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A B S T R A C T   

The advent of single cell transposase-accessible chromatin sequencing (scATAC-seq) technology enables us to 
explore the genomic characteristics and chromatin accessibility of blood cells at the single-cell level. To fully 
make sense of the roles and regulatory complexities of blood cells, it is critical to collect and analyze these 
rapidly accumulating scATAC-seq datasets at a system level. Here, we present scBlood (https://bio.liclab.net 
/scBlood/), a comprehensive single-cell accessible chromatin database of blood cells. The current version of 
scBlood catalogs 770,907 blood cells and 452,247 non-blood cells from ~400 high-quality scATAC-seq samples 
covering 30 tissues and 21 disease types. All data hosted on scBlood have undergone preprocessing from raw 
fastq files and multiple standards of quality control. Furthermore, we conducted comprehensive downstream 
analyses, including multi-sample integration analysis, cell clustering and annotation, differential chromatin 
accessibility analysis, functional enrichment analysis, co-accessibility analysis, gene activity score calculation, 
and transcription factor (TF) enrichment analysis. In summary, scBlood provides a user-friendly interface for 
searching, browsing, analyzing, visualizing, and downloading scATAC-seq data of interest. This platform facil
itates insights into the functions and regulatory mechanisms of blood cells, as well as their involvement in blood- 
related diseases.   

1. Introduction 

Blood cells derived from hematopoietic stem cells (HSCs) play a 

critical role in defending against foreign pathogens, maintaining vital 
functions, and stabilizing the immune system [1–4]. The emergence of 
scATAC-seq provides a unique opportunity to explore the heterogeneity 
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of blood cells, offering detailed insights into the genomic characteristics 
and chromatin accessibility of individual blood cells [5–9]. At present, 
scATAC-seq has been widely used to reveal extensive and complex 
regulation in blood cells, aiding to characterize the functional charac
teristics of various cell subpopulations at the single cell level [10–15]. 
Satpathy et al. analyzed the chromatin profiles of individual cells in 
human blood, where they identified cell type-specific cis-and 
trans-regulatory elements, delineated disease-associated enhancer ac
tivity, and reconstructed cell differentiation trajectories [16]. In another 
study on acute myeloid leukemia (AML), Corces et al. investigated 
chromatin accessibility and revealed the unique regulatory evolution in 
cancer cells and highlighting the pivotal role of HOX factors in the 
characteristics of preleukemic hematopoietic stem cells [17]. Evidently, 
scATAC-seq holds enormous potential to reveal cellular regulatory 
mechanisms, identify disease biomarkers, and discover new therapeutic 
approaches [18–23]. The advancement of single-cell technologies has 
facilitated the rapid accumulation of scATAC-seq data related to blood 
from various sources [24]. To fully exploit the wealth of information in 
these datasets, efficient collection, integration, and analysis are urgently 
needed, which will shed new insights for biologists and researchers in 
the field of blood-related diseases. 

Currently, several single-cell databases focused on blood cells have 
been developed, including BloodSpot [25–27] and ABC portal [28]. The 
ABC portal is a repository comprising 198 single-cell transcriptomic 
datasets of blood cells. The original BloodSpot database integrated gene 
expression data of haematopoietic cells from bulk datasets [26]. The 
updated BloodSpot provides several single-cell RNA-seq datasets and 
single-cell proteome datasets [25,27]. Additionally, some single-cell 
databases also provide limited blood cell scATAC-seq data, such as 
CATLAS [29,30], HTCA [31], AgeAnno [32] and scEnhancer [33]. 
However, these databases mainly focus on broadly single-cell datasets 
and fail to cover comprehensive blood-related scATAC-seq data 
(Table S1). The explosive growth of blood cell scATAC-seq data has 
made it possible to thoroughly characterize blood cells based on 
large-scale analysis. The scATAC-seq technique has been widely used to 
calculate gene activity and TF enrichment, which contributes to the 
understanding of blood cell heterogeneity and molecular regulatory 
mechanisms [19,34–38]. Obviously, the development of a scATAC-seq 
database specifically targeting blood cells is becoming increasingly 
urgent. 

Here, we developed scBlood (https://bio.liclab.net/scBlood/), a 
comprehensive single-cell accessible chromatin database of blood cells. 
This database covers changes in blood cells in various disease states and 
tissues of human and mouse. The current version of scBlood documents a 
total of 1223,154 cells from 377 high-quality scATAC-seq samples 
(Table S2). Among these, 292 blood cell samples encompass 15 disease 
types, such as chronic lymphocytic leukemia (CLL), ankylosing spon
dylitis (AS), clear cell renal cell carcinoma (ccRCC), and MSSA bacter
emia, etc. The other 85 non-blood samples from 24 tissues such as brain, 
lung, and kidney were used for comparative analysis. To ensure data 
quality and consistency, after preprocessing to obtain the raw peak 
matrixs, we performed multiple standard quality control on all datasets 
using unified software parameters.　Furthermore, we also performed 
comprehensive downstream analyses, including multi-sample integra
tion analysis, cell clustering and annotation, differential chromatin 
accessibility analysis, functional enrichment analysis, co-accessibility 
analysis, gene activity score calculation, and TF enrichment analysis. 
scBlood provides a user-friendly interface supporting interactive 
exploration and visualization of blood cell scATAC-seq data. We antic
ipate that scBlood will become an important resource platform for he
matological research, advancing the study of blood cell heterogeneity 
and function, and promoting new discoveries and therapeutic strategies. 

2. Materials and methods 

2.1. Data collection and pre-processing 

We searched single-cell scATAC-seq datasets from NCBI GEO/SRA 
[39,40] and 10X Genomics website with keywords ‘(single-cell 
ATAC-sequencing) OR (scATAC-seq) OR (single cell ATAC sequencing) 
OR (single-cell ATAC-seq) or (single cell ATAC-seq)’ (Retrieved on June 
2023). Through proofreading the sample descriptions of > 8000 entries, 
we then manually curated blood cell-related samples, such as blood 
tissue, hematopoietic stem cells, etc. Meanwhile, we also collected 
various non-blood samples for comparative analysis, such as brain, lung, 
and kidney. Overall, 292 blood cells samples and 85 non-blood cells 
samples originating from various tissues were retained for subsequent 
quality control and downstream analysis. We further manually compiled 
the detailed information of each sample from databases or original 
research, including publications, species, cell types, tissues, disease 
states, cell numbers, and sequencing platforms. 

The raw FASTQ files of the retained samples were downloaded from 
the SRA database using sratoolkit (v.3.0.0). Considering that Cell Ranger 
ATAC is a comprehensive tool, specifically designed to process data 
generated by the 10X Genomics platform, we employed Cell Ranger 
ATAC (v.2.1.0) to process FASTQ files from the 10X Genomics platform 
to construct peak-by-cell matrices [41]. For data from other sequencing 
platforms, such as HyDrop-ATAC-seq [42], sciATAC-seq [43], and 
snATAC-seq, we used the scATAC-pro (v.1.5.0) [41] to construct 
peak-by-cell matrices. Subsequently, we performed unified quality 
control and downstream analyses based on the raw peak-by-cell 
matrices obtained from these processes. The quality assessment met
rics include the fraction of fragments in the mitochondrial genome, the 
fraction of fragments in peaks, as well as the fraction of fragments 
located within transcription start sites (TSSs), enhancers, and promoters. 
Based on these metrics, we filtered out low-quality cells with unique 
fragments counts < 1000 or > 50,000, with fractions of fragments in 
peaks less than 15 % and fractions of fragments in promoters less than 
20 %. After filtering, a total of 770,907 blood cells were retained, 
covering 6 tissues, including PBMC, blood, bone marrow, spleen, lymph 
node, coronary artery. For non-blood cells samples, a total of 452,247 
cells were retained, covering 24 tissues, including cortex, brain, lung, 
kidney, embryonic, breast, pancreatic, adrenal gland, cerebellum, ce
rebrum, heart, intestine, gut endoderm, forelimb, retina, ventricle, liver, 
eye, muscle, placenta, stomach, thymus, frontal cortex, islet (Table S2). 

2.2. Normalization, dimension reduction, and cell clustering 

We employed the Term Frequency-Inverse Document Frequency (TF- 
IDF) to normalize the peak-by-cell matrix [34,43,44]. Subsequently, 
Principal Component Analysis (PCA) was then performed on the TF-IDF 
matrix, generating a low-dimensional representation of the scATAC-seq 
data. Following this, we selected the first 30 principal components as 
input for the Seurat object. The clusters were then identified using the 
Seurat’s (v.3.2.3) SNN graph cluster ‘FindClusters’ function, with a 
default resolution set to 0.5 [45]. Finally, the Uniform Manifold 
Approximation and Projection (UMAP) [46] were utilized to visualize 
the clustering results. 

2.3. Differential chromatin accessibility and functional enrichment 
analysis 

Peaks with differential accessibility across different cell sub
populations may often be potentially cell-specific gene regulatory ele
ments [11,34]. Thus, we employed the Wilcoxon test to calculate the 
significance between each cluster and the rest of the clusters. The dif
ferential accessibility regions (DARs) were further determined on the 
basis of the false discovery rate (FDR) < =0.05 [41]. Then, each DAR 
was annotated with its nearest gene. To characterize the functions of 
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different cell clusters, we performed Gene Ontology (GO) and KEGG 
pathway enrichment analyses with the nearest genes of DARs using 
clusterProfile package (v.4.6.2) [47–49]. Finally, we visualized the 
enrichment analysis results with histogram and bubble diagram, and 
pathways with significance P value < 0.05 were provided on the web
page of scBlood. 

2.4. Co-accessibility and gene activity score 

To deepen the understanding of transcriptional regulatory mecha
nisms and reveal potential interactions between peaks, we used Cicero 
(v.1.4.4) to predict co-accessibility interactions [36,50] by setting the 
co-accessibility cutoff value > 0.25. We then assigned the nearest genes 
to co-accessible chromatin regions. Based on these co-accessibility in
teractions, gene activity scores in each cell were then calculated using 
the ‘build_gene_activity_matrix’ function. Finally, we applied the ‘nor
malize_gene_activities’ function to normalize the gene activity scores to 
account for different sequencing depths among cells, thereby elimi
nating biases caused by these differences and enabling a direct com
parison of gene activity scores across different cells. 

2.5. TF/motif enrichment analysis 

TFs play a crucial role in the regulation of gene expression by 
recognizing and binding to specific DNA sequences, thereby initiating or 
inhibiting the transcription process of genes [51]. We utilized the 
chromVAR tool to quantify the activity of transcription factors 
(v.1.20.2) [37]. Specifically, chromVAR uses a peak-by-cell matrix 
derived from the scATAC-seq dataset and motif position weight matrices 
(PWMs) as input. We performed motif matching within these peaks 
using the ‘matchMotifs’ function from the motifmatch package, com
bined with the PWMs (‘human_pwms_v2′ and ‘mouse_pwms_v2′). 
chromVAR then computed the raw accessibility deviation for each motif 
in each cell. Additionally, we calculated GC content of the peaks based 
on ‘BSgenome.Hsapiens.UCSC.hg38′ and ‘BSgenome.Mmusculus.UCSC. 
mm10′. To correct biases caused by external factors such as sequencing 
techniques, chromVAR constructed a background peak set for each 
motif, which consists of an equal number of peaks matched for GC 
content and average accessibility. The raw accessibility deviations of the 
background sets were used to compute a bias corrected deviation and 
deviation z-score for each TF/motif, reflecting their variations within 
and between different cell types. Finally, differential TFs/motifs be
tween one cell cluster and the rest were identified using a two-sample 
Wilcoxon test with a P value < 0.05. The TF/motif z -score and differ
ential TFs / motifs are visualized using scatter plot and heatmap, 
respectively. 

2.6. Cell type annotation 

The peak-by-cell matrix obtained from scATAC-seq data is highly 
sparse, making it difficult for cell types annotation. Therefore, we first 
converted the peak-by-cell matrix into a gene activity matrix using 
Cicero (v.1.4.4). We then used SingleR (v.2.2.0) for cell type annotation 
[52], leveraging its comprehensive built-in reference datasets. Addi
tionally, we provided an alternative cell type annotation method, 
SCINA, which is a semi-supervised cell type labeling algorithm [53]. 
Specifically, we first compiled a list of reference marker genes related to 
the intended cell type from CellMarkers [54]. Cell type labels were then 
assigned to individual cells based on the expression levels of these 
marker genes. Cells that do not fit well with known markers were an
notated as ‘Unknown’, thus providing an opportunity to discover new 
cell types or subtypes. 

2.7. Integration of multiple scATAC-seq samples 

To integrate multiple samples in the scATAC-seq dataset, we initially 

merged the peaks from each sample using the mergePeaks module in 
scATAC-pro, specifying a minimum distance interval of 500 bp. Subse
quently, we reconstructed the peak-by-cell matrix for each sample based 
on the merged peaks and selected the top 5000 variable features along 
with the top 30 PCA dimensions for downstream integration using 
Harmony (v.1.0.0) [55]. After adding harmony embeddings, RunUMAP 
was used to generate a UMAP dimensionality reduction from the har
mony reduction. Finally, we clustered the cells using FindNeighbors 
(with reduction set to ‘harmony’ and dims set to 1:30), followed by 
FindClusters with a resolution parameter of 0.6. 

2.8. Database implementation 

The current version of the scBlood database operates on a server 
based on Centos 7.7.1908. We use the IntelliJ IDEA 2021.3 integrated 
development environment to deploy and release the project to the 
remote server via a Dockerfile. Prior to this, Docker 19.03.5 (http 
s://www.docker.com/) was installed on the remote server, and the 
backend API and frontend pages were reverse proxied through Nginx 
1.22.0 (https://nginx.org/). This project is implemented with a tech
nology architecture that separates the frontend and the backend. On the 
backend, business logic processing is constructed with the Spring Boot 
3.0.5 framework (https://spring.io/projects/spring-boot) based on Java 
17.0.1 (https://dev.java/). For database management, MyBatis 3.0.2 
(https://blog.mybatis.org/) serves as the ORM framework connecting to 
the MySQL structured database (https://www.mysql.com/), which is set 
up through a Docker container version mysql:8.0.32. To enhance system 
performance, we introduced Redis 6.2.11-alpine Docker (https://redis. 
io/) container version as a caching mechanism. The frontend is con
structed using the Vue 3.2.4 framework (https://vuejs.org/) in a Node.js 
v16.13.0 environment (https://nodejs.org/en). For the development of 
the frontend pages, Axios 0.21.4 (https://www.axiosdev.com.au/) is 
used for data interaction with the backend API, while Element-UI 
(element-plus 2.2.0) (https://element-plus.gitee.io/en-US/) and Boot
strap v5.1.3 (https://getbootstrap.com/) for page layout and style 
design. Font Awesome 6.1.1 (https://fontawesome.com/) provides icon 
style support, while Echarts 5.3.1 (https://echarts.apache.org/en/i 
ndex.html), Plotly 2.23.0 (https://plotly.com/), and CanvasXpress 
38.4.1 (https://canvasxpress.org/) were used for graph visualization. To 
ensure the best browsing experience, it is recommended that users ac
cess the website with modern web browsers that support the HTML5 
standard, such as Firefox, Google Chrome, and Edge. 

3. Result 

3.1. Overview of scBlood 

The current version of scBlood encompasses 292 blood cells scATAC- 
seq samples and 85 non-blood samples sourced from 30 tissues and 21 
disease types of human and mouse (Fig. 1). These blood cells are mainly 
derived from bone marrow, peripheral blood mononuclear cells 
(PBMCs), umbilical cord blood, lymph nodes, hematopoietic stem cells 
(HSCs), and the spleen. We obtained these samples from four sequencing 
platforms, including 10X Genomics, HyDrop-ATAC-seq, snATAC-seq 
and sciATAC-seq. After preprocessing to obtain the raw peak-by-cell 
matrices of scATAC-seq data, we used a uniform pipeline and software 
parameters to process and analyze the data, including quality control 
and filtering, multi-sample integration analysis, cell clustering and 
annotation, differential chromatin accessibility analysis, functional 
enrichment analysis, co-accessibility analysis, gene activity score 
calculation, and TF enrichment analysis. scBlood will be a user-friendly 
resource platform for exploring blood-related scATAC-seq data. It dis
plays all analysis results and allows public access to seven functional 
areas: ‘Home’, ‘Data-Browse’, ‘Search’, ‘Analysis’, ‘Download’, ‘Contact 
Us’, and ‘Help’, via the navigation bar at the top of the page. 
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3.2. Search interface for retrieving scATAC-seq data 

scBlood provides five user-friendly search interfaces for exploring 
scATAC-seq data: ‘Search by Tissue Type’, ‘Search by Cell Type’, ‘Search 
by Disease Type’, ‘Search by Gene’ and ‘Search by PMID’ (Fig. 2A). In 
the tissue type-based query, users can search for scATAC-seq data by 
specifying the species and tissues of interest to retrieve scATAC-seq 
samples of interest. The search results are presented in a summary 
table featuring sample ID, sample description, integrated dataset ID, 
species, disease type, cell type, tissue type, cell number, type and 
PubMed ID. By clicking on the ‘Sample ID’, users can access detailed 
information and analysis results for a specific sample (Fig. 2B). Simi
larly, users can click on the ‘Integrated Dataset ID’ they are interested in 
to access the details page. This page provides more comprehensive in
formation about the selected integrated dataset, including integrated 
dataset ID, species, source, disease type, tissue type, and PubMed ID, 
among others. Within this integrated dataset, the proportions of various 
cell types are presented in the form of a pie chart, while the number of 
differential chromatin accessibility regions in each cell cluster is dis
played via bar charts (Fig. 2C). A sample information table displays 
relevant details for all samples within the integrated dataset. The anal
ysis results section includes scatter plots for cell clustering and annota
tion UMAP on the left side, and five modules on the right: differential 
peak, gene activity score, TFs enrichment, GO and KEGG pathway 
enrichment. Differential peak, gene activity, and TFs enrichment are 
visualized through scatter plots, enabling users to explore chromatin 
regions’ accessible across different cell cluster. Additionally, a heatmap 
visualization is available for TF enrichment. The GO and KEGG pathway 
enrichment modules display enrichment results using bar charts and 
bubble charts, respectively, with a significance threshold of P- 

value< 0.01 (Fig. 2D). Towards the bottom of the details page, tables for 
differential chromatin accessibility regions (Fig. 2F), co-accessible 
chromatin regions (Fig. 2E), and differential TFs/motifs are provided 
(Fig. 2G). In the cell type-based query, users can select or input preferred 
species and cell type to locate relevant scATAC-seq data, returning the 
sample table containing the input cell type. In the disease type-based 
query, users can select or input a species and disease type of interest, 
scBlood will return a table containing the input disease type. By clicking 
on the ‘Sample ID’, users can explore scATAC-seq data for information 
on specific disease types. In the gene-based query, users can select or 
input a species and one or more genes of interest. scBlood will then 
return a table featuring sample ID, sample description, integrated 
dataset ID, species, disease type, cell type, gene, average activity, tissue 
type, cell number and PubMed ID, allowing users to select multiple 
samples of interest to compare and view scatter plots depicting the 
selected gene activity. In PMID-based queries, users can select a species 
and a PubMed ID of interest to locate specific datasets more quickly. 

3.2.1. A user-friendly interface for browsing scATAC-seq data 
The ‘Data-Browse’ page is structured as an interactive and alpha

numerically sortable table that allows users to quickly browse scATAC- 
seq data and customize filters including ‘Species’, ‘Project’, ‘Disease 
type’, ‘Tissue Type’ (Fig. 2H). Users can use the ‘Show entries’ drop- 
down menu to get different number of records per page. To further 
view the details of a given sample or integrated dataset, users can click 
on ‘Sample ID’ and ‘Integrated Dataset ID’ respectively. 

3.2.2. Online analysis tool 
We implemented two analysis functions, including ‘Dataset 

comparative analysis’ and ‘Gene activity analysis’ (Fig. 2I). Specifically, 

Fig. 1. Construction of scBlood. scBlood is a comprehensive single-cell accessible chromatin database of blood cells. After preprocessing to obtain the raw peak 
matrixs, all datasets in scBlood were used unified processes and software parameters for multiple standard quality control and comprehensive downstream analysis. 
scBlood also provided user-friendly browsing, search, analysis, downloading and visualization functions. 
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‘Dataset comparative analysis’ aims to provide comparisons between 
blood cell datasets as well as between blood cells and non-blood cells 
datasets from tissues such as the brain, lung, and kidney. Firstly, users 
need to specify the species and select two datasets for analysis. Clicking 
‘Start Analysis’ produces a dataset comparative analysis result that al
lows the user to make a comprehensive comparison of the selected 
datasets. Through ‘Gene activity analysis’, users need to select or input a 
gene and choose two or three datasets of interest for analysis. Subse
quently, clicking ‘Start analysis’ will return a box plot of specific gene 
activity across all samples in these integrated datasets, enabling users to 
intuitively compare the activity scores of this gene among different 
tissues and disease types. 

3.2.3. Data download and help interface 
The ‘Download’ page allows users to download sample information 

sheets for human and mouse. scBlood also provided download support 
for metadata file, raw peak-by-cell matrix, TF activity matrix, and gene 
activity matrix for each dataset. Additionally, table files of all down
stream analysis results, such as differential chromatin accessibility 
analysis, TF enrichment analysis, functional enrichment analysis are 
also available for download (Fig. 2J). For further guidance, the ‘Help’ 
page provides a detailed tutorial for users. 

3.2.4. Case study 
Rheumatoid arthritis (RA) is a complex autoimmune and inflam

matory disease characterized by systemic inflammation, and its disease 
progression is closely associated with various immune cell types [56, 
57]. To delve deeper into the roles of these cells in RA, we used the 
“Search by Disease Type” function to query scATAC-seq samples related 
to RA. We selected species as “Human” and entered “Rheumatoid 
arthritis” in the “Disease Type” input box. Upon clicking the “Start 
search” button, the system returned relevant scATAC-seq samples 
“scBlood_h_171″ (Figs. S1A and S1B). We further explored the sample 
detail page by clicking on the sample ID. Our analysis result showed that 
the cells within the scBlood_h_171 sample were clustered into four 
distinct cell types, with cluster2 annotated as monocytes (Fig. S1C). We 
performed TF enrichment analysis on these monocytes and discovered a 
significant enrichment of key factors, including CEBPA, CEBPB, CEBPD, 
CEBPE, CEBPG, SPIB and SPI1　(Fig. S1E and S1G). These factors play 
crucial regulatory roles in the development of monocytes [58–60]. We 
then examined the differential chromatin accessibility regions in 
monocytes, where chr2:112836341–112837268 (P-value= 1.76e-17) 
and chr1:154404846–154405747 (P-value= 2.39e-09) showed signifi
cant differences (Fig. S1F). Detailed analysis revealed that the nearest 
genes of these regions were IL1B and IL6R. Studies have indicated that 
IL1B, linked to the function of pro-inflammatory monocytes, is a key 
mediator in the pathogenesis of RA [57]. Additionally, the abnormal 
expression of IL6 and its receptor IL6R is closely related to the patho
genic mechanism of RA, and the humanized monoclonal antibody 
Tocilizumab, targeting IL6R-α, has potential therapeutic efficacy in the 
treatment of RA and other autoimmune diseases [61–63]. Consistent 
with existing research, results of gene activity analysis showed that these 
genes have higher activity in monocytes (Fig. S1D). Furthermore, among 
these nearest genes of differential chromatin accessibility regions of 
monocytes, we also discovered SRGN and TNFAIP3, etc. These genes 
have also been shown to be associated with RA. These results not only 
validate the reliability of scBlood but also emphasizes the significance of 

these genes in RA pathogenesis. 

4. Discussion 

scBlood offers a vital resource for exploring transcriptional regula
tion mechanisms in blood cells, addressing the limitations present in 
existing scATAC-seq databases related to blood cells. Currently, most 
single-cell databases focus primarily on transcriptomic data, lacking 
specific chromatin accessibility data for blood cells. While some data
bases contain partial scATAC-seq data about blood cells, they are not 
enough to broadly cover more blood cells with different conditions. In 
contrast, scBlood provides a wealth of chromatin accessibility data for 
blood cells, including 292 scATAC-seq samples of blood cells from six 
tissues. Additionally, we processed 85 non-blood scATAC-seq samples 
from 24 tissues such as brain, kidney, and lung for comparative analysis 
with blood cells samples. All data in scBlood underwent uniform mul
tiple standards of quality control. We performed a comprehensive 
analysis of scATAC-seq data in scBlood from multiple perspectives. 
Differential chromatin accessibility analysis helped us identify peak 
regions in certain cell clusters that significantly differ from others, 
potentially representing cell-specific gene regulatory elements. Func
tional enrichment analysis revealed the functional characteristics of 
different cell populations, uncovering pathways and biological processes 
associated with various diseases. Additionally, by co-accessibility anal
ysis, we uncovered interactions between chromatin regions and calcu
lated gene activity scores, aiding in a deeper understanding of the 
transcriptional regulation mechanisms and revealing potential in
teractions. Through TF enrichment analysis, we identified enriched TFs 
and motifs in specific cell populations, providing insights for further 
research into cell-specific transcriptional regulation mechanisms. The 
integration of these functionalities provides users with a user-friendly 
interface to search, browse, analyze, visualize, and download scATAC- 
seq data of interest, facilitating a better understanding of the function
ality and regulatory mechanisms of blood cells. In conclusion, as a 
comprehensive single-cell accessible chromatin database, scBlood pro
vides researchers rich scATAC-seq datasets along with various func
tional analysis tools. We believe scBlood will significantly support and 
advance progress and discoveries in the field of hematology and single- 
cell epigenetic research. 

With the rapid development of single cell techniques, we will 
continue to maintain and update the scBlood database. Future updates 
of scBlood will mainly focus on the following three directions. First, we 
will collect more high-quality scATAC-seq datasets from newly pub
lished studies to enrich the content of scBlood. Secondly, we plan to add 
more practical analysis tools to improve the user experience in data 
exploration and result interpretation. Finally, we will explore inte
grating more single-cell omics data into scBlood to provide a more 
comprehensive biological perspective. We believe that through contin
uous improvement, scBlood will be able to better adapt to the devel
opment of the scientific community and provide researchers with richer 
and more valuable resources. 
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