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Abstract. The role of mitochondrial 70-kD heat 
shock protein (mt-hsp70) in protein translocation 
across both the outer and inner mitochondrial mem- 
branes was studied using two temperature-sensitive 
yeast mutants. The degree of polypeptide translocation 
into the matrix of mutant mitochondria was analyzed 
using a matrix-targeted preprotein that was cleaved 
twice by the processing peptidase. A short amino- 
terminal segment of the preprotein (40-60 amino 
acids) was driven into the matrix by the membrane 
potential, independent of hsp70 function, allowing a 
single cleavage of the presequence. Artificial unfolding 
of the preprotein allowed complete translocation into 
the matrix in the case where mutant mt-hsp70 had de- 
tectable binding activity. However, in the mutant mito- 
chondria in which binding to mt-hsp70 could not be 

detected the mature part of the preprotein was only 
translocated to the intermembrane space. We propose 
that mt-hsp70 fulfills a dual role in membrane translo- 
cation of preproteins. (a) Mt-hsp70 facilitates unfold- 
ing of the polypeptide chain for translocation across 
the mitochondrial membranes. (b) Binding of mt-hsp70 
to the polypeptide chain is essential for driving the 
completion of transport of a matrix-targeted preprotein 
across the inner membrane. This second role is inde- 
pendent of the folding state of the preprotein, thus 
identifying mt-hsp70 as a genuine component of the 
inner membrane translocation machinery. Furthermore 
we determined the sites of the mutations and show 
that both a functional ATPase domain and ATP are 
needed for mt-hsp70 to bind to the polypeptide chain 
and drive its translocation into the matrix. 

H 
EAr shock proteins of 70 kD (hsp70s) ~ play impor- 
tant roles in intracellular protein transport and 
folding (reviewed in Lindquist and Craig, 1988; 

Ellis and Hemmingsen, 1989; Rothman, 1989; Gething and 
Sambrook, 1992; and references therein). The yeast Sac- 
charomyces cerevisiae contains eight genes encoding hsp70s 
that are, according to their homologies, grouped into the 
four subfamilies: SSA (four genes, forming an essential sub- 
family), SSB (two genes required for normal growth), SSC 
(one essential gene), and SSD (one essential gene, KAR2) 
(Craig et al., 1987; Werner-Washburne et al., 1987; Rose et 
al., 1989). Members of the SSB subfamily are probably the 
first hsp's that are seen by a protein during biogenesis; the 
proteins Ssblp and Ssb2p are associated with cytosolic ribo- 
somes and interact with nascent polypeptide chains (Nelson 
et al., 1992). Members of the SSA subfamily seem to facili- 
tate translocation of proteins from the cytosol to various 
cell organelles (Deshaies et al., 1988; Murakami et al., 
1988; Zimmermann et al., 1988; Beckmann et al., 1990; 
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1. Abbreviations used in this paper: DHFR, dihydrofolate reductase; hspT0, 
70-kD heat shock protein; mt-hsp70, mitochondrial hsp70. 

Murakami and Mori, 1990; Waegemann et al., 1990; Dice, 
1990; Dingwall and Laskey, 1992; Imamoto et al., 1992; Shi 
and Thomas, 1992) and are assumed to act by preventing 
misfolding or aggregation of preproteins. Ssclp in the mito- 
chondrial matrix (70-kD mitochondrial heat shock protein 
[mt-hsp70]; see references below) and Kar2p (Ssdlp, BiP) in 
the lumen of the endoplasmic reticulum are involved in im- 
port and folding of precursor proteins (Munro and Pelham, 
1986; Hendershot et al., 1987; Kassenbrock et al., 1988; 
Kozutsumi, 1988; Vogel et al., 1990; Sanders et al., 1992; 
Brodsky et al., 1993; de Silva et al., 1993). 

The analysis of mitochondrial protein import has proven 
to be an effective method for studying the functions of pro- 
teins involved in organellar protein translocation. The iso- 
lated mitochondria allow analysis of protein import indepen- 
dent of the energetics of protein synthesis; while at the same 
time, the matrix remains intact, closely resembling the in 
vivo situation. Functional analysis of the mt-hsp70 (Ssclp) 
was initially carded out in such a system with a single 
temperature-sensitive yeast mutant (sscl-2). In sscl-2 mito- 
chondria, preproteins accumulated in the mitochondrial 
import sites after pretreatment at the nonpermissive tem- 
perature (Kang et ai., 1990; Ostermann et al., 1990). The 
amino-terminal presequences of the preproteins were trans- 
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located into the mitochondrial matrix and cleaved by the 
processing peptidase. However, at the same time, the prepro- 
teins were accessible to protease added to the isolated mito- 
chondria, indicating that the polypeptide chains spanned 
both mitochondrial membranes at translocation contact 
sites. Artificial unfolding of a preprotein allowed a further 
import into mitochondria despite the partially defective 
hsp70 (Kang et al., 1990). Co-immunoprecipitation experi- 
ments demonstrated that the preproteins were associated 
with the mutant hsp70 (Sscl-2p). A transient interaction 
of preproteins and mt-hsp70 has also been demonstrated 
in wild-type mitochondria by co-immunoprecipitation and 
cross-linking experiments (Scherer et al., 1990; Manning- 
Krieg et al., 1991). We concluded that mt-hsp70 interacts 
with the polypeptide chain in transit across the mitochon- 
drial membranes and thereby facilitates an unfolding of the 
preprotein on the cytosolic side of the mitochondrial outer 
membrane (Kang et al., 1990; Neupert et al., 1990). 

To further unravel the role of mt-hsp70 in membrane trans- 
location of preproteins, it is important to distinguish between 
two possibilities. Is the function of mt-hsp70 in membrane 
translocation fully explained by facilitating the unfolding of 
preproteins or could mt-hsp70 play an even more basic role 
in membrane translocation processes? To address this ques- 
tion, we tried to obtain additional temperature-sensitive mu- 
tants of mt-hsp70. A mutant allele that came out of the screen 
(sscl-3) encodes a mt-hsp70 that appears to be more severely 
affected than the sscl-2 hsp70, in particular to have a strongly 
reduced binding activity for preproteins. Using a preprotein 
that is processed twice by the matrix processing peptidase 
and which can be presented to mitochondria in an unfolded 
conformation, we show that binding to mt-hsp70 is indeed 
required to drive the import of the preprotein after the initial 
triggering step by the membrane potential, A~I'. Unfolding of 
the preprotein allowed transport across the outer membrane 
of both sscl-2 and sscl-3 mitochondria; but, the preprotein 
was transported across the inner membrane only in sscl-2 
mitochondria. Binding of the polypeptide chain in transit by 
mt-hsp70 is thus not only required for the unfolding of the 
polypeptide chain, but represents an essential reaction for 
complete transport of a matrix protein across the inner mem- 
brane. Moreover, we found that the two mutations mapped 
in different domains of mt-hsp70. The sscl-3 mutation was 
in the ATPase domain. Consistent with this, ATP depletion 
of wild-type and sscl-2 mitochondria caused a phenotype 
comparable to that seen in sscl-3 mitochondria, supporting 
the idea that ATP is needed for mt-hsp70 to bind to the poly- 
peptide chain and promote its translocation across the inner 
membrane. 

Materials and Methods 

Generation and Sequencing of  SSC1 Mutants 

Isolation ofsscl-2 was described previously (Kang et al., 1990). sscl-3 was 
isolated in the same manner. Briefly, plasmid DNA carrying SSC1 (pJKS08) 
was mutagenized in vitro with hydroxylamine and transformed into a strain 
carrying a wild-type SSC1 gene under the control of the GAL/promoter on 
a plasmid and an ssd insertion mutation on the chromosome, sscl-3 was 
isolated as a gene that allowed growth on glucose-based media at 23"C, but 
not 37"C. The anxotrophic marker LEU2 was inserted into the Bgln site 
immediately 3' of SSC1 for chromosomal integration into yeast strain "1"87 
(ade2-lO1/+ lys2/lys2 ura3-52/ura3-52 leu2-3J12/leu2-3,112 Atrpl/Atrpl 
SSC1/SSC1 ). Haploids used in this study were obtained by sporulation and 

Table L Haploid Yeast Strains Used in This Study 

Strain Genotype 

PK81 

PK82 

PK83 

MATer ate2-101 lys2 ura3-52 1eu2-3,112 Atrpl 
ssc l-2 (LEU2 ) 

MATc~ his4-713 lys2 ura3-52 Atrpl 1eu2-3,112 

MATot ade2-101 lys2 ura3-52 leu2-3,112 Atrpl 
sscl-3(LEU2) 

are described in Table I. Methods for yeast and E. coli cloning and transfor- 
mation have been described (Sambrook et al., 1989; Rose et ai., 1990). 

The sscl-2 and sscl-3 mutations were initially mapped within a 1.4-kb 
ClaI fragment between the codons encoding amino acids 10 and 478 of the 
mature protein, by replacing the 1.4-kb Clal fragment of an unmutagenized 
plasmid containing the wild-type SSC1 gene with the ClaI fragment from 
the mutant genes. Before DNA sequencing, the site of the ssd-2 mutation 
was further mapped within a 484-bp SalI-ClaI fragment by the same ap- 
proach. Only a single nucleotide difference compared to the wild-type se- 
quence was present within the ClaI fragment of sscl-3 and the SalI-ClaI 
fragment of sscl-2. 

Western Analysis of Cell Lysates 

Cells were grown to early log phase (ODtoo 1.0) at 23"C in YPD medium 
(Rose et al., 1990). Whole cell lysates for Western analysis were prepared 
by the glass bead lysis method (Ausubel et ai., 1989). Proteins were im- 
munodetected using the ECL Western immunodetection system (Amersham 
International, Amersham, UK) as described by the manufacturer with the 
following modifications. Filters were washed in 50 mM Tris base, pH 10, 
150 mM NaCI and blocked in wash buffer containing 0.5% Tween 20. 

Import of  Su9-dihydrofolate Reductase 
into Isolated Mitochondria 

The following procedures were performed as published (Hartl et ai., 1987; 
Pfanner and Neupert, 1987; Pfanner et al., 1987; Kang et ai., 1990; Stllner 
et ai. 1991): isolation of mitochondria from Saccharomyces cerevisiae, 
preincubation of the mitochondria for 15 rain at 37"C; synthesis of Su9- 
dyhydrofolate reductase (DHFR) in rabbit reticulocyte lysate in the pres- 
ence of [35S]methionine; incubation of reticuiocyte lysate (10 ml) with mi- 
tochondria (50 #g protein) in the presence of 2 mM ATP and 4 mM NADH 
for 5 min at 25°C in the presence of BSA buffer (with 3% [wt/voi] BSA) 
in a final volume of 100 ml ("import assay"); treatment with proteinase K 
(40-75/zg/ml); rcisolation of mitochondria; analysis by SDS-PAGE, fluo- 
rography, Western blotting, and laser densitometry. 

Results 

A New Temperature-sensitive Mutant ofmt-hsp70 

A new SSC1 temperature-sensitive (ts) allele was isolated 
using the strategy utilized in the isolation of sscl-2 (Kang et 
al., 1990; see Materials and Methods). sscl-3 is recessive as 
indicated by the ability of SSC1/sscl-3 heterozygous diploids 
to grow at wild-type rates even at 37°C. When sscl-3 cells 
were shifted to the nonpermissive temperature of 37°C, an 
accumulation of mitochondrial preproteins was observed in 
a Western analysis (Fig. 1), similarly to the situation found 
with ssd-2 mutant cells (Kang et al., 1990). 

The mutant hsp70s (Sscl-2p and Sscl-3p) were mainly 
found in the soluble fraction upon sonication of mitochon- 
dria (Fig. 2 A) or after lysis of mitochondria with detergent 
(Fig. 2 A). The mutant proteins were correctly localized to 
the matrix since they were resistant to digestion with pro- 
tease after opening the intermembrane space (formation of 
"mitoplasts'), only becoming accessible to protease after 
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Figure 1. Accumulation of precursor proteins in sscl-2 and sscl-3 
strains in vivo. Cultures of PK82 (WT), PKS1 (sscl-2) and PK83 
(sscl-3) were divided and half of each culture was shifted to 37°C 
for 30 min. Protein extracts (10 and 50 #g for hsp60 and FI/3 
blots, respectively) were fractionated by SDS-PAGE, electrotrans- 
ferred to nitrocellulose and probed with hsp60 or F~/3-specific an- 
tiserum, p, precursor; m, mature. 

disruption of the inner membrane (Fig. 2 B). Sscl-2p and 
Sscl-3p are thus soluble proteins of the mitochondrial matrix 
as is wild-type Ssclp (Fig. 2; Kang et al., 1990), indicating 
that the mutant phenotypes are caused by altered functions 
of mt-hsp70 and not by defects in its biogenesis or by aggre- 
gation of the mutant hsp70s. 

The Single Mutations in Sscl-2p and Sscl-3p 
Map to Different Domains of  hsp70 

DNA sequence analysis of the sscl-2 mutant revealed a single 
nucleotide difference compared to the wild-type sequence 
(see Materials and Methods), a C:G"~T:A transition at the 
codon for amino acid 419 of the mature protein. The result- 
ing proline ~ serine (CCA --" TCA) change is in the putative 
peptide binding domain of hsp70s (Chappell et al., 1987). 
This proline residue is very highly conserved, present in all 
of the hsp70s whose DNA sequence has been determined so 
far (Fig. 3). 

The sscl-3 mutation also causes a single amino acid differ- 
ence, a glycine --" serine (GGT ~ AGT) change at position 
56 of the mature protein, within the ATPase domain (Fla- 
herty et al., 1990). The glycine at position 56 is highly con- 
served, present in nearly every hsp70 whose DNA sequence 
has been determined (Fig. 3). Actin has been shown to be 
structurally very similar to hsp70s even though there is little 
amino acid similarity (Flaherty et al., 1991). Glycine 56 is 
one the few amino acid identities between the two types of 
proteins. 

Differential Accumulation of  a Preprotein in sscl-2 
and ssd-3 Mitochondria 

We used a fusion protein containing the presequence plus 
three amino acid residues of the mature portion of Neu- 
rospora crassa Fo-ATPase subunit 9 and the entire mouse 
DHFR (Pfanner et al., 1987) to assess import into mutant 

Figure 2. The mutant hsp70s (Sscl-2p and Sscl-3p) are located in 
the mitochondrial matrix. (A) Solubility of mt-hsp70s after soniea- 
tion or after solubilization of mitochondria with Triton X-100. Iso- 
lated mitoehondria in SEM-buffer (250 mM sucrose, 1 mM EDTA, 
10 mM MOPS, pH 7.2) (80 ttg protein per sample) were prein- 
cubated for 15 min at 37°C and sonified for 3x 30 s (Branson 
sonifier setting 5; Branson Ultrasonics Corp., Danbury, CT) or ex- 
tracted with 1% (wt/vol) Triton X-100, 300 mM NaC1, 10 mM Tris, 
pH 7.5. Supernatants and pellets were then separated by centrifuga- 
tion for 60 min at 166,000 g or 15 min at 18,000 g. After precipita- 
tion with "I'CA, analysis was performed by Western blotting using 
antiserum directed against mt-hspT0. The total amount of mt-hsp70 
in a sample (without sonication or treatment with Triton X-100) was 
set to 100% (control). At the sonication conditions used, mem- 
brane proteins remained in the pellet (Kang et al., 1990; S61iner 
et al., 1990). P, pellet; S, supernatant. (B) Mitoehondria (M, 30 
#g protein; in SEM 1G-fold diluted in 25 mM Hepes/KOH, pH 7.4, 
0.6 M sorbitol) or mitoplasts (MP, 30 ttg protein; mitoehondria 
diluted 1G-fold in 25 mM Hepes/KOH, pH 7.4) or Triton- 
solubilized mitochondria (T, 30 ttg protein; Triton X-10G buffer de- 
scribed above) were treated with proteinase K and analyzed by 
Western blotting with antiserum directed against mt-hsp70 (Ssclp). 
The formation of mitoplasts was controlled and confirmed by the 
release of cytochrome b2 and the fragmentation of the ADP/ATP 
carder as published (Hwang et al., 1991; Rassow and Pfanner, 
1991; Glick et al., 1992). 

mitochondria. As is the case with the authentic N. crassa 
preprotein, the Su9-DHFR presequence is cleaved twice 
upon import, after residues 35 and 66. This two step removal 
of the presequence is catalyzed by the matrix-localized pro- 
cessing peptidase (Schmidt et al., 1984; Hawlitschek et al., 
1988). Mitochondria were isolated from wild-type, ssd-2 
and sscl-3 yeast cells that were grown at the permissive tem- 
perature of 25°C. Before being energized and incubated with 
35S-labeled precursor protein at 25°C, mitochondria were 
pre-incubated at 37°C for 15 min. 
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Figure 3. Alignment of sscl-2 and sscl-3 with representative HSP70 
genes and yeast actin (deduced amino acid sequences). Amino acid 
sequence identities are shaded; arrows denote SSC1 mutations; "-" 
represents a gap in the sequence; "*" in the actin sequence 
represents 10 amino acids looped out to give optimal alignment. 
Residue numbers correspond to the sequence of mature Ssclp. Gen- 
Bank accession codes are: SSC1 - M27229; DnaK- K01298; SSA1 - 
X12926; bovine HSC70 - P19120 (Swiss-Prot); human HSP70 - 
M11717; Drosophila melanogaster HSP70 - Jl104, Jl105. 

With wild-type mitochondria the Su9-DHFR was pro- 
cessed to the mature form and virtually all the mature form 
was resistant to exogenously added proteinase K (Fig. 4 A) 
as expected of protein completely imported into the matrix. 
Consistent with previous results (Kang et al., 1990), Su9- 
DHFR was processed to mature form in sscl-2 mitochondria 
as in wild-type mitochondria, and only a small portion of 
this mature form was protected from protease (Fig. 4 A). 
With increased times of incubation the portion gaining pro- 
tease resistance increased (data now shown), suggesting that 
import into sscl-2 mitochondria is delayed but not com- 
pletely blocked. With sscl-3 mitochondria, Su9-DHFR was 

Figure 4. Accumulation of 
Su9-DHFR in sscl-2 and 
sscl-3 mitochondria. (A) Re- 
ticulocyte lysate containing 
3~S-labeled precursor of Su9- 
DHFR was incubated with 
isolated mitochondria (25 #g 
protein per lane) from wild- 
type (WT), ssd-2 or sscl-3 
mitochondria (that had been 
preincubated for 15 min at 
37°C) as described in 
Materials and Methods. 
Where indicated the samples 
were treated with proteinase 
K (PK) after the import reac- 
tion. The reisolated mito- 
chondria were analyzed by 
SDS-PAGE and fluorography. 
(B) The import was per- 
formed as described above ex- 
cept that the mitochondria 
were depleted of ATP by 
preincubation with apyrase 
(20 U/ml) (Pfanner and Neu- 
pert, 1986) in the presence of 

20 #M oligomycin. Import was performed in the presence of 
oligomycin and carboxyatractyloside as described (Wachter et al., 
1992). p, precursor; i, intermediate; m, mature Su9-DHFR. 

Figure 5. Urea-denatured 
Su9-DHFR is transported to a 
protease-protected location in 
sscl-2 and sscl-3 mitochon- 
dria. Reticulocyte lysate con- 
taining Su9-DHFR was 
precipitated with ammonium 
sulphate at 66% saturation 
and dissolved in 8 M urea, 30 
mM MOPS, pH 7.4, 10 mM 
DTT (Ostermarm et al., 1989; 
Kang et al., 1990). Import 
into isolated mitochondria 
was performed and analyzed 
as described in the legend to 
Fig. 4 (200 mM final concen- 
tration of urea in the import 
assay). 

processed to the intermediate, but very little mature form 
was observed even at longer periods of incubation. This in- 
termediate form was susceptible to digestion with proteinase 
K (Fig. 4 A), indicating that it was only partially translocated 
into the sscl-3 mitochondria with a portion still present out- 
side the outer membrane. 

Since hsp70 action requires ATP and Sscl-3p is mutated 
in the ATPase domain, it was of interest to compare the effect 
of ATP depletion to the effect of mutations in SSC1. ATP lev- 
els were lowered by pretreatment of the mitochondria with 
apyrase and inhibition of the mitochondrial ATP-synthase 
with oligomycin. ATP-depleted wild-type and sscl-2 mito- 
chondria accumulated the protease-accessible intermediate- 
sized form as was found with sscl-3 mitochondria in both the 
presence and absence of ATP (Fig. 4 B). This and results 
shown below thus indicate that depletion of ATP in wild-type 
or sscl-2 mitochondria leads to the accumulation of the same 
intermediate form as in sscl-3 mitochondria. 

Mt-hsp70  Facil i tates Unfolding o f  Preprote ins  for 
Translocat ion Across  Mi tochondr ia l  M e m b r a n e s  

We previously showed that an artificial unfolding of Su9- 
DHFR by preincubation in 8 M urea allowed rapid trans- 
location of the preprotein to a protease-protected location in 
sscl-2 mitochondria (Kang et al., 1990). We presented sscl-3 
mitochondria with urea denatured Su9-DHFR to test whether 
denaturing the precursor allowed transport to a protease- 
protected location and complete processing of the precursor. 
Fig. 5 A shows that unfolded Su9-DHFR was indeed trans- 
ported to a protease-protected location in sscl-3 mitochon- 
dria, but only very little processing to the mature form was 
observed. At low levels of ATE wild-type and sscl-2 mito- 
chondria also accumulated intermediate forms in a protease- 
protected location (Fig. 5 B). Unfolding of Su9-DHFR thus 
promoted the translocation of the entire fusion protein across 
the outer membrane in sscl-3 mitochondria. However, the 
second processing site of most precursor molecules was not 
transported to a location where it was accessible to the pro- 
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Figure 6. Urea-denatured Su9-DHFR is transported into the matrix 
of sscl-2 mitochondria, but remains exposed to the intermembrane 
space in sscl-3 mitochondria. Import was performed as described 
in the legend of Fig. 5 A. The mitochondria were reisolated, 
resuspended in SEM containing 3 % (wt/vol) BSA and diluted 10- 
fold in either 25 mM Hepes/KOH, pH 7.4 (swelling) or 25 mM 
Hepes/KOH, pH 7.4, 0.6 M sorbitol (no swelling). Where indi- 
cated, proteinase K (PK) was added for 20 min at 0°C during the 
dilution. The mitochondria were reisolated and analyzed by SDS- 
PAGE and fluorography. The formation of mitoplasts by the swell- 
ing procedure (i.e. opening of the outer membrane, but not the in- 
ner membrane with the major fraction of the mitochondria) was 
controlled and confirmed by analyzing the marker proteins 
cytochrome b2, ADP/ATP carrier and mt-hsp70 by Western blot- 
ting as described (Rassow and Pfanner, 1991; Hwang et al., 1991; 
Glick et al., 1992). 

cessing peptidase in the matrix either in sscl-3 mitochondria 
or under conditions of low ATP in any of the mitochondria. 

To determine the intramitochondrial location of Su9- 
DHFR transported into sscl-2 and sscl-3 mitochondria out 
of urea we fractionated mitochondria after the import reac- 
tion. In both sscl-2 and sscl-3 mitochondria the extreme 
amino terminus of the preprotein must have entered the ma- 
trix since processing occurred, at least at the first cleavage 
site. In the case of sscl-3 mitochondria the preprotein was 
accessible to added protease after opening the intermem- 
brane space (Fig. 6), demonstrating that Su9-DHFR accu- 
mulated as a so-called "intermembrane space intermediate" 
(Hwang et al., 1991; Rassow and Pfanner, 1991; Manning- 
Krieg et al., 1991; Jascur et al., 1992; Pfanner et al., 1992) 
that spans across the inner membrane, exposes the amino- 
terminal presequence to the matrix and a mature protein part 
to the intermembrane space. Both the intermediate form and 
the small amount of mature form that accumulated in sscl-3 
were found in this membrane-spanning form. In contrast, in 
sscl-2 mitochondria the Su9-DHFR did not become accessi- 
ble to protease until the matrix was opened by treatment with 
detergent. Thus, sscl-2 mitochondria are able to transport 
the urea-denatured protein completely into the matrix, while 
in sscl-3 mitochondria the preprotein is trapped as an in- 
termediate in the intermembrane space with the amino- 
terminus spanning the inner membrane into the matrix. 

Mt-hsp70 Is Required for Translocation of Unfolded 
Su9-DHFR Directly Across the Inner Membrane 

There are two reasons why unfolded Su9-DHFR may not be 
completely transported across the inner membrane of sscl-3 
mitochondria. First, unfolded DHFR may partially refold 
during passage across the outer membrane and intermem- 
brane space, thus preventing translocation across the inner 
membrane because of a conformational restriction. Second, 
unfolding, however, may not be the sole function of mt-hsp70 
in membrane translocation and mt-hspT0 may be an essential 
component for translocation across the inner membrane. To 
differentiate between these two possibilities we made use of 

Figure Z Denatured Su9-DHFR is directly translocated across the 
inner membrane of wild-type and sscl-2 mitochondria, but gets 
stuck in the inner membrane of sscl-3 mitochondria. Isolated mito- 
chondria (preincubated for 15 min at 37°C) were pretreated with 
trypsin (40 #g/ml) to remove the surface receptors (Pfaller et al., 
1988, 1989), swollen as described in the legend of Fig. 6 and reiso- 
later. Denatured Su9-DHFR (see legend of Fig. 5) was then in- 
cubated with the resulting mitoplasts under import conditions (see 
Materials and Methods) for 10 rain at 25°C. Where indicated the 
samples were treated with proteinase K. Quantitation was per- 
formed by laser densitometry of the fluorographs. To assess the 
amount of transport via the bypass route across the outer membrane 
of trypsinized mitochondria (Pfaller et al., 1989; Hwang et al., 
1989), trypsinized mitochondria were incubated in SEM-buffer in- 
stead of the swelling buffer and used for the import of denatured 
Su9-DHFR; the amount of (bypass) import into these mitochondria 
was subtracted from the import value obtained with the mitoplasts. 

an observation of Schatz and co-workers (Ohba and Schatz, 
1987; Hwang et al., 1989) that some preproteins could be 
directly transported across the inner membrane after disrup- 
tion of the outer membrane. As expected, sscl-2 mitochon- 
dria were able to translocate unfolded Su9-DHFR directly 
across the inner membrane (Fig. 7). When sscl-3 mitochon- 
dria with disrupted outer membranes were used for import, 
Su9-DHFR accumulated in the inner membrane exposed to 
added protease (Fig. 7). We conclude that unfolding of the 
polypeptide chain is not sufficient to overcome the trans- 
location defect across the inner membrane of sscl-3 mito- 
chondria. 

In Contrast with sscl-2 Mitochondria, Most of 
Su9-DHFR Is Not Found in a Complex with mt-hsp70 
of sscl-3 Mitochondria 

Co-immunoprecipitation of several preproteins with anti: 
mt-hsp70 antibodies has been reported after lysis by deter- 
gent of sscl-2 (Kang et al., 1990; Ostermann et al., 1990) 
and wild-type mitochondria (Scherer et al., 1990; Manning- 
Krieg et al., 1991). Fig. 8 shows the efficient co-immuno- 
precipitation of Su9-DHFR out of wild-type and sscl-2 
mitochondria. However, none of the intermediate-sized 
Su9-DHFR accumulated in sscl-3 mitochondria was co- 
precipitated with anti-mt-hsp70 antibodies (Fig. 8, A and 
B), even though a wide variety of conditions including varia- 
tions of import times, levels of ATP and mono- and divalent 
salts were tried. '~5-10% of the Su9-DHFR was processed 
to the mature-sized form in sscl-3 mitochondria. Interest- 
ingly, a significant amount of this form was co-immunopre- 
cipitated, though the efficiency of precipitation was far be- 
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Figure 8. Co-immunoprecipitation of mature-sized Su9-DHFR 
with mt-hsp70. Import of Su9-DHFR was performed for 5 rain at 
25"C as described in the legend of Fig. 5 A; where indicated in B 
the mitochondria were depleted of ATP (-ATP) before the import 
reaction as described in the legend of Fig. 4 B. The mitochondria 
were lysed in 0.1% (wt/vol) Triton X-100, 100 mM NaC1, 10 mM 
Tris/HC1, pH 7.5, 5 mM EDTA and, after a clarifying spin (5 rain, 
27,000 g), incubated with antisera directed against DHFR, preim- 
mune serum or antiserum directed against Ssclp. The immunopre- 
cipitates were washed three times in the buffer described above and 
once in 10 mM Tris, pH 7.5, and analyzed by SDS-PAGE, fluorog- 
raphy (A) and laser densitometry (B). The amount of intermediate 
(i) or mature (m) Su9-DHFR that was precipitated with antiserum 
directed against DHFR was set to 100% (control), respectively. 

Figure 9. Co-immunoprecipitation of precursor and intermediate 
forms of Su9-DHFR with mt-hspT0. (A) Denatured Su9-DHFR was 
imported into ssd-2 mitochondria (in the presence of ATP) and im- 
munoprecipitations were performed as described in the legend of 
Fig. 8, except that the mitochondrial processing peptidase was par- 
tially inactivated by performing the import in the presence of 1 mM 
o-phenanthroline and 5 mM EDTA (Schmidt et al., 1984; Hawlit- 
schek et al., 1988). (B) Su9-DHFR accumulated in the absence of 
a membrane potential is not co-immunoprecipitated with mt-hsp70. 
Denatured Su9-DHFR was incubated with the mitochondria as de- 
scribed in the legend of Fig. 8 (in the presence of ATP) except that 
NADH was omitted and the membrane potential was dissipated by 
addition of 0.5 #M valinomycin, 8 #M antimycin A and 20 #M 
oligomycin (Pfanner and Neupert, 1987). Immunoprecipitations 
were performed as described in the legend to Fig. 8. 

low that observed with wild-type or sscl-2 mitochondria 
(Fig. 8 B). We suspect that mutant Sscl-3p was able to bind 
a very small amount of the preprotein thus allowing fur- 
ther import. However, it should be noted that, in contrast to 
sscl-2 mitochondria, the mature-sized protein in sscl-3 mito- 
chondria was not completely imported into the matrix, even 
after pretreatment with urea. Instead, it was arrested in its 
translocation across the inner membrane (Fig. 6). We then 
tested if a depletion of ATP in wild-type or sscl-2 mitochon- 
dria led to a similar lack of co-immunoprecipitation as in 
sscl-3 mitochondria. Fig. 8 B shows that this was indeed 
the case. 

The fact that we observed co-immunoprecipitation of only 
the mature-sized form of Su9-DHFR in sscl-3 mitochondria 
raises the question of whether the presence of the presequence 
prevents the binding of Su9-DHFR to mt-hsp70. Inhibition 

of binding by the presequence appears to be unlikely as 
Schmid et al. (1992) recently showed that the presence of a 
mitochondrial presequence strongly stimulated the interac- 
tion of DnaK, the bacterial homolog of hsp70, with a mito- 
chondrial preprotein. For a direct experimental demonstra- 
tion in our system we partially inhibited the mitochondrial 
processing peptidase, such that precursor- and intermediate- 
sized forms of Su9-DHFR were obtained during import. Both 
preprotein forms were efficiently co-immunoprecipitated 
with mt-hsp70 (Fig. 9 A). 

The possibility that the association of Su9-DHFR with mt- 
hsp70 occurred after the lysis of mitochondria was of con- 
cern. This possibility is unlikely since Su9-DHFR which ac- 
cumulated at the outer membrane in the absence of A~ could 
not be co-immunoprecipitated with mt-hsp70 (Ostermann et 
al., 1990). However, in this previously reported experiment 
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binding of the preprotein had been performed directly from 
a reticulocyte lysate, rather than after urea denaturation as 
was the case in the co-immunoprecipitation experiments 
reported in Fig. 8. Therefore as a more relevant control, Su9- 
DHFR was denatured in urea and bound to mitochondria in 
the absence of AxI, (Fig. 9B). No co-immunoprecipitation 
with mt-hsp70 in wild-type, sscl-2 or sscl-3 mitochondria 
was observed. We conclude that the interaction between mt- 
hsp70 and preprotein shown in Fig. 8 occurred in the intact 
mitochondria. 

Discussion 

We compared the ability of mitochondria from two tem- 
perature-sensitive yeast mutants of mitochondrial hsp70 
(sscl-2 and sscl-3) to import preproteins. While the mutant 
protein Sscl-2p showed a strong binding activity for prepro- 
teins, only very small amounts of preproteins could be found 
associated with the Sscl-3p protein. The ability of the mutant 
hsp70s to interact with preproteins corresponded to the de- 
gree of polypeptide chain translocation into the mutant mito- 
chondria. (a) In both mutants the first half of the prese- 
quence of Fo-ATPase subunit 9 was translocated into the 
mitochondrial matrix, a process mediated by the membrane 
potential A~I'. In sscl-2 mitochondria the presequence could 
be translocated sufficiently far so that both cleavage sites 
were accessible to the matrix localized processing peptidase. 
However, in sscl-3 mitochondria the preprotein accumulated 
predominantly in the intermediate-sized form. (b) The ma- 
ture part of the preprotein spanned both membranes of the 
mutant mitochondria at translocation contact sites, exposed 
to the cytosolic side as evidenced by susceptibility to pro- 
tease. With sscl-2 mitochondria, the translocation of the ma- 
ture part was slow; an increasing fraction of the preprotein 
was completely translocated across the outer membrane (and 
eventually across the inner membrane) at longer import 
times, while in sscl-3 mitochondria the translocation block 
appeared to be quite stable. (c) When the preprotein was 
added to mitochondria in an unfolded conformation, it was 
completely translocated into the matrix of sscl-2 mitochon- 
dria where it remained bound to the mutant hsp70. In sscl-3 
mitochondria, tmfolding of the preprotein allowed complete 
translocation across the outer membrane, but not across the 
inner membrane, as the mature protein part of most precur- 
sor molecules accumulated in the intermembrane space; 
moreover, even the second portion of the presequence of 
most precursor molecules was not transported far enough to 
be cleaved by the processing peptidase in sscl-3 mitochon- 
dria. Only a small amount of the preprotein was found as- 
sociated with Sscl-3p; the proteins that were associated with 
Sscl-3p were processed twice. It appears that the very weak 
binding activity of Sscl-3p allowed binding of a minor 
amount of preproteins whose entire presequence was then 
moved into the matrix; apparently the binding activity was 
not sufficient to allow complete translocation of the mature 
protein part across the inner membrane even if it was un- 
folded before addition to the mitochondria. 

As a class, hsp70s have an amino-terminal ATPase domain 
and a carboxyl-terminal peptide-binding region (Rothman, 
1989; Gething and Sambrook, 1992). The structure of the 
44-kD ATPase domain of bovine heat shock cognate protein, 
hsc70, has been determined (Flaherty et al., 1990) and 

shown to consist of two lobes with a deep cleft between them. 
Nucleotide binds at the base of the cleft. By comparing the 
sequences of bovine hsc70 and Ssclp we were able to tenta- 
tively place the site of the amino acid change in Sscl-3p at 
the top of the cleft, at the surface of the so-called domain IB. 
Our inability to co-immunoprecipitate significant quantities 
of preprotein with anti-Ssclp antibody suggests that Sscl-3p 
has a reduced binding affinity for proteins. A debate exists 
as to whether ATP-bound or ADP-bound hspT0 has a higher 
affinity for peptide. Since the depletion of ATP in wild-type 
or sscl-2 mitochondria mimics the translocation defect of 
sscl-3 mitochondria, in both the lack of co-immunoprecipi- 
tation of polypeptide with hsp70 and the extent of the translo- 
cation defect, it is tempting to speculate that the ATP-bound 
hsp70 is the active peptide-binding form of hsp70 in vivo. In 
support of this notion, preliminary experiments indicate that 
in crude lysates Sscl-3p has reduced binding to ATP-agarose 
compared to wild-type Ssclp (unpublished data). Alterna- 
tively, the structure of domain IB may be important for inter- 
action between the ATPase and peptide binding domains as 
has been proposed (Flaherty et al., 1990). Regardless of the 
mechanistic details behind the sscl-3 phenotype, the fact, 
that reduction of ATP levels in the matrix led to an accumula- 
tion of the intermediate form of the preprotein in wild-type 
and sscl-2 mitochondria as was found in sscl-3 mitochondria 
independent of ATP, is in agreement with the view that ATP 
is needed for mt-hsp70 to drive protein import into the ma- 
trix (Neupert et al., 1990; Hwang et al., 1991; Manning- 
Krieg et al., 1991). 

Although the structure of the peptide-binding domain has 
not been determined, structural models have been proposed 
based on slight similarities between hsp70s and the human 
type I major histocompatibility antigens (Rippmann et al., 
1991; Flajnik et al., 1991). According to those models the 
amino acid change of sscl-2 is located in a hinge region be- 
tween two predicted fl strands in the peptide binding region. 
An amino acid change in a hinge region might well be ex- 
pected to alter both binding and release of peptide. An exact 
determination of the effect of the mutation on the interaction 
with a polypeptide awaits structural and functional analysis 
of purified wild-type and mutant protein. 

It is important to note that the induction of the phenotypes 
did not require a temperature shift of the cells, but could be 
performed with the isolated mitochondria, thereby minimiz- 
ing the chances of unspecific or indirect effects of the hsp70 
mutations on the structure and function of the mitochondria. 
Moreover, it can be excluded that the import defect caused 
by the mutations is due to a dissipation of the membrane 
potential. A~I, is needed for the translocation of the extreme 
amino terminus of preproteins (the positively charged matrix- 
targeting portion of the presequence), but not the mature 
protein part (Schleyer and Neupert, 1985; Martin et al., 
1991), and thus AxI, and mt-hsp70 are required for distinct 
steps in the translocation process. Moreover, in the accom- 
panying manuscript (Voos et al., 1993) we show that a pre- 
protein, which depends strictly on a membrane potential for 
import, is completely imported into mitochondria of both 
mutants. 

We conclude that the role of mt-hsp70 for preprotein trans- 
location across the outer membrane is explained by a facilita- 
tion of unfolding of the polypeptide chain. This conclusion 
fits with our previous proposal that a step-wise unfolding of 
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the polypeptide chain on the cytosolic side leads to a step- 
wise movement of preprotein segments into the matrix where 
they are trapped by mt-hsp70 (Kang et al., 1990; Neupert et 
al., 1990). The function of mt-hsp70 in preprotein transloca- 
tion across the inner membrane is at least a dual one. First, 
it is similarly involved in facilitating the unfolding of the 
preproteins. Second, binding of the polypeptide chain to 
mt-hsp70 is essential to complete its translocation into the 
matrix, independent of its folding state. We propose that 
mt-hsp70 is a genuine component of the inner membrane 
translocation machinery. Binding of mt-hsp70 to the prepro- 
tein is required for its vectorial movement into the matrix 
and multiple cycles of hsp70 binding and ATP-dependent re- 
lease will thus promote a step-wise movement of preproteins 
into the matrix. As it has been postulated that the interaction 
with the hsp70 in the endoplasmic reticulum (Kar2p, BiP) 
leads to trapping of a preprotein in the ER (Vogel et al., 
1990; Ooi and Weiss, 1992; Sanders et al., 1992; Simon et 
al., 1992), it is tempting to speculate that Kar2p plays a dual 
role in protein translocation that is similar to that of mt- 
hsp70. Thus, the complexities of hsp70 function in protein 
translocation revealed in these studies of mitochondrial 
hsp70 may well be more generally applicable. 
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