDA-KATZ, and VDA-RWR) are shown in Table 2.

Recall (sensitivity), specificity, precision, F1 score, AUC, and
AUPR are used to assess the performance of six VDA prediction
approaches (VDA-KLMF, NGRHMDA, LRLSHMDA, NRLMF,
VDA-KATZ, and VDA-RWR). Recall (sensitivity) indicates the
ratio of correctly predicted positive VDAs to all known positive
VDAs. Precision represents the ratio of correctly predicted VDAs
to all predicted positive VDAs. Specificity denotes the ratio of
correctly predicted negative VDAs to all known negative VDAs.
F1 Score is the harmonic mean of recall and precision. The four
evaluation metrics are defined as follows:

Recall =
TP

TP + FN
(21)

Specificity =
TN

TN + FP
(22)

Precision =
TP

TP + FP
(23)

F1score =
2TP

2TP + FP + FN
(24)

where TP, FP, TN and FN denote true positive, false positive,
true negative and false negative, respectively. AUC is the average
area under the Receiver Operating Characteristics (ROC) curve.

TABLE 3 | The performance of six VDA prediction methods on three datasets under CV1.

Datasets Methods Recall Specificity Precision F1 score AUC AUPR

Dataset 1 NGRHMDA 0.7278 ± 0.0411 0.3997 ± 0.0071 0.0366 ± 0.0024 0.0643 ± 0.0039 0.7026 ± 0.0411 0.4048 ± 0.0407
LRLSHMDA 0.1299 ± 0.0272 0.6170 ± 0.0034 0.0047 ± 0.0005 0.0084 ± 0.0009 0.1844 ± 0.0307 0.0121 ± 0.0001

NRLMF 0.4933 ± 0.0072 0.6494 ± 0.0248 0.1572 ± 0.0168 0.1842 ± 0.0159 0.6621 ± 0.0260 0.1827 ± 0.0180
VDA-KATZ 0.2616 ± 0.0499 0.5407 ± 0.0125 0.0125 ± 0.0015 0.0184 ± 0.0023 0.2683 ± 0.0543 0.0248 ± 0.0023
VDA-RWR 0.4977 ± 0.0132 0.7863 ± 0.0127 0.0830 ± 0.0146 0.1055 ± 0.0111 0.8157 ± 0.0130 0.1090 ± 0.0266
VDA-KLMF 0.6460 ± 0.0702 0.5122 ± 0.0081 0.1640 ± 0.0228 0.2139 ± 0.0273 0.7495 ± 0.0575 0.2538 ± 0.0598

Dataset 2 NGRHMDA 0.3987 ± 0.0107 0.5823 ± 0.0085 0.0461 ± 0.0007 0.0329 ± 0.0011 0.4301 ± 0.0098 0.0236 ± 0.0040
LRLSHMDA 0.3507 ± 0.0077 0.4585 ± 0.0047 0.0435 ± 0.0001 0.0179 ± 0.0003 0.3173 ± 0.0053 0.0122 ± 0.0001

NRLMF 0.5156 ± 0.0023 0.6303 ± 0.0134 0.1541 ± 0.0086 0.1895 ± 0.0078 0.6545 ± 0.0100 0.1614 ± 0.0094
VDA-KATZ 0.5912 ± 0.0080 0.3143 ± 0.0039 0.0122 ± 0.0002 0.0232 ± 0.0003 0.3981 ± 0.0073 0.0142 ± 0.0001
VDA-RWR 0.5106 ± 0.0025 0.6840 ± 0.0079 0.0620 ± 0.0025 0.0844 ± 0.0021 0.6932 ± 0.0074 0.0658 ± 0.0030
VDA-KLMF 0.7872 ± 0.0167 0.5279 ± 0.0018 0.1953 ± 0.0067 0.2618 ± 0.0089 0.8149 ± 0.0181 0.3487 ± 0.0224

Dataset 3 NGRHMDA 0.4435 ± 0.0207 0.4699 ± 0.0122 0.0124 ± 0.0009 0.0232 ± 0.0017 0.4058 ± 0.0228 0.0817 ± 0.0158
LRLSHMDA 0.1801 ± 0.0099 0.5777 ± 0.0021 0.0017 ± 0.0001 0.0074 ± 0.0003 0.2920 ± 0.0100 0.0077 ± 0.0001

NRLMF 0.5416 ± 0.0056 0.7266 ± 0.0201 0.1931 ± 0.0132 0.2086 ± 0.0119 0.7591 ± 0.0146 0.2279 ± 0.0174
VDA-KATZ 0.5712 ± 0.0185 0.3631 ± 0.0025 0.0117 ± 0.0005 0.0216 ± 0.0010 0.4639 ± 0.0173 0.0131 ± 0.0005
VDA-RWR 0.5270 ± 0.0057 0.7021 ± 0.0115 0.0355 ± 0.0076 0.0812 ± 0.0071 0.7276 ± 0.0118 0.0372 ± 0.0092
VDA-KLMF 0.8040 ± 0.0373 0.5179 ± 0.0029 0.1459 ± 0.0127 0.2044 ± 0.0172 0.8224 ± 0.0406 0.3431 ± 0.0499

The best results are denoted in bold in each column.
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TABLE 4 | The performance of six VDA prediction methods on three datasets under CV2.

Datasets Methods Recall Specificity Precision F1 score AUC AUPR

Dataset 1 NGRHMDA 0.6435 ± 0.0185 0.6713 ± 0.0112 0.0468 ± 0.0012 0.0850 ± 0.0021 0.8329 ± 0.0031 0.0674 ± 0.0074

LRLSHMDA 0.7938 ± 0.0069 0.5762 ± 0.0049 0.0695 ± 0.0014 0.1122 ± 0.0014 0.8249 ± 0.0064 0.3127 ± 0.0240

NRLMF 0.6069 ± 0.0085 0.7454 ± 0.0165 0.4052 ± 0.0125 0.3648 ± 0.0105 0.8409 ± 0.0106 0.5510 ± 0.0214

VDA-KATZ 0.6889 ± 0.0120 0.6348 ± 0.0162 0.0925 ± 0.0168 0.1328 ± 0.0170 0.8419 ± 0.0096 0.3896 ± 0.0140

VDA-RWR 0.5070 ± 0.0094 0.8935 ± 0.0027 0.1393 ± 0.0052 0.1294 ± 0.0047 0.9182 ± 0.0023 0.1576 ± 0.0062

VDA-KLMF 0.9148 ± 0.0078 0.5459 ± 0.0028 0.3088 ± 0.0057 0.3801 ± 0.0056 0.9647 ± 0.0086 0.7928 ± 0.0375

Dataset 2 NGRHMDA 0.4867 ± 0.0116 0.8504 ± 0.0022 0.0395 ± 0.0005 0.0719 ± 0.0008 0.8017 ± 0.0008 0.0567 ± 0.0020

LRLSHMDA 0.7720 ± 0.0036 0.4152 ± 0.0034 0.0085 ± 0.0007 0.0639 ± 0.0012 0.7334 ± 0.0029 0.1074 ± 0.0058

NRLMF 0.5477 ± 0.0026 0.7476 ± 0.0094 0.2669 ± 0.0062 0.2787 ± 0.0046 0.7848 ± 0.0061 0.2916 ± 0.0079

VDA-KATZ 0.5913 ± 0.0082 0.5699 ± 0.0107 0.0427 ± 0.0005 0.0696 ± 0.0004 0.6886 ± 0.0033 0.1086 ± 0.0052

VDA-RWR 0.5045 ± 0.0020 0.7982 ± 0.0029 0.0454 ± 0.0007 0.0814 ± 0.0010 0.8025 ± 0.0029 0.0460 ± 0.0007

VDA-KLMF 0.8413 ± 0.0063 0.5327 ± 0.0007 0.2309 ± 0.0041 0.3003 ± 0.0038 0.8740 ± 0.0069 0.5174 ± 0.0241

Dataset 3 NGRHMDA 0.4579 ± 0.0155 0.7070 ± 0.0042 0.0227 ± 0.0003 0.0279 ± 0.0007 0.6772 ± 0.0024 0.0351 ± 0.0015

LRLSHMDA 0.7420 ± 0.0063 0.5235 ± 0.0020 0.0241 ± 0.0002 0.0493 ± 0.0005 0.7468 ± 0.0054 0.0623 ± 0.0067

NRLMF 0.5592 ± 0.0056 0.7424 ± 0.0114 0.2449 ± 0.0079 0.2390 ± 0.0059 0.7847 ± 0.0075 0.2989 ± 0.0130

VDA-KATZ 0.7246 ± 0.0068 0.3995 ± 0.0058 0.0297 ± 0.0002 0.0491 ± 0.0004 0.6840 ± 0.0058 0.0964 ± 0.0034

VDA-RWR 0.5054 ± 0.0082 0.8087 ± 0.0064 0.0815 ± 0.0013 0.0628 ± 0.0019 0.8168 ± 0.0048 0.1002 ± 0.0013

VDA-KLMF 0.8935 ± 0.0112 0.5245 ± 0.0011 0.1810 ± 0.0035 0.2511 ± 0.0046 0.9185 ± 0.0119 0.5254 ± 0.0261

The best results are denoted in bold in each column.

TABLE 5 | The performance of six VDA prediction methods on three datasets under CV3.

Datasets Methods Recall Specificity Precision F1 score AUC AUPR

Dataset 1 NGRHMDA 0.5783 ± 0.0141 0.5582 ± 0.0160 0.0335 ± 0.0013 0.0615 ± 0.0024 0.6459 ± 0.0155 0.0410 ± 0.0035

LRLSHMDA 0.8034 ± 0.0117 0.5804 ± 0.0050 0.0696 ± 0.0015 0.1119 ± 0.0017 0.8403 ± 0.0099 0.2838 ± 0.0212

NRLMF 0.6482 ± 0.0073 0.7665 ± 0.0127 0.4330 ± 0.0143 0.3961 ± 0.0120 0.8679 ± 0.0092 0.6511 ± 0.0171

VDA-KATZ 0.6976 ± 0.0118 0.6639 ± 0.0168 0.1067 ± 0.0101 0.1517 ± 0.0112 0.8803 ± 0.0106 0.3513 ± 0.0144

VDA-RWR 0.4824 ± 0.0089 0.8353 ± 0.0100 0.1110 ± 0.0077 0.1153 ± 0.0058 0.8582 ± 0.0097 0.1268 ± 0.0100

VDA-KLMF 0.8924 ± 0.0094 0.5440 ± 0.0008 0.3001 ± 0.0040 0.3670 ± 0.0055 0.9392 ± 0.0103 0.7631 ± 0.0259

Dataset 2 NGRHMDA 0.4544 ± 0.0053 0.3643 ± 0.0099 0.0112 ± 0.0002 0.0218 ± 0.0005 0.3011 ± 0.0055 0.0121 ± 0.0002

LRLSHMDA 0.7838 ± 0.0050 0.4837 ± 0.0060 0.0757 ± 0.0008 0.0733 ± 0.0014 0.8248 ± 0.0020 0.0731 ± 0.0019

NRLMF 0.5565 ± 0.0024 0.7782 ± 0.0057 0.3000 ± 0.0046 0.3046 ± 0.0033 0.8146 ± 0.0030 0.3335 ± 0.0062

VDA-KATZ 0.5512 ± 0.0069 0.7558 ± 0.0124 0.0464 ± 0.0009 0.0805 ± 0.0013 0.8296 ± 0.0023 0.0834 ± 0.0028

VDA-RWR 0.5022 ± 0.0016 0.6651 ± 0.0052 0.0326 ± 0.0008 0.0574 ± 0.0011 0.6675 ± 0.0049 0.0328 ± 0.0010

VDA-KLMF 0.8255 ± 0.0033 0.5311 ± 0.0003 0.2077 ± 0.0016 0.2829 ± 0.0016 0.8568 ± 0.0036 0.3766 ± 0.0076

Dataset 3 NGRHMDA 0.3582 ± 0.0165 0.4423 ± 0.0208 0.0071 ± 0.0002 0.0119 ± 0.0005 0.2554 ± 0.0088 0.0078 ± 0.0006

LRLSHMDA 0.8124 ± 0.0051 0.5237 ± 0.0023 0.0312 ± 0.0004 0.0552 ± 0.0008 0.8169 ± 0.0048 0.1057 ± 0.0103

NRLMF 0.5890 ± 0.0038 0.8028 ± 0.0076 0.3391 ± 0.0071 0.3191 ± 0.0057 0.8572 ± 0.0048 0.4155 ± 0.0107

VDA-KATZ 0.7116 ± 0.0166 0.5564 ± 0.0302 0.0359 ± 0.0010 0.0626 ± 0.0015 0.8478 ± 0.0042 0.0847 ± 0.0034

VDA-RWR 0.5053 ± 0.0031 0.7049 ± 0.0068 0.0369 ± 0.0025 0.0556 ± 0.0024 0.7123 ± 0.0067 0.0374 ± 0.0028

VDA-KLMF 0.8631 ± 0.0072 0.5224 ± 0.0004 0.1631 ± 0.0023 0.2331 ± 0.0025 0.8861 ± 0.0076 0.3906 ± 0.0158

The best results are denoted in bold in each column.

The ROC curve is the plot of true positive ratio as a function
of false positive ratio when the threshold to capture VDAs
from the ranking varies. AUPR is the area under the Precision-
Recall (PR) curve. The PR curve is the plot of true positive
ratios among all predicted positive VDAs for each given recall
value. AUPR provides a quantitative measurement of how well,
on average, inferred association probabilities of positive VDAs
are separated from the probabilities of negative VDAs. Higher
recall, specificity, precision, F1 score, AUC and AUPR illustrate
better performance. AUC and AUPR are two more important
evaluation criterions compared to other four metrics.

Performance Evaluation Under Three
Five-Fold Cross Validations
VDA-KLMF is compared with NGRHMDA (Huang et al., 2017),
LRLSHMDA (Wang et al., 2017), NRLMF (Liu et al., 2016), VDA-
KATZ (Zhou et al., 2020), and VDA-RWR (Peng et al., 2021). The
former three methods are representative association prediction
approaches. NGRHMDA fused collaborative filtering and graph-
based scoring. LRLSHMDA utilized a Laplacian regularized
least square classifier. NRLMF used a neighborhood regularized
Logistic matrix factorization model. The remaining two methods
are state-of-the-art VDA prediction models. The two methods
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used the KATZ measurement and random walk with restart to
prioritize anti-SARS-CoV-2 drugs, respectively. The experiments
are repeated for 20 times and the final performance is averaged
for 20 times. The results are shown in Tables 3–5. The best
performance obtained from the six VDA prediction methods in
each dataset is denoted in bold in each column.

Table 3 lists the performance of six VDA identification models
under CV1. It can be observed that VDA-KLMF computes
the best recall, AUC, and AUPR, significantly outperforming
NGRHMDA, LRLSHMDA, NRLMF, VDA-KATZ, and VDA-
RWR on datasets 2 and 3. On dataset 1, VDA-KLMF
calculates slightly lower recall, specificity, AUC, and AUPR than
NGRHMDA and VDA-RWR. However, on dataset 2 and 3,
VDA-KLMF obtains much better performance than the two
approaches. It may be resulted in by small sample feature of
dataset 1. The results demonstrate that abundant data can boost
the prediction performance of VDA inference algorithms.

More importantly, the performance achieved by six VDA
prediction models under CV1 is relatively lower than those of
CV2 and CV3. The reason may be that there is a completely
unknown virus in the three datasets, SARS-CoV-2, which does

not show any associated drugs and thus decreases the prediction
ability of these algorithms. Under the situation that few of
any unlabeled drug for a new virus exists, VDA-KLMF can
calculate the best AUCs of 0.8149 and 0.8224 and the best AUPRs
of 0.3487 and 0.3431 on datasets 2 and 3, respectively. The
result suggests that VDA-KLMF can be effectively applied to
prioritize potential small molecules for a new virus, especially
SARS-CoV-2.

Table 4 gives the performance of six VDA identification
algorithms on the three VDA datasets under CV2. VDA-KLMF
computes the best recall, F1 score, AUC and AUPR on all
three datasets, much better than other five VDA techniques. For
example, AUCs computed by VDA-KLMF are better 13.18, 13.98,
12.38, 12.28, and 4.65% than NGRHMDA, LRLSHMDA, NRLMF,
VDA-KATZ, and VDA-RWR on dataset 1, respectively. It is
better 7.23, 14.06, 8.92, 18.54, and 7.15% on dataset 2 and 24.13,
17.17, 13.38, 23.45, and 10.17% on dataset 3. AUPRs achieved
from VDA-KLMF outperform 72.54, 48.01, 24.18, 40.32, and
63.52% compared to NGRHMDA, LRLSHMDA, NRLMF, VDA-
KATZ, and VDA-RWR on dataset 1, respectively. Its performance
outperforms 46.07, 41.00, 22.58, 40.88, and 47.14 on dataset

FIGURE 2 | The AUC values predicted by six VDA prediction methods (D denotes dataset, Dl denotes dataset 1, D2 denotes dataset 2, D3 denotes dataset 3).
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2 and 49.03, 46.31, 22.65, 42.90, and 42.52% on dataset 3.
The comparative results demonstrate the superior prediction
ability of VDA-KLMF for identifying possible viruses associated
with a new drug.

Table 5 shows recall, specificity, precision, F1 score, AUC,
AUPR computed by six VDA prediction models on the
three datasets under CV3. It can be seen that VDA-KLMF
still obtains the best performance in terms of recall and
AUC on the three datasets. Under CV3, NRLMF computes
the best precision and F1 score on all datasets and is
the second-best method. In particular, compared to NRLMF,
recall obtained by VDA-KLMF is better 24.42, 26.90, and
27.41% on datasets 1–3, respectively. AUCs calculated by
VDA-KLMF are better 6.14, 4.22, and 2.89%, respectively.
AUPRs achieved from VDA-KLMF are better 11.20, and
4.31% on datasets 1–2, respectively. The results suggest
that VDA-KLMF can effectively improve VDA prediction
performance based on known VDAs.

Under CV1, NGRHMDA calculates AUCs of 0.7026, 0.4301,
and 0.4058 on three datasets, respectively. Under CV2, it
computes AUCs of 0.8329, 0.8017, and 0.6772, respectively.
Under CV3, it calculates AUCs of 0.6459, 0.3011, and 0.2554,
respectively. Under CV1 and CV3, NGRHMDA computes AUCs

smaller than 0.5 on datasets 2 and 3. In contrast, if we re-draw
the ROC curve, it will obtain AUCs larger than 0.5 on the two
datasets under CV1 and CV3. However, its computed AUCs
will be smaller than 0.5 under CV2. Similarly, LRLSHMDA and
VDA-KATZ compute AUCs smaller than 0.5 on three datasets
under CV1, and ones larger than 0.5 under CV2 and CV3. In
contrast, if we re-graph the ROC curve, the two methods will
compute AUCs larger than 0.5 under CV1 and ones smaller
than 0.5 under CV2 and CV3. It may be caused by their poor
generalization ability.

In addition, VDA-KLMF computes the slightly smaller
specificity. However, specificity indicates the ratio of correctly
predicted negative VDAs to all known negative VDAs. For anti-
COVID-19 drug screening, it is possible anti-COVID-19 drugs
that we need to capture. Therefore, it is more significant to
find correctly predicted positive VDAs than correctly predicted
negative VDAs. That is, sensitivity (recall) and precision are
much more important than specificity. More importantly, under
majority of situations, VDA-KLMF computes better AUCs
and AUPRs, demonstrating relatively strong VDA prediction
performance of VDA-KLMF. Figures 2, 3 depict the AUC and
AUPR values calculated by six VDA prediction algorithms on
three datasets under three different CVs, respectively.

FIGURE 3 | The AUPR values predicted by six VDA prediction methods (D denotes dataset, DI denotes dataset 1, D2 denotes dataset 2, D3 denotes dataset 3).
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FIGURE 4 | Effect of Gaussian kernel on virus-drug association prediction performance.

Effect of Gaussian Kernel on Virus-Drug
Association Prediction Performance
In the VDA-KLMF model, logistic matrix factorization model
with kernel diffusion integrates Gaussian kernel and biological
similarity kernel including sequence similarity of viruses and
chemical structure similarity of drugs. Gaussian kernel fully
utilizes the nearest neighbor information of viruses and drugs.
We investigated VDA prediction performance of logistic matrix
factorization model considering kernel diffusion with Gaussian
kernel and biological similarity kernel (VDA-KLMF) and only
considering biological similarity (VDA-LMFB). The results are
shown in Figure 4. From Figure 4, we can find that kernel
diffusion contributes to improving VDA identification ability.

Effect of Different r-Values on the
Performance of Virus-Drug
Associations-Logistic Matrix
Factorization Model
In the VDA-KLMF model, viruses and drugs are randomly
mapped into two latent vector spaces AεRm × r and BεRn × r

with the dimension of r. To evaluate the effect of different
r-values on the prediction performance, we compared the

performance of VDA-KLMF under different settings. Table 6
illustrates the comparison results of VDA-KLMF on three
datasets under CV3. On dataset 1, we set r in the range of
[2, 30] with the interval of 1. The results show that VDA-
KLMF obtains the best prediction ability when r is set to 6.
On datasets 2 and 3, we set r in the range of [5, 100] with
the interval of 5. The results suggest that VDA-KLMF computes
the best performance when r is set to 45 and 35, respectively.
Therefore, the dimension r is set to 6, 45, and 35 on the three
datasets, respectively.

Case Study
We wanted to identify potential chemical agents for preventing
COVID-19 after confirming the powerful prediction ability of
VDA-KLMF. We prioritized the top 10 compounds associated
with SARS-CoV-2 on the three datasets. The results are shown
in Tables 7–9, respectively. Among the top 10 small molecules
with the highest association rankings with SARS-CoV-2, the
majority of anti-SARS-CoV-2 drugs have been validated by
current literatures. The results in Tables 7–9 show that there are
seven available anti-SARS-CoV-2 compounds coming together
on any two datasets, that is, remdesivir, ribavirin, nitazoxanide,
favipiravir, emetine, chloroquine, and mycophenolic acid.
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TABLE 6 | The effect of different r on VDA-KLMF on three datasets under CV3.

Datasets Methods Recall Precision F1 score AUC AUPR

Dataset 1 r = 2 0.8668 ± 0.0079 0.2794 ± 0.0034 0.3471 ± 0.0044 0.9105 ± 0.0088 0.6174 ± 0.0222

r = 3 0.8820 ± 0.0098 0.2942 ± 0.0040 0.3614 ± 0.0043 0.9276 ± 0.0109 0.7205 ± 0.0258

r = 4 0.8869 ± 0.0096 0.2986 ± 0.0043 0.3657 ± 0.0051 0.9331 ± 0.0106 0.7506 ± 0.0255

r = 5 0.8896 ± 0.0056 0.2994 ± 0.0036 0.3661 ± 0.0046 0.9360 ± 0.0062 0.7614 ± 0.0209

r = 6 0.8924 ± 0.0094 0.3001 ± 0.0040 0.3670 ± 0.0055 0.9392 ± 0.0103 0.7631 ± 0.0259

r = 7 0.8887 ± 0.0121 0.2994 ± 0.0055 0.3659 ± 0.0070 0.9349 ± 0.0134 0.7654 ± 0.0292

r = 8 0.8874 ± 0.0100 0.2997 ± 0.0033 0.3658 ± 0.0043 0.9339 ± 0.0109 0.7650 ± 0.0209

r = 9 0.8895 ± 0.0111 0.2997 ± 0.0042 0.3659 ± 0.0056 0.9362 ± 0.0123 0.7568 ± 0.0208

r = 10 0.8845 ± 0.0139 0.2986 ± 0.0051 0.3649 ± 0.0071 0.9304 ± 0.0150 0.7600 ± 0.0275

r = 30 0.8839 ± 0.0086 0.2990 ± 0.0045 0.3653 ± 0.0052 0.9300 ± 0.0096 0.7592 ± 0.0243

Dataset 2 r = 5 0.8069 ± 0.0040 0.1965 ± 0.0026 0.2716 ± 0.0023 0.8363 ± 0.0044 0.3269 ± 0.0110

r = 10 0.8195 ± 0.0030 0.2042 ± 0.0018 0.2791 ± 0.0016 0.8502 ± 0.0033 0.3619 ± 0.0089

r = 15 0.8245 ± 0.0042 0.2070 ± 0.0021 0.2821 ± 0.0024 0.8556 ± 0.0046 0.3742 ± 0.0093

r = 20 0.8241 ± 0.0030 0.2067 ± 0.0018 0.2819 ± 0.0019 0.8553 ± 0.0033 0.3729 ± 0.0089

r = 25 0.8254 ± 0.0025 0.2072 ± 0.0014 0.2825 ± 0.0013 0.8567 ± 0.0004 0.3741 ± 0.0074

r = 30 0.8250 ± 0.0038 0.2074 ± 0.0016 0.2824 ± 0.0019 0.8562 ± 0.0042 0.3761 ± 0.0073

r = 35 0.8255 ± 0.0033 0.2070 ± 0.0017 0.2824 ± 0.0019 0.8568 ± 0.0035 0.3733 ± 0.0078

r = 40 0.8250 ± 0.0032 0.2071 ± 0.0018 0.2824 ± 0.0016 0.8562 ± 0.0035 0.3748 ± 0.0083

r = 45 0.8255 ± 0.0033 0.2077 ± 0.0016 0.2829 ± 0.0016 0.8568 ± 0.0036 0.3766 ± 0.0076

r = 50 0.8241 ± 0.0036 0.2063 ± 0.0021 0.2816 ± 0.0019 0.8552 ± 0.0040 0.3709 ± 0.0097

r = 100 0.8262 ± 0.0041 0.2074 ± 0.0024 0.2828 ± 0.0023 0.8575 ± 0.0045 0.3752 ± 0.0125

Dataset 3 r = 5 0.8401 ± 0.0065 0.1581 ± 0.0026 0.2252 ± 0.0027 0.8617 ± 0.0070 0.3620 ± 0.0184

r = 10 0.8458 ± 0.0081 0.1536 ± 0.0026 0.2244 ± 0.0023 0.8677 ± 0.0086 0.3276 ± 0.0161

r = 15 0.8458 ± 0.0081 0.1536 ± 0.0026 0.2244 ± 0.0023 0.8677 ± 0.0086 0.3276 ± 0.0161

r = 20 0.8577 ± 0.0083 0.1603 ± 0.0032 0.2298 ± 0.0034 0.8804 ± 0.0088 0.3695 ± 0.0208

r = 25 0.8636 ± 0.0061 0.1625 ± 0.0019 0.2326 ± 0.0021 0.8866 ± 0.0065 0.3836 ± 0.0131

r = 30 0.8583 ± 0.0089 0.1597 ± 0.0036 0.2296 ± 0.0039 0.8810 ± 0.0095 0.3657 ± 0.0235

r = 35 0.8631 ± 0.0072 0.1631 ± 0.0023 0.2331 ± 0.0025 0.8861 ± 0.0076 0.3906 ± 0.0158

r = 40 0.8574 ± 0.0078 0.1608 ± 0.0031 0.2306 ± 0.0029 0.8800 ± 0.0083 0.3757 ± 0.0211

r = 45 0.8622 ± 0.0047 0.1609 ± 0.0024 0.2312 ± 0.0020 0.8851 ± 0.0050 0.3710 ± 0.0182

r = 50 0.8567 ± 0.0064 0.1554 ± 0.0024 0.2273 ± 0.0023 0.8791 ± 0.0068 0.3351 ± 0.0149

r = 100 0.8585 ± 0.0048 0.1531 ± 0.0026 0.2238 ± 0.0023 0.8757 ± 0.0050 0.3199 ± 0.0222

The best results are denoted in bold in each column.

Remdesivir is an adenosine triphosphate analogue. It has
broad-spectrum antiviral activity and thus can be applied to the
treatment of various diseases resulted in by the Arenaviridae,
Flaviviridae, Filoviridae, Paramyxoviridae, Pneumoviridae,
and Coronaviridae viral families (Malin et al., 2020).
Remdesivir’s action against the Coronaviridae family makes
it as a potential therapeutic strategy for COVID-19
(Gordon et al., 2020). On 19 November 2020, the drug
in combination with baricitinib has been authorized to
the treatment of COVID-19 (Eastman et al., 2020; FDA,
2021).

Ribavirin is a synthetic guanosine nucleoside (American et al.,
2017). The small molecule can generate broad activity against
a few RNA and DNA viruses by inhibiting the synthesis of
viral mRNAs. It is widely applied to the treatment of hepatitis
C and viral hemorrhagic fevers and might be effective in the
early steps of viral hemorrhagic fevers (Myers et al., 2015;
Wishart et al., 2018).

Nitazoxanide is a broad anti-infective compound. The drug
can markedly modulate the survival, growth, and proliferation
of various intracellular and extracellular protozoa, helminths,
viruses, anaerobic and microaerophilic bacteria (Shakya et al.,
2017). It can inhibit the replication of a few RNA and DNA
viruses and has been investigated as a broad antiviral compound
(Wishart et al., 2018).

Molecular Docking
We conducted molecular dockings for the predicted antiviral
drugs and the junction of the S protein-ACE2 interface. The
binding energies between the predicted top 10 antiviral drugs
on three datasets and the junction are shown in Table 10.
From Table 10, we can observe that the identified top small
molecules show higher binding energies with the junction, where
nitazoxanide, mycophenolic acid, and zanamivir have the highest
binding abilities. In addition, the key residues between the
predicted seven compounds coming together on any two datasets

Frontiers in Microbiology | www.frontiersin.org 11 February 2022 | Volume 13 | Article 740382

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-740382 February 22, 2022 Time: 14:9 # 12

Tian et al. VDA-KLMF

and the junction are K68 and Q493 for remdesivir, R403, Q493,
K353, and G496 for ribavirin, Q493 and S494 for nitazoxanide,
K353 and G496 for favipiravir, T500 for emetine, H34 for
chloroquine, and H34, K353, F390, and G496 for mycophenolic
acid, respectively. The results suggest that K353 and G496 are
possible key residues between anti-SARS-CoV-2 drugs and the
junction of the S protein-ACE2 interface.

Molecular dockings between the predicted four possible
antiviral drugs against COVID-19 (remdesivir, ribavirin,
nitazoxanide, and emetine) and the junction are illustrated in
Figure 5, where two docking graphs [(a) remdesivir and (b)
ribavirin] were provided by Peng et al. (2020). The subfigure
in each circle denotes the residues at the junction and their

TABLE 7 | The predicted top 10 drugs associated with SARS-CoV-2 on dataset 1.

Rank Drug Evidence

1 Remdesivir PMID: 31996494,
32022370, 31971553,
32035018, 32035533,
32275812, 32145386,

32838064

2 Ribavirin PMID: 32127666,
32227493

3 Oseltamivir PMID: 32034637,
32127666

4 Zanamivir PMID: 32294562

5 Mycophenolic acid PMID: 32579258

6 Chloroquine PMID: 32020029,
32145363, 32074550,

32236562

7 Peramivir PMID: 32373347

8 Laninamivir Unconfirmed

9 Rimantadine PMID: 34344455

10 Presatovir PMID: 33818470

TABLE 8 | The predicted top 10 drugs associated with SARS-CoV-2 on dataset 2.

Rank Drug Evidence

1 Remdesivir PMID: 31996494,
32022370, 31971553,
32035018, 32035533,
32275812, 32145386,

32838064

2 Emetine PMID: 32251767

3 BCX4430 Galidesivir PMID: 31389664

4 Niclosamide PMID: 32361588,
33689873

5 Cyclosporine PMID: 32505466,
32243698

6 Silvestrol DOI:
10.1111/jcmm.15360

7 Mycophenolic acid PMID: 32579258

8 Favipiravir PMID: 32346491,
32967849, PMID:

32972430

9 Nitazoxanide PMID: 32127666,
32568620, 32448490

10 Navitoclax PMID: 33737523

corresponding orientations. Green denotes the structure of
ACE2 and cyan denotes the SARS-CoV-2 S protein.

DISCUSSION

Since the outbreak of COVID-19, we conducted several works
for initially screening possible drugs applied to this highly
contagious disease based on virus sequences, drug chemical
structures, and observed VDAs from existing data resources.
These works include VDA-RLSBN (Peng et al., 2020), VDA-
RWR (Peng et al., 2021), and the proposed VDA-KLMF methods.
VDA-RLSBN and VDA-RWR first utilized complete genomic
sequences of viruses and chemical structures of drugs. Second,
they developed computational models to detect underlying
associations between SARS-CoV-2 and small molecules. Finally,
they conducted molecular dockings between the predicted anti-
COVID-19 drugs and two target proteins including the S protein

TABLE 9 | The predicted top 10 drugs associated with SARS-CoV-2 on dataset 3.

Rank Drug Evidence

1 Nitazoxanide PMID: 32127666,
32568620, PMID:

32448490

2 Ribavirin PMID: 32127666,
32227493

3 Chloroquine PMID: 32020029,
32145363, 32074550,

32236562

4 Umifenovir DOI:
10.2174/092986732
766620041613111

5 Camostat PMID: 32347443

6 Favipiravir PMID: 32350860,
32967849, 33521757

7 Emetine PMID: 32251767

8 Amantadine PMID: 32361028

9 Hexachlorophene PMID: 32366720

10 Irbesartan Unconfirmed

TABLE 10 | Binding energy between the predicted antiviral drugs and the junction
of the S protein-ACE2 interface.

Drug Binding energy
(kcal/mol)

Drug Binding energy
(kcal/mol)

Remdesivir –7.00 BCX4430 Galidesivir –6.87

Ribavirin –6.59 Camostat –7.48

Nitazoxanide –7.74 Cyclosporine –8.92

Favipiravir –5.32 Hexachlorophene –7.67

Emetine –6.95 Irbesartan –8.13

Chloroquine –5.82 Laninamivir –5.7

Mycophenolic acid –7.0 Navitoclax –8.39

Rimantadine –6.63 Niclosamide –8.06

Silvestrol –5.54 Oseltamivir –6.5

Umifenovir –6.89 Peramivir –6.88

Zanamivir –5.96 Presatovir –8.38
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FIGURE 5 | Molecular dockings between the predicted four possible antiviral drugs against COV1D-19 (remdesivir, ribavinn, nitazoxanide, and emetine) and the
junction of the S protein-ACE2 interface. (A) remdesivir (Peng et al., 2021; Wang J. et al., 2021; Shen et al., 2022), (B) ribavirin (Peng et al., 2021; Wang J. et al.,
2021; Shen et al., 2022), (C) nitazoxanide, and (D) emetine.

and ACE2 to measure their binding ability. The two methods
effectively captured possible antiviral drugs against COVID-19.

In particular, VDA-KLMF integrates drug chemical structures,
virus sequences, known VDAs, Gaussian kernel, similarity kernel,
and logistic matrix factorization with kernel diffusion. It is
compared with two state-of-the-art VDA prediction models and
three classical association inference methods. The experimental
results illustrate that the proposed VDA-KLMF method obtains
powerful prediction performance.

SARS-CoV-2 is a new virus, that is, an orphan node in a
VDA network. It has no association with available drugs. To
capture underlying FDA-approved drugs against SARS-CoV-2,
VDA-KLMF computes sequence similarity between the virus
and other viruses and obtains a similarity matrix with the
elements in the range of (0,1). Based on sequence similarity
kernel and Gaussian kernel, VDA-KLMF can predict association

information for SARS-CoV-2 combining matrix factorization
model with kernel diffusion. The results show that four small
molecules, remdesivir, ribavirin, nitazoxanide, and emetine, have
higher binding energies with the junction of the S protein-
ACE2 interface.

VDA-KLMF computes superior prediction performance. It
has the following three characteristics. First, it effectively
integrates various biological information including global and
local similarities of viruses and drugs. Second, logistic matrix
factorization model with kernel diffusion more accurately
quantifies the interplays between viruses and drugs. Finally,
two key residues (K353 and G496) are found and need further
medical validation.

Compared to VDA-KLMF, VDA-RLSBN remains the
following four limitations: (i) Its prediction ability was only
validated on one dataset comprised of 96 VDAs between 12

Frontiers in Microbiology | www.frontiersin.org 13 February 2022 | Volume 13 | Article 740382

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-740382 February 22, 2022 Time: 14:9 # 14

Tian et al. VDA-KLMF

viruses and 78 drugs, which may possibly result in the overfitting
problem. (ii) It was only evaluated under CV3 and failed to
measure the performance under CVs on viruses and drugs,
thereby failures to investigate its generalization ability. (iii) It
found 10 potential small molecules against COVID-19 from 78
FDA-approved drugs on the constructed small dataset. Drugs
that may be applied to screen the clues of treatment for patients
with the infection of COVID-19 are relatively few ones. (iv) It
implemented molecular dockings between the identified small
molecules and the target proteins including the S protein and
ACE2, respectively. In comparison, our proposed VDA-KLMF
method use three datasets and is evaluated under CVs on viruses,
drugs and VDAs. In this context, VDA-KLMF obtains better
performance, thereby demonstrating its powerful generalization
ability. Moreover, VDA-KLMF screens possible anti-COVID-19
drugs coming together in any two datasets and the inferred results
may be more reliable than those from unique dataset. Finally,
VDA-KLMF conducts molecular dockings between the screened
drugs and the junction of the S protein-ACE2 interface, which
can more reasonably measure their binding abilities.

Similar to VDA-KLMF, VDA-RWR was also measured under
three CVs on three datasets. AUC and AUPR are two more
important evaluation metrics compared to recall, precision,
specificity, and F1 score. VDA-KLMF significantly outperforms
VDA-RWR under the above situations. The results illustrate
that VDA-KLMF can more precisely screen potential drugs
against COVID-19, while further accurately prioritizing possible
small molecules during the initial drug screening is vital to
the treatment of COVID-19. More importantly, VDA-KLMF
captures two candidate drugs (nitazoxanide and emetine) except
remdesivir and ribavirin and provides more choices to initially
screen available compounds against COVID-19.

To better uncover potential therapeutic clues for COVID-
19 and similar diseases produced by evolving SARS-CoV-2,
in the future, first, we will build a bigger and SARS-CoV-2-
related database comprised of drugs, disease, and targets. Second,
abundant biological data related to single strand RNA viruses
should be integrated to more accurately depict biological features
of viruses and drugs. Finally, a more robust model, for example,
deep learning model, should be built to boost VDA identification
performance. We anticipate that this work can contribute to
the initial drug screening for therapy of patients with the
infection of COVID-19.
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