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Abstract

Hand gesture recognition tasks based on surface electromyography (sEMG) are vital in

human-computer interaction, speech detection, robot control, and rehabilitation applica-

tions. However, existing models, whether traditional machine learnings (ML) or other state-

of-the-arts, are limited in the number of movements. Targeting a large number of gesture

classes, more data features such as temporal information should be persisted as much as

possible. In the field of sEMG-based recognitions, the recurrent convolutional neural net-

work (RCNN) is an advanced method due to the sequential characteristic of sEMG signals.

However, the invariance of the pooling layer damages important temporal information. In

the all convolutional neural network (ACNN), because of the feature-mixing convolution

operation, a same output can be received from completely different inputs. This paper pro-

poses a concatenate feature fusion (CFF) strategy and a novel concatenate feature fusion

recurrent convolutional neural network (CFF-RCNN). In CFF-RCNN, a max-pooling layer

and a 2-stride convolutional layer are concatenated together to replace the conventional

simple dimensionality reduction layer. The featurewise pooling operation serves as a signal

amplitude detector without using any parameter. The feature-mixing convolution operation

calculates the contextual information. Complete evaluations are made on both the accuracy

and convergence speed of the CFF-RCNN. Experiments are conducted using three sEMG

benchmark databases named DB1, DB2 and DB4 from the NinaPro database. With more

than 50 gestures, the classification accuracies of the CFF-RCNN are 88.87% on DB1,

99.51% on DB2, and 99.29% on DB4. These accuracies are the highest compared with

reported accuracies of machine learnings and other state-of-the-art methods. To achieve

accuracies of 86%, 99% and 98% for the RCNN, the training time are 2353.686 s, 816.173 s

and 731.771 s, respectively. However, for the CFF-RCNN to reach the same accuracies, it

needs only 1727.415 s, 542.245 s and 576.734 s, corresponding to a reduction of 26.61%,

33.56% and 21.19% in training time. We concluded that the CFF-RCNN is an improved

method when classifying a large number of hand gestures. The CFF strategy significantly

improved model performance with higher accuracy and faster convergence as compared to

traditional RCNN.
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1 Introduction

Electromyography (EMG) measures bioelectric currents produced by motor units during

muscle contraction [1]. Surface EMG (sEMG) detects the sum of the motor unit action poten-

tial (MUAP) over the skin [2]. Due to its noninvasive and low-cost characteristics [3], sEMG-

based hand gesture recognition systems are widely used in human-computer interaction [4],

speech detection [5], robot control [6], and rehabilitation studies, like prosthesis operation [7–

9] and stroke rehabilitation [10].

A traditional method for sEMG-based recognition is machine learning, which in general is

not inherently efficient or scalable enough to handle massive datasets [11]. For simple pattern

recognition (PR) based on sEMG signals [12–15], methods including linear discriminate anal-

ysis (LDA), k-nearest neighbor (KNN), principal component analysis (PCA), and artificial

neural network (ANN) are usually chosen. Because of the stochastic nature of biological signals

[16], signal preprocessing and feature extraction are necessary steps when applying these algo-

rithms [17]. Data preprocessing, such as filtering, may result in the loss of valid information

[18]. Feature extraction in machine learning is time-consuming and error-prone as it requires

specialization, which significantly increases chances of reduced classification accuracy [19].

Deep learning methods are capable of handling large data calculation and perform auto-fea-

ture extraction in PR tasks. A model based on You Only Look Once (YOLO) v3 and DarkNet-

53 convolutional neural networks (CNN) was built for image-based gesture recognition with-

out additional data processing [20]. In CNN models, feature extraction is replaced by intercon-

nected convolutions in the hidden layers, improving classification accuracies [21–23].

To further consider temporal information and process sequential data, state-of-the-art deep

learning structures in time-series classification are welcomed in biosignal processing. A

50-layer CNN based on residual networks (ResNet) was built to classify 7 different gestures

based on EMG [3]. Three architectures were designed for electrocardiography (ECG) classifi-

cation, which were InceptionTime, ResNet and XResNet [24]. A novel spatial–temporal trans-

former network was proposed in reference [25] to solve skeleton-based human activity

recognition tasks. RNNs also achieved high accuracies in speech recognition, signal detection,

and video classification [26–28]. Combining the advantages of CNNs and RNNs, RCNNs have

shown good performances in object detection, video classification, and emotion recognition

[29–31]. Their merits when dealing with sEMG signals have also been proven both in discrete-

motion classification and continuous-motion estimation [32, 33].

However, existing hand gesture recognizers mostly recognize only a few

movements

Classifying an average of more than 50 gesture classes led to a lower than 2% average chance

level [34, 35]. By simply reducing the number of gestures, the classification accuracy exceeded

90% [36]. An LSTM-CNN (LCNN) achieved 98.14% of accuracy when classifying 5 hand ges-

tures using a proposed MyoDataset, but only 71.66% using NinaPro DB5 Exercise A (12 move-

ments) and 61.4% using NinaPro DB5 Exercise B (17 movements) [37]. This is likely due to

the conventional RCNN structure, where the CNN part includes a 1-stride convolutional layer

and a pooling layer, with the pooling layer playing a role in dimensionality reduction [38].

Max-pooling tosses information about the precise position of the entity within the region [39],

resulting in significant degradation of sequential features [40]. Springenberg describes ACNN

structure to replace the pooling layer with a normal convolution having a stride larger than 1

[38], expecting to gain more learnings of contextual information from the receptive field of the

kernel. However, except the ability of information extraction, ACNN also has an information

confusion characteristic. Because with the feature-mixing convolution operation, a same
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output can be received from completely different inputs. More details are explained in the

Methods section. Therefore, it is important to develop an innovative method of dimensionality

reduction to allow more classes in hand-gesture recognition tasks.

The main contributions of this work are twofold:

1. This paper introduces a new dimensionality reduction strategy, which is named the con-

catenate feature fusion (CFF) strategy. Under the CFF strategy, a max-pooling layer and a con-

volutional layer with a stride of 2 are concatenated together to replace the single max-pooling

in CNN or the 2-stride convolution with in ACNN. The featurewise nature of the pooling

operation maintains signal intensity, while the feature-mixing of the convolution operation

obtains temporal information from the context.

2. This paper proposes a concatenate feature fusion recurrent convolutional neural network

(CFF-RCNN) structure based on a traditional RCNN network, which consists of a 4-layer

CNN and a long short-term memory network (LSTM). Classifications of more than 50 ges-

tures are achieved with high accuracies and fast convergence using the CFF-RCNN structure.

The classification accuracies of the CFF-RCNN on DB1, DB2 and DB4 three databases in the

NinaPro are 88.87%, 99.51% and 99.29%, which are higher than the machine learnings,

RCNN, and other state-of-the-art methods. When analyzing the convergence rate of the

RCNN and CFF-RCNN, training times to reach the same classification accuracy are compared.

To achieve accuracies of 86%, 99% and 98%, the training times are 2353.686 s, 816.173 s and

731.771 s for RCNN, while 1727.415 s, 542.245 s and 576.734 s for CFF-RCNN, corresponding

to a reduction of 26.61%, 33.56% and 21.19%.

The organization of this paper is as follows. Section 2 discusses the novel CFF technique

and the basic construction of CFF-RCNN. In Section 3, we explain the experiment methods to

test the performance, accuracy and efficiency, and tolerance of CFF-RCNN. Results are pre-

sented and analyzed in Section 4. Finally, limitations are discussed and conclusions are drawn

in Section 5.

2 Methods

2.1 The theory of CFF strategy

The pooling operation can be viewed as a featurewise convolutional layer with a p-norm acti-

vation function [38]. It is a significant component in CNNs for three main reasons: 1) neigh-

boring pooling units take input from patches that are shifted by more than one row or

column, making the representation of movements and distortions more invariant; 2) the spa-

tial dimensionality reduction reduces the computational cost for the subsequent conventional

layers; and 3) the featurewise nature could make optimization easier than the feature-mixing

nature of the convolution [38, 41].

The first reason plays an important role in image recognition tasks where the locations of

objects have less important features [42]. Therefore, the invariance of the pooling allows represen-

tations to change very little when elements in the previous layer vary with position and appearance

[41]. However, the invariance characteristic has been recently questioned. By extracting some

entity from the context, the clutter and noise are removed, but the information of the background

is also damaged [43]. Additionally, contextual information, corresponding to the temporal infor-

mation when inputting a sequence signal, is extremely important during the recognition process.

Therefore, the pooling layer may result in heavy losses of crucial data features.

To obtain a more quantized understanding of the information loss, the featurewise opera-

tion of 1D max-pooling can be described as follows:

zt ¼ maxfyt; ytþ1; � � � ; ytþs� 1g ð1Þ
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where yt is the t-th element of a row in the input map, zt is the output map, sp is the pooling

size and ss is the stride. Usually, the pooling size and stride are equal (sp = ss = s). Clearly, the

max-pooling will throw away s-1 elements for each step, which is also shown in Fig 1A. Addi-

tionally, in Fig 1B (Case 1) and Fig 1C (Case 2), when only changing the order of the inputs,

the output zt remains unchanged. This is the so-called invariance characteristic, which will

result in a serious loss in sequential information.

We symbolize the input data map of the i-th 1D convolutional layer as Xi-1 and the output

map as Xi. The final output of the n-th convolutional layer is Y = Xn, and there are n layers of

1-stride convolution in total. The kernel sizes are unified to k and there is no padding. Consid-

ering a single convolution step as well, the output element xi,t can be calculated to k input ele-

ments by a convolutional function fi:

xi;t ¼ fiðxi� 1;t; xi� 1;tþ1; � � � ; xi� 1;tþk� 1Þ ð2Þ

yt ¼ fnðxn� 1;t; xn� 1;tþ1; � � � ; xn� 1;tþk� 1Þ

¼ fn fn� 1 xn� 2;t; xn� 2;tþ1; � � � ; xn� 2;tþk� 1ð Þ; � � � ; fn� 1 xn� 2;tþk� 1; xn� 2;tþk; � � � ; xn� 2;tþ2�ðk� 1Þð Þ

� �

¼ Fðx0;t; x0;tþ1; � � � ; x0;tþnðk� 1ÞÞ

ð3Þ

Fig 1. The procedure of the max-pooling layer. (a) The featurewise operation will result in information losses, where yt is the t-th element of the input, zt is

the output, sp is the pooling size and ss is the stride (sp = ss = s = 2). (b, c) Examples of the invariance characteristic. Case 1 and 2 are different in the order. The

output of the max-pooling layer cannot reflect small input changes, losing important sequential information.

https://doi.org/10.1371/journal.pone.0262810.g001
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Then, yt is related to n(k-1)+1 input elements. Therefore, after a max-pooling layer with a

size of s, there will be a total loss of s-1 pieces of sequential information between n(k-1)+1

input data, which violently affects the performances of the following networks.

To achieve dimensionality reduction without the use of pooling, an ACNN structure was

introduced by Springenberg, with the pooling layer replaced by a normal convolution with a

stride larger than 1 [38]. It is worth noting that this improvement was based on an important

assumption that only the second reason mentioned above, which is dimensionality reduction,

was crucial for achieving good CNN performance. However, in this paper, the existence of

max-pooling is questioned mainly because it abandons crucial sequential information. By sim-

ply removing the max-pooling and adding the convolution with stride larger than 1, the recep-

tive field of the kernel may be helpful for learning some contextual information, but the results

are probably not that good, even causing misleading guidance. To explain this, let us consider

a convolution with a size of k and stride of s. The single-step operation (without bias and

before activating) can be described as follows:

yt ¼
Xk

j¼1

ðcj � xsðt� 1ÞþjÞ ð4Þ

where x is the input feature, y is the output feature, and c is the element in the convolutional

kernel. Therefore, y is a summation of k input features, and the weights are learned during the

training procedure. With different inputs and weights, chances are that the output feature y
may be the same:

yt ¼
Xk

j¼1

ðcj � xsðt� 1ÞþjÞ ¼
Xk

j¼1

ðc0j � x0sðt� 1ÞþjÞ ð5Þ

An example is shown in Fig 2. Fig 2A shows that when the kernel size k is 3, each output

element xi,t in the i-th layer is related to 3 inputs, xi-1,t, xi-1,t+1, xi-1,t+2, in the (i-1)-th layer.

In Fig 2B (Case 1) and Fig 2C (Case 3), both the convolutional kernels are set at (-1, 1, 2).

Although the input data are completely different, same outputs are received. To take a

more extreme example, assuming that all the input data x’ are unified to a constant a and

c0j ¼ cj � xs�ðt� 1Þþj=a, the same output feature y is obtained. Therefore, y represents a time-

alternating signal and a constant signal at the same time, resulting in confusion. The ability to

extract the sequential information of the s-stride convolution mainly depends on the training

effect, which is sensitive to the input data and increases computing loads.

The dual characteristics, which are information extraction and information confusion, are

related to the feature mixing operation of the convolution. Although max-pooling fails to deter-

mine contextual features, it is an excellent featurewise amplitude detector without any training

parameter. Knowing the most representative intensity of a sequence, the context information

can be retained as much as possible. Therefore, a new dimensionality reduction strategy, which

is called the CFF strategy, is proposed in this paper. The concatenate of a max-pooling layer and

a convolutional layer with the stride of 2 is used to replace the traditional pooling layer in CNN,

or the single 2-stride convolution in ACNN. As illustrated in Fig 3, both the max-pooling and

the 2-stride convolution are applied to the inputs. Different outputs are received from Case 1

and 2 (which have the same result when only using max-pooling), and Case 1 and 3 (which

have the same result when only using 2-stride convolution). After doing so, distinguishable fea-

tures are obtained to represent different sequential data. By concatenating a max-pooling layer

with a 2-stride convolutional layer, both featurewise and feature-mixing calculations are per-

formed on the same data segment, extracting sequential information efficiently.
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2.2 The architecture of the CFF-RCNN model

Because of the reasons mentioned above, in this paper, a CFF-RCNN is constructed. The

dimensionality reduction part uses the CFF strategy, operating as a feature fusion part at the

same time (a dimension reducer and feature fusor). For the RCNN architecture, the CNN

plays a role as a feature extractor and the RNN as a sequence recognizer. The detailed structure

is shown in Fig 4.

Initially, the sEMG signals recorded from the electrodes of C channels are split into seg-

ments using an s-length sliding window with a p-length overlap. Each subsegment is denoted

as Xt’, where Xt’ contains N steps of data with C channels. Therefore, the size of Xt’ will be

(1×L), where L = N×C (L is the length). Subsequently, Xt’ is reshaped into a 3D frame Xt with

size (W×H×C), where W×H = N (W is the width and H is the height). The input data of the

network are X = {X1, X2, . . ., XT}, where T is the total number of samples. A time-distributed

CNN structure is applied as the feature extractor, where all the kernel sizes are 3 for the convo-

lutions. The first layer is a 64 convolutional layer with a stride of 1. Then, the output feature

Fig 2. The procedure of the convolutional layer. (a) The feature-mixing operation of the convolution. x is the input feature, y is the output feature, and c is the

element in the convolutional kernel. The kernel size is k (k = 3) and stride is s. (b, c) Examples of the information confusion caused by the feature mixing

operation of the convolution. With the same convolutional kernels, same outputs can be received even though the input data are completely different in Case 1

and 3.

https://doi.org/10.1371/journal.pone.0262810.g002
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maps are transmitted to both the max-pooling layer and the 2-stride convolutional layer in

parallel. The pooling size is 2, and the number of filters is 64. After that, the output map of the

convolutional layer is concatenated immediately after that of the pooling layer, forming a fea-

ture map with 128 channels. Furthermore, to extract detailed features, another 1-stride convo-

lutional layer with 64 filters is placed after the concatenate operation. In addition, a simple

max-pooling layer is used for dimensionality reduction. The last three layers of the feature

extractor are fully connected layers, with 512, 512, and 128 hidden units. The rectified linear

unit (ReLU) is chosen as the activation function, and batch normalization is used for all the

1-stride convolutional layers mentioned above. For the sequence recognizer, an RNN will be

connected with the outputs of the CNN feature extractor. Each LSTM unit has 512 nodes and

a dropout rate of 0.5, followed by a fully connected layer and a softmax layer as the classifier. A

comparison of structures between the RCNN and the CFF-RCNN is presented in Table 1.

3 Experiments

3.1 Experiment setups

Data acquisition: Performance of the novel CFF-RCNN model is evaluated using the first, sec-

ond and fourth subdatasets of the NinaPro database [34, 44], denoted as DB1, DB2, and DB4.

Fig 3. The procedure of the CFF strategy. Both the max-pooling and the 2-stride convolution are applied to the inputs. After doing so, distinguishable features are

obtained to represent different sequential data.

https://doi.org/10.1371/journal.pone.0262810.g003

Fig 4. The structure of the CFF-RCNN.

https://doi.org/10.1371/journal.pone.0262810.g004
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Detailed information on the databases is shown in Table 2. DB1 contains a total of 53 gestures

(rest included) from 27 subjects, including 12 basic movements of the fingers (Exercise A), 8

isometric and isotonic hand configurations and 9 basic movements of the wrist (Exercise B),

and 23 grasping and functional movements (Exercise C). It was recorded by 10 electrodes with

a sampling rate of 100 Hz. DB2 collects 50 movements from 40 subjects, including 8 isometric

and isotonic hand configurations and 9 basic movements of the wrist (Exercise B), 23 grasping

and functional movements (Exercise C), and 9 force patterns (Exercise D). DB4 has 53 move-

ments from 10 subjects, including 12 basic movements of the fingers (Exercise A), 8 isometric

and isotonic hand configurations and 9 basic movements of the wrist (Exercise B), and 23

grasping and functional movements (Exercise C). Twelve electrodes were used to record the

sEMG signals at a sampling rate of 2 kHz for both DB2 and DB4.

Data preprocessing: Several signal processing steps including synchronization, relabeling

and filtering were performed in the Ninapro databases [34]. All the data streams were synchro-

nized to the high-resolution timestamps (100 Hz for DB1, 2 kHz for DB2 and DB4) using lin-

ear interpolation. The resulting erroneous movement labels have been corrected by applying

the generalized likelihood ratio algorithm and the Lidierth threshold based algorithm. The

Delsys electrodes for DB2 and Cometa sensors for DB4 are not shielded against power line

interferences. Therefore, prior to synchronization, these signals were cleaned from 50 Hz (and

harmonics) power-line interference using a Hampel filter. Standardization and normalization

procedures were applied, and labels were encoded using one-hot encoder.

Data segmentation: As described in Section 2.2, the pre-processed data are segmented

using the sliding window method. The raw subsegment Xt’ contains N steps of data with C
channels and is reshaped into a 3D frame Xt with size (W×H×C), where W×H = N (W is the

width and H is the height). In this paper, a 250 ms window with a 200 ms overlap is used for

segmentation. For DB2 and DB4, N is set to 500 by simply multiplying the window length and

Table 1. The structure comparison between the RCNN and CFF-RCNN.

RCNN CFF-RCNN

Conv. 64 3 Conv. 64 3

Batch Normalization Batch Normalization

Max-pooling 2 Max-pooling 2 Conv. 64 3/ S = 2

Concatenate

Conv. 64 3 Conv. 64 3

Batch Normalization Batch Normalization

Max-pooling 2 Max-pooling 2

Flatten Flatten

Fully connected 512 Fully connected 512

Fully connected 512 Fully connected 512

Fully connected 128 Fully connected 128

LSTM 512 LSTM 512

SoftMax SoftMax

https://doi.org/10.1371/journal.pone.0262810.t001

Table 2. Details of the three sEMG benchmark databases.

Database Gestures Channels Subjects Sampling rate (Hz) Window length (ms)

DB1 53 (Exercise A, B & C) 10 27 100 250

DB2 50 (Exercise B, C & D) 12 40 2000 250

DB4 53 (Exercise A, B & C) 12 10 2000 250

https://doi.org/10.1371/journal.pone.0262810.t002
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the sampling frequency, W and H, which are set to 5 and 100, respectfully. This forms the

input data with size (5×100×12). For DB1, N is 25. In addition, owing to the downsampling of

DB1, the input data are reshaped into (5×25×2) to obtain larger data maps.

Training details: For the proposed CFF-RCNN and compared RCNN structures, stochastic

gradient descent with momentum (SGDM) is chosen as the optimizer with a momentum of

0.95. The initial learning rate is set at 0.002, and the weight decay is set at 0.0005. The loss func-

tion is cross-entropy loss: Loss ¼ � ½ylogŷ þ ð1 � yÞlogð1 � ŷÞ�, where y is the original label,

and ŷ is the result of the classification. The minibatch size is 20. The training epochs are set to

30 for DB2 and DB4 and 50 for DB1 due to the smaller map size. A 5-fold cross validation is

used for model comparison. The networks operated on a workstation with an Intel Xeon E5-

4210v2 central processing unit@ 2.2 GHz, NVIDIA GeForce GTX 2080Ti, and 128 GB access

memory. The TensorFlow and Keras deep learning frameworks are used to design and train

the networks.

3.2 Performance evaluation

To test the performance of the RCNN and CFF-RCNN, comparisons are made with traditional

machine learning methods PCA, LDA and ANN and other state-of-the-art methods using the

databases mentioned above.

We select four commonly used features, mean absolute value (MAV), zero crossings (ZS),

slope sign changes (SSC), and waveform length (WL) to examine feature extraction perfor-

mance. These features are calculated from each sEMG channel in a 250 ms sliding window

with a 200 ms overlap in all methods tested. Both the PCA and LDA are used to reduce the

dimensionality and analyze components, together with a KNN operating as a classifier. For

ANN, three fully connected layers are built with the activation of ReLU, and the numbers of

nodes are 100, 200, and 160. A dropout layer is added with a rate of 0.5, and softmax is used

for classification. The ANN shares the same training optimizer and loss function with

CFF-RCNN and RCNN, where the batch size is set to 32 and the number of epochs is 100.

We also compared with models from other works on the same benchmark dataset with all

gestures. Traditional machine learnings tested include support vector machines (named

LS-SVM) [45], random forests (RF) [34, 44] and LDA [45]. Other state-of-the-art approaches

are AtzoriNet [34], ZhaiNet [46], transfer learning multi-scale kernel convolutional neural net-

work (TL-MKCNN) [47], few-shot learning- hand gesture recognition (FS-HGR) [48], RNN

with weight loss [49], a long short-term memory network with a multi-layer perceptron

(LSTM+MLP) [50], CNN-LSTM [51], and attention-based hybrid CNN-RNN with feature-

signal-image1 [32].

3.3 Comparison of the RCNN and CFF-RCNN

Experiments are designed to compare accuracy, efficiency, and tolerance of the RCNN and

CFF-RCNN.

3.3.1 Experiment 1: Accuracy and efficiency test. The first experiment is set to compare

prediction accuracies, total training times and training times at different training epochs. To

present the training process, the epoch number is changed from 30 to 10 with a step of -5 for

DB2 and DB4 and changed from 50 to 20 with a step of -10 for DB1. The accuracy is viewed

for the same training epoch. The efficiency of RCNN and CFF-RCNN is evaluated from three

aspects: 1. The number of epochs for the same accuracy. 2. The training time for the same

number of epochs. 3. The training time for the same accuracy. A 5-fold cross validation is used

and classification accuracies on DB1, DB2 and DB4 are compared between RCNN and

CFF-RCNN using Wilcoxon Matched-Pairs Signed-Ranks Test. The significance level is set to
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0.05. We also tested the accuracy without using the k-fold cross validation, where the propor-

tions of the training, testing and valid sets are 0.8, 0.1 and 0.1.

3.3.2 Experiment 2: Robustness test. The second experiment is designed to test the per-

formance of the networks when operating on a complex and chaotic dataset. Because sEMG

signals vary significantly between subjects even with a precise electrode-placement control

[52], the networks are usually trained specifically for each user in practice. In this experiment,

both the RCNN and CFF-RCNN are trained using the total data of all the subjects in DB4 in

order to test the robustness. The number of training epochs is 160.

4 Results

4.1 Performance evaluation

The classification accuracies of the machine learning methods, RCNN, and CFF-RCNN are

illustrated in Fig 5. The accuracy in the figure is the mean value of all the subjects.

Classification accuracies of the proposed methods are evaluated using DB1, DB2, and DB4

data. On DB1 data, accuracies in the machine learning models using the same data are 43.80%,

77.60%, and 80.66%, with the highest being 80.66% when ANN is applied. CFF-RCNN model

reaches an accuracy of 88.87% and improves the accuracy by at least 1.50% compared to the

RCNN. The top three principal components of Subject 1 in DB1, obtained by the PCA and

Fig 5. Classification accuracy of the proposed methods.

https://doi.org/10.1371/journal.pone.0262810.g005
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LDA, are illustrated in Fig 6. Both of the clusters are hard to distinguish with groups of plots

overlapping each other, meaning that the classifiers cannot find the differences among gestures

efficiently; the LDA clusters have circular groupings and can be better represented by the clus-

ter centroids, resulting in a higher classification accuracy of 77.60%. On DB2 data, the tradi-

tional RCNN achieves 99.32% of accuracy, which is 8.34% higher than that of the ANN

methods. CFF-RCNN increases the accuracy of the RCNN from 99.32% to 99.51%. On DB4

data, the LDA performs the best among all the tested machine learning methods, with an accu-

racy of 94.79%. RCNN has a much higher accuracy of 99.25%. CFF-RCNN shows a slightly

higher (99.29%) accuracy than RCNN.

Accuracy results of RCNN, CFF-RCNN and models from other works can be found in

Table 3. When classifying hand gestures with more than 50 gestures, CFF-RCNN shows better

performance compared with machine learnings and other state-of-the-arts.

Fig 6. Principal components of DB1S1 obtained by the LDA and PCA.

https://doi.org/10.1371/journal.pone.0262810.g006

Table 3. Classification accuracy of the compared methods.

Methods DB1 DB2 DB4

LS-SVM (IAV+MAV+RMS+WL) [45] 85.19 ± 13.32% - -

LDA(IAV(or MAV)+ CC) [45] 84.23± 9.58% - -

RF [34, 44] 75.32% 75.27% 69.13 ± 7.77%

AtzoriNet [34] - 60.3 ± 7.7% -

ZhaiNet [46] - 78.71% -

TL-MKCNN [47] - 86.67% 82.29%

FS-HGR [48] - 85.94% -

RNN with weight loss [49] 79.3% 78.0% -

LSTM+MLP [50] 75.45±8.97% - -

CNN-LSTM [51] - 79.329% -

Attention-based hybrid CNN-RNN [32] 87% 82.2% -

RCNN 87.37 ± 3.77% 99.32 ± 0.55% 99.25 ± 0.13%

CFF-RCNN 88.87 ± 3.63% 99.51 ± 0.12% 99.29 ± 0.10%

https://doi.org/10.1371/journal.pone.0262810.t003
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Based on these comparisons over the classification accuracies on DB1, DB2, and DB4 data-

bases, the CFF strategy-integrated CFF-RCNN model outperforms traditional machine learn-

ing models and other state-of-the-arts, and further improves the classification result of a

traditional RCNN architecture for all the tested datasets.

4.2 Comparison of the RCNN and CFF-RCNN

4.2.1 Experiment 1: Accuracy and efficiency test. The prediction accuracies, total train-

ing times and training times per epoch are shown in Tables 4–6, corresponding to DB1, DB2

and DB4. The 5-fold cross validation is used for model comparison and the accuracy in the

table is the mean value ± standard deviation of that of all the subjects.

The results shown in Tables 4–6 are analyzed by the accuracy and the efficiency (using

epoch numbers and training times). We want to understand, when recognizing gestures with

many classes, how the CFF strategy impacts the classification accuracy and the training time,

and whether this new dimensionality reduction strategy is valid in feature extractions and

improves the performance of the network.

First, to analyze accuracies, results are viewed for the same training epoch. Conclusions can

be drawn that at each sampling point of the epochs, the CFF-RCNN has a higher classification

accuracy than the RCNN on all the datasets. When the networks are trained on DB1, the accu-

racy of the CFF-RCNN is approximately 1–2% higher than that of the RCNN (see Table 4).

For DB2 and DB4, the improvements, which are 1–2%, are more clear for smaller epochs (see

Tables 5 and 6). Although the gap of accuracy between RCNN and CFF-RCNN decreases with

a larger number of epochs, CFF-RCNN still achieves a higher accuracy result. This is likely

because CFF-RCNN converges much faster than RCNN when moving close to their saturation

stages.

The efficiency of RCNN and CFF-RCNN are evaluated using the epoch numbers. The

CFF-RCNN achieves higher accuracy with fewer training epochs. For DB1, the RCNN reaches

Table 4. Predicting accuracy, total training time, and training time per epoch of the RCNN and CFF-RCNN on DB1 at different epochs, along with the statistical

analyses results.

Number of epochs DB1

Predicting Accuracy Total training time Training time per epoch

RCNN CFF-RCNN p-value RCNN CFF-RCNN RCNN CFF-RCNN

50 87.37 ± 3.77% 88.63 ± 3.66% <0.05 2899.955s 2761.043s 57.999s 55.221s

40 86.33 ± 3.95% 87.92 ± 3.71% <0.05 2353.686s 2245.716s 58.842s 56.143s

30 85.08 ± 4.06% 86.42± 4.01% <0.05 1680.139s 1727.415s 56.005s 57.581s

20 82.85 ± 4.34% 84.23 ± 4.26% <0.05 1210.431s 1097.884s 60.522s 54.894s

https://doi.org/10.1371/journal.pone.0262810.t004

Table 5. Predicting accuracy, total training time, and training time per epoch of the RCNN and CFF-RCNN on DB2 at different epochs, along with the statistical

analyses results.

Number of epochs DB2

Predicting Accuracy Total training time Training time per epoch

RCNN CFF-RCNN p-value RCNN CFF-RCNN RCNN CFF-RCNN

30 99.32 ± 0.55% 99.51 ± 0.12% <0.05 966.385s 1033.514s 32.213s 34.451s

25 99.15 ± 0.71% 99.44 ± 0.13% <0.05 816.173s 910.904s 32.647s 36.436s

20 98.96 ± 0.67% 99.27 ± 0.20% <0.05 698.677s 643.676s 34.934s 32.184s

15 98.06 ± 1.44% 98.80 ± 0.47% <0.05 484.844s 542.245s 32.323s 36.150s

10 94.69 ± 2.61% 96.15 ± 1.51% <0.05 323.722s 335.076s 32.372s 33.508s

https://doi.org/10.1371/journal.pone.0262810.t005
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86% of accuracy at 40 epochs and 87% of accuracy at 50 epochs, respectively. The CFF-RCNN

reaches 86% of accuracy at 30 epochs and 87% of accuracy at 40 epochs, respectively. The

CFF-RCNN experienced 10 epochs (20% of the total training epochs) fewer to reach the same

level of accuracy as RCNN. To reach 99% of accuracy on DB2, CFF-RCNN uses 15 epochs, a

33% reduction in the number of epochs as compared to 25 epochs with RCNN. For DB4, the

RCNN is trained with 20 and 30 epochs to achieve 98% and 99% of accuracy, respectively. The

CFF-RCNN only uses 15 and 25 epochs, which is 5 epochs fewer for the same level of accuracy,

corresponding to a reduction of 17% in the number of training epochs.

The efficiency of the CFF strategy is also assessed with the training times from the last four

columns shown in Tables 4–6. Considering the training time for the same number of epochs,

the CFF-RCNN sometimes has a slightly longer training time per epoch in general, increasing

by 1–4 s, which is within tolerance (30 epochs in DB1; 30, 25, 15 and 10 epochs in DB2; 30, 25

and 15 epochs in DB4). At other epoch numbers, CFF-RCNN learns faster in a single epoch

(50, 40 and 20 epochs in DB1; 20 epochs in DB2; 20 and 10 epochs in DB4). When trained on

DB1, the CFF-RCNN has a better performance except at 30 epochs, illustrating that the CFF

strategy can improve the feature extraction ability when the map size is small or the amount of

data is limited.

The CFF-RCNN takes less time to train for the same accuracy. To achieve accuracies of

86%, 99% and 98% for DB1, DB2 and DB4, the CFF-RCNN uses 1727.415 s, 542.245 s and

576.734 s. The training time of the RCNN is 2353.686 s, 816.173 s and 731.771 s to arrive at the

same accuracies. The CFF strategy reduces the training time by 26.61%, 33.56% and 21.19%,

respectively.

Fig 7 shows comparisons of the training loss, validation loss, training accuracy, and valida-

tion accuracy of RCNN and CFF-RCNN. The curves illustrate that the proposed CFF-RCNN

has a smaller loss value, higher accuracy, and faster convergence speed than the RCNN.

The statistical analysis results are illustrated in Tables 4–6 and Fig 8. Classification accura-

cies without using the k-fold cross validation can be found in S1–S3 Tables. Statistic analysis

using the Wilcoxon Matched-Pairs Signed-Ranks Test revealed that CFF-RCNN significantly

outperforms RCNN on DB1, DB2 and some sets of DB4 (p<0.05) (see Tables 4–6 and Fig 8).

No significant difference (p>0.05) is found between the two methods when the number of

epochs on DB4 is set to 30 (see Table 6 and Fig 8). Typically, when the number of epochs is

smaller, the differences between RCNN and CFF-RCNN are more significant, indicating that

CFF-RCNN has a better feature-extracting and learning ability with less training epochs.

4.2.2 Experiment 2: Robustness test. As shown in Table 7, when trained using the total

data of all the subjects in DB4, the classification accuracy of the CFF-RCNN in the testing set is

83.0495%, much higher than that of the RCNN (74.6528%). In the prediction set, RCNN has

an accuracy of 74.18%, and CFF-RCNN has an accuracy of 83.1931%, which is 9% higher than

Table 6. Predicting accuracy, total training time, and training time per epoch of the RCNN and CFF-RCNN on DB4 at different epochs, along with the statistical

analyses results.

Number of epochs DB4

Predicting Accuracy Total training time Training time per epoch

RCNN CFF-RCNN p-value RCNN CFF-RCNN RCNN CFF-RCNN

30 99.25 ± 0.13% 99.29 ± 0.10% 0.333 976.322s 1057.923s 32.544s 35.264s

25 99.12 ± 0.14% 99.23 ± 0.12% <0.05 924.086s 950.205s 36.963s 38.008s

20 98.86 ± 0.19% 99.03 ± 0.22% <0.05 731.771s 673.798s 36.589s 33.690s

15 97.88 ± 0.50% 98.30 ± 0.39% <0.05 512.327s 576.734s 34.155s 38.449s

10 93.56 ± 1.49% 94.98 ± 1.34% <0.05 378.690s 338.427s 37.869s 33.843s

https://doi.org/10.1371/journal.pone.0262810.t006
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its conventional counterpart. The training procedures are shown in Fig 9. In both loss and

accuracy curves, the CFF-RCNN performs better in terms of a lower loss value, higher classifi-

cation accuracy and faster convergence rate. The results indicate that the CFF-RCNN also

shows a powerful data processing capability when dealing with mass and complicated datasets.

4.2.3 Summary of the experiments. The CFF strategy is superior in two aspects. First, it

helps to achieve a higher accuracy in gesture classification than the traditional RCNN from the

training process to the end. Second, it has a faster convergence rate (1727.415 s, 542.245 s and

576.734 s to achieve accuracies of 86%, 99% and 98% for DB1, DB2 and DB4) compared to the

RCNN (2353.686 s, 816.173 s and 731.771 s), and therefore shorten the training process (a

reduction of 26.61%, 33.56% and 21.19% of the training time). These advantages play an

important role in making the CFF-RCNN a qualified method of classifying hand gestures with

more than 50 movements.

Fig 7. Loss and accuracy of the training and validation sets of the RCNN and CFF-RCNN on DB1, DB2 and DB4.

https://doi.org/10.1371/journal.pone.0262810.g007
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5 Discussion and conclusions

In this article, we proposed and applied CFF strategy as a new dimensionality reduction strat-

egy in an improved CFF-RCNN structure for sEMG-based hand gesture recognition tasks

with more than 50 classes. The CFF strategy concatenates a pooling layer and a convolutional

layer with a stride of 2, which reduces the information-loss that normally arises from models

carrying a single pooling or convolutional layer.

Evaluations have been made thoroughly using three benchmark databases in the NinaPro

database: DB1, DB2 and DB4. We compared the classification accuracies of the proposed

CFF-RCNN model with traditional machine learnings and other state-of-the-art methods.

Results showed that the CFF-RCNN achieved better accuracies of 88.87% in DB1 (53 gestures),

99.51% in DB2 (50 gestures) and 99.29% in DB4 (53 gestures). To demonstrate that the CFF

strategy can also improve efficiency, we further designed the training process test and the com-

plex dataset tolerance test to compare the RCNN and CFF-RCNN, and found that CFF-RCNN

improved the convergence rate by 26.61%, 33.56% and 21.19%, which significantly shortened

the required training time.

The present study is aimed at optimizing the network architecture for a better performance

of feature-extracting in experiment settings. However, there are three main limitations of the

present work. First, all the experiments are based on the NinaPro database. To explore poten-

tial clinical application of the CFF-RCNN model, accuracy and convergence rate can be tested

using clinical data. Second, the present network is limited to offline training and testing,

whereas in clinic applications such as prosthesis operation and stroke rehabilitation. Third, the

parameters of the network were trained specifically for each user. Deep learning requires an

unreasonable amount of effort from a single user in order to generate tens of thousands of

examples as training data [53]. Therefore, new technologies such as transfer learning (TL) may

be considered in order to lighten the user’s workload [53].

Fig 8. Comparisons between CFF-RCNN and RCNN on DB1, DB2 and DB4. P value style: 0.1234(ns), 0.0332(�), 0.0021(��),0.0002(���), <0.0001(����).

https://doi.org/10.1371/journal.pone.0262810.g008

Table 7. Comparison of RCNN and CFF-RCNN on all the subjects in DB4.

DB4 RCNN CFF-RCNN

160 epochs 160 epochs

Training accuracy 71.3608% 79.8770%

Testing accuracy 74.6528% 83.0495%

Predicting accuracy 74.1787% 83.1931%

https://doi.org/10.1371/journal.pone.0262810.t007
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In the future, more works are required to overcome the drawbacks mentioned above. We

can test the performance of the CFF-RCNN using data recorded by our sensing system. Exper-

iments can be done on both intact and amputated subjects. The structure of the proposed

model will be further implemented locally on wearable devices to achieve real-time classifica-

tion. To reduce the training effort of a single person, new technologies, such as TL and other

state-of-the-art scheme, can be added to the present structure as well. With these future

improvements, the CFF strategy together with the CFF-RCNN model could enable a wider

range of applications requiring multi-class recognitions, real-time classifications, and low-

workload training demands.
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