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Abstract
Managing oil spill residues washing onto sandy beaches is a common worldwide environ-

mental problem. In this study, we have analyzed the first-arrival oil spill residues collected

from two Gulf of Mexico (GOM) beach systems following two recent oil spills: the 2014 Gal-

veston Bay (GB) oil spill, and the 2010 Deepwater Horizon (DWH) oil spill. This is the first

study to provide field observations and chemical characterization data for the 2014 GB oil

spill. Here we compare the physical and chemical characteristics of GB oil spill samples

with DWH oil spill samples and present their similarities and differences. Our field observa-

tions indicate that both oil spills had similar shoreline deposition patterns; however, their

physical and chemical characteristics differed considerably. We highlight these differences,

discuss their implications, and interpret GB data in light of lessons learned from previously

published DWH oil spill studies. These analyses are further used to assess the long-term

fate of GB oil spill residues and their potential environmental impacts.

Introduction
OnMarch 22, 2014, on the weekend of the 25th anniversary of the catastrophic Exxon Valdez
oil spill in Alaska, the bulk carrierM/V Summer Wind collided with the oil barge Kirby, near
Texas City, about 50 km southeast of Houston, Texas. The accident released approximately
168,000 gallons of marine fuel oil (known as RMG-380, a highly viscous, sticky, heavy black
oil) into Galveston Bay (GB). After the accident, oil residues began washing up on several
beaches along GB. The oil spill also spread into the Gulf of Mexico (GOM) and within a week
oil was rapidly transported by shoreline currents to the Matagorda Island Wildlife Manage-
ment region, located about 200 km south of GB. By the end of March, overflight observers
noted beached oil being rapidly buried under clean sand near Matagorda Island [1]. Unfortu-
nately, oil spill incidents like these occur in GB on a regular basis: according to the Texas
General Land Office, 3,954 oil spills occurred in GB between 1998 and 2010 [2].

Oil spill residues washing onto shores is a common problem for many northern GOM
beach systems. In 2010, the Deepwater Horizon (DWH) accident released about 210 million
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gallons of Louisiana light sweet crude oil into the GOM impacting over 1,600 miles of shore-
line, and depositing oil on Florida, Alabama, Mississippi, Louisiana and Texas beaches. Nega-
tive environmental, ecological, social, and economic consequences of this event continue today
[3–8]. Impacted beaches and dunes, estuaries, and tidal brackish and freshwater wetlands and
the numerous species inhabiting them were, and remain, at risk of long-term detrimental ef-
fects as a result the spill [3–6,9,10].

The amount of oil released during the GB accident was relatively small compared to the
DWH accident. The physicochemical characteristics of these two oils are also different. Fuel oil
released during the GB spill was a heavy, viscous, refined fluid containing low levels of volatile
hydrocarbons, while oil released during the DWH accident (MC252 crude oil) was an unre-
fined, low viscosity, sweet crude enriched in light, volatile hydrocarbons. Another major differ-
ence between the two events is that the GB spill was a surface release discharged about a
kilometer away from the nearest shoreline; while the DWH event occurred about 75 km from
the nearest shoreline, about 1.5 km under water. Uniquely, large volumes of chemical disper-
sants were also injected subsurface during the DWH spill response. Owing to its proximity to
the shoreline, GB oil weathered in marine waters for only a few hours to days before being de-
posited on nearby beaches. Also, the GB spill occurred close to several sensitive wildlife areas
during breeding season of migratory birds and marine species. DWH oil, on the other hand,
was weathered by ocean-scale processes such as volatilization, dissolution, emulsification,
photo-degradation and/or biodegradation for 3 or more weeks before being deposited on
northern GOM shorelines. Table 1 summarizes some of the key features of these two oil spills.

The objective of this study is to compare observational and chemical characterization data
of first-arrival oil samples collected from GB and DWH spill-impacted beaches. Chemical
characterization efforts included the measurement of concentrations of n-alkanes, several bio-
markers, five groups of alkylated polycyclic aromatic hydrocarbons (PAHs) and seventeen
other PAHs. Biomarker data for the GB oil presented in this study are important since they can
be used for identifying and differentiating GB residue from oil residues from other sources,
and are also useful for understanding weathering levels. PAH data are useful for comparing
and quantifying potential long-term environmental impacts of GB and DWH oil spill residues.

Materials and Methods
Organic solvents used in this study were of analytical or higher grade and were purchased from
VWR International (Suwanee, GA). Silica gel (60–200 μm) and anhydrous sodium sulfate
(ACS grade) were also purchased from VWR International. Prior to use, silica gel was activated
using well-established procedures [11]. C8-C40 alkanes, pristane and phytane mixtures and

Table 1. Comparisons of Galveston Bay and Deepwater Horizon oil spills.

Galveston Bay Oil Spill Deepwater Horizon Oil Spill

API at 15°C * 11 [43] * 35 [44]

Viscosity (cSt) * 380 at 50°C [43] *5 at 40°C [45]

Volume of the spill *168,000 gallons *210 million gallons

Type of oil Refined marine fuel oil Unrefined Louisiana sweet crude oil

Type of accident Vessels collision Explosion of oil rig

Type of spill Tanker release Well head release

Point of release Surface oil spill Subsurface oil spill, *1.5 km below sea

Spill location * 1 km away from beaches *70 km away from beaches

Weathering patterns Fate of remnant oil is yet to be studied Fate of remnant oil has been studied for *4 years [7,8,10,15,16,19,38,46,47]

doi:10.1371/journal.pone.0118098.t001
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hexadecane-d34 were purchased from Sigma-Aldrich. Biomarkers, namely C30αβ-hopane
(17α(H),21β(H)-hopane), C27ααα(R)-sterane (5α,14α,17α(H) cholestane 20R), and C30ββ-
hopane (17β(H),21β(H)-hopane) were purchased form Chiron, Norway. The PAH reference
standard consisting of 27 different PAHs (naphthalene, 1-methylnaphthalene, 2-methylnaph-
thalene, 2,6-dimethylnaphthalene, 2,3,5-trimethylnaphthalene, biphenyl, acenaphthylene,
acenaphthene, fluorene, phenanthrene, 1-methylphenanthrene, anthracene, dibenzothiophene,
fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[j]fluor-
anthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene, dibenz[a,c]anthra-
cene, dibenz[a,h]anthracene, indeno[1,2,3,-cd]pyrene and benzo[ghi]perylene) was purchased
from Agilent (Wilmington, DE). The reference solution for p-terphenyl-d14 was purchased
from AccuStandard (New Haven, CT).

The oil spill samples recovered from GB beaches contained sand and other inorganics, and
the organic fraction in the sample was estimated to be 65% (w/w) using a standard dichloro-
methane extraction procedure [12]. The DWH oil spill sample was free of sand and other resi-
dues and it fully dissolved in dichloromethane. For biomarker and PAH quantitative
assessments, about 20 mg of GB or DWH sample was dissolved in hexane and prepared using
a column chromatographic fractionation method [10]. The hexane fraction (F1) was used for
n-alkanes and biomarker analysis, and the hexane:dichloromethane (50%, v/v) fraction (F2)
was used for PAH analysis. Each sample was prepared in duplicate and analyzed in triplicate.

Both F1 and F2 elutes were analyzed using an Agilent 7890 GC equipped with Agilent
7000B QqQ mass spectrometer detector. Single ion monitoring (SIM) mode was used for F1
analysis with a m/z value of 57 for n-alkanes [13], m/z of 78 for hexadecane-d34, m/z of 191 for
hopanes and m/z of 217 for steranes [12]. The five groups of alkylated-PAH homologs and sev-
enteen other PAHs in the F2 fraction were analyzed using SIM and multiple reaction monitor-
ing (MRM) methods, respectively, following previously established analytical approaches
[10,14].

Quantification of n-alkanes was achieved by integrating all major chromatographic peaks of
n-alkanes observed at the target ion m/z of 57. Hexadecane-d34 was used as the internal stan-
dard. The total concentrations of hopanes and steranes were quantified by integrating appro-
priate peak areas of chromatograms observed at m/z 191 (retention time from 37 to 46
minutes) and m/z 217 (retention time from 32 to 40 minutes), respectively. The reference
standards used for quantification were C30αβ-hopane for hopanes, and C27ααα(R)-sterane for
steranes. C30ββ-hopane was used as an internal standard to normalize the response factors
used for estimating total hopanes and steranes. Based on available alkylated PAH standards,
five groups of alkylated PAHs were quantified in this study using previously developed meth-
ods [10,11]. The analytical standards used for quantifying various PAHs within these five
groups were as follows: in Group-1, naphthalene was used for quantifying C0-naphthalene; 2-
methylnaphthalene for C1-naphthalenes; 2,6-dimethylnaphthalene for C2-naphthalenes; and
2,3,5-trimethylnaphthalene for C3- and C4-naphthalenes. In Group-2, phenanthrene was used
for C0-phenanthrene, and 1-methylphenanthrene for C1- to C4-phenanthrenes. In Group-3,
dibenzothiophene was used for C0- to C3-dibenzothiophenes. In Group-4, fluorene was used
for C0- to C3-fluorenes. In Group-5, chrysene was used for C0- to C4-chrysenes. Seventeen
other PAHs were also quantified in this study, which included biphenyl, acenaphthylene, ace-
naphthene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benzo[b]fluoranthene,
benzo[j]fluoranthene, benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, perylene,
dibenz[a,c]anthracene, dibenz[a,h]anthracene, indeno[1,2,3,-cd]pyrene and benzo[ghi]pery-
lene. These compounds were quantified using the 27-PAH Agilent standard and previously
published analytical procedures [10,15]. The internal standard p-terphenyl-d14 was used to
normalize all PAH response factors.
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Field Observations and Samples Collection
Fig. 1 shows the GB and DWH oil spill sites and our sampling locations. No specific permis-
sions were required for sampling at these locations. Also, the field studies did not involve
endangered or protected species. GPS coordinates for our DWH field site in Alabama are:
30°16'42.8"N 87°33'17.1"W; GPS coordinates for our GB field site in Texas are: 29°22'22.6"N
94°49'48.6"W. GB oil began washing on GB beaches within few hours after the spill on March
22, 2014. The GB samples analyzed in this study were collected on March 29, 2014, from an
amenity beach located along the Texas City Dike road, about 2 km away from the spill location.
The DWH oil first arrived on Alabama’s beaches in early June, 2010, about a month after the
accident, and the samples were collected on June 11, 2010 from Orange Beach, Alabama, locat-
ed about 175 km from oil release location. Further details on the DWH field site, observed con-
tamination patterns, and field sampling methods are discussed in Hayworth et al. [8] and
Mulabagal et al. [12]. Fig. 2 shows typical first-arrival oil deposition patterns observed at these
two field sites. Although the overall deposition patterns appear similar, the physical character-
istics of oil residues were distinctly different. The GB first-arrival oil was black/grayish, highly
viscous material, while the DWH first-arrival oil was a brownish, low viscosity emulsion. On
the day of sampling (June 11, 2010), DWH oil was actively washing ashore along most of Ala-
bama’s 50 km sandy beach system and public access to these contaminated beaches was unre-
stricted. In contrast, on the day of GB oil sampling (March 29, 2014) oil was washing ashore
only along a limited stretch of GB shoreline, and public access to these active deposition areas
was restricted. Our GB oil spill sampling efforts were completed near a sparsely contaminated
area, located about 2 km from the spill site, which had previously been cleaned and reopened
for public use. Fig. 3 shows the field observations made at this site. Despite active clean-up ef-
forts, the shoreline water along these “cleaned areas” had a strong petroleum odor, and the
nearshore water had patches of floating oil sheen (see Fig. 3A). We also observed oil adhering
to rocks, beached objects and vegetation (Fig. 3B & C). Furthermore, small blobs of oil (about
2 cm diameter; see Fig. 3D) were randomly scattered in the intertidal zone. During our sam-
pling effort, we collected oil adhered to rocks and beached objects and also collected several
beached oil blobs from the intertidal zone. These samples were shipped to our laboratory for
chemical analysis.

Fig 1. Locations of the two oil spills and sampling points: a) Galveston Bay spill; and b) Deepwater Horizon spill (maps from OpenStreetMap).

doi:10.1371/journal.pone.0118098.g001
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Results and Discussion

Chemical Characterization Data for n-Alkanes
Fig. 4 shows the n-alkane chromatograms (m/z 57) of GB and DWH oil spill residues. The
chromatogram for GB residues indicates the presence of n-alkane compounds ranging from
C13 to C29. In comparison, the n-alkane profile for DWH oil residue was relatively narrow
indicating the presence of compounds ranging from C16 to C30, and the lighter alkanes were
absent in this sample. From literature data we know that unweathered DWH crude oil con-
tained a wide range of n-alkanes starting from C9 [16]. Therefore, absence of light n-alkanes
(i.e., compounds below C16) in the DWH first-arrival sample is due to ocean-scale weather-
ing effects. The DWH samples were recovered about 50 days after the accident. During this
period, the oil traveled over 175 km in marine waters with ocean-scale weathering processes
selectively depleting most of the light n-alkanes. In contrast, the GB samples were recovered
seven days post-accident; the oil traveled only about 2–3 km and experienced very little natu-
ral weathering; hence, the relative distribution of light n-alkanes are expected to be high in
these samples. Also, both residues were collected during a similar season (around spring)
from beaches with similar water temperatures. Thus, residence time in the marine environ-
ment is likely the primary driver for oil evaporation, with temperature playing a minor role
[17].

We also quantified n-alkane concentrations by integrating all major peaks for m/z 57, and
the concentration levels for various n-alkanes ranging from C13 to C30 are presented in Fig. 5.
Using the data shown in Fig. 5, the total amount (values reported as mean ± SD) of n-alkanes
in GB and DWH samples are estimated to be 9 ± 1 and 37 ± 2 mg/g of oil, respectively. The
total concentration of n-alkanes in GB residues is low since it is a highly refined fuel oil. The ra-
tios of pristane/phytane, C17/pristane, and C18/phytane are often used for source identification
[14]. Based on peak responses, the ratios of pristane/phytane, C17/pristane and C18/phytane
were calculated as: 1.48 ± 0.04, 2.13 ± 0.04, and 3.21 ± 0.08 for GB sample, and 0.91 ± 0.01,
1.73 ± 0.01, and 2.84 ± 0.02 for DWH sample. These ratios are indicative of the differences in
chemical characteristics of these two oils.

Fig 2. Comparison of Galveston Bay and Deepwater Horizon oil spill deposition patterns: a) blackish oily material deposited on a sandy beach in
Galveston Bay, Texas (Photo taken on March 23rd, 2014, by NOAA's Office of Response and Restoration); b) brownish emulsified oil deposited on
a sandy beach in Orange Beach, Alabama (Photo taken on June 11th, 2010, by Auburn University team).

doi:10.1371/journal.pone.0118098.g002
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Chemical Characterization Data for Biomarker Compounds
In this study we focused on the biomarker fingerprints of hopanes and steranes, which are the
most widely used compounds for fingerprinting oil spill accidents [14,18]. Recently, Aeppli
et al. [19] compared the fate of biomarkers in DWH oil spill residues and concluded that
hopanes and steranes, quantified at m/z values of 191 and 217, respectively, are the most reli-
able signatures for fingerprinting DWH oil spill residues. Fig. 6 shows GC/MS chromatograms
of hopanes (at m/z 191) present in GB and DWH residues. The total amount of hopanes in GB
and DWH samples were estimated to be 380±30 mg/kg oil and 440±20 mg/kg oil, respectively.
Analysis of hopane chromatograms show that in the DWH sample, hopane distribution ranged
from C27 to C35 with C30αβ-hopane being the most abundant compound. The GB chromato-
gram, on the other hand, showed higher abundance of C29αβ and C30αβ hopanes; also, the re-
sponse levels are higher for several other possible tricyclic or tetracyclic terpanes, yielding a
wider fingerprint (see Fig. 6). It is well established that C30αβ-hopane is highly resistant to en-
vironmental weathering [14,19,20]; thus, the amount of C30αβ-hopane will increase over time,
and this effect can be used to estimate the degree of weathering [12]. Furthermore, C30αβ-
hopane can also be used as a recalcitrant internal biomarker for quantifying the degradation
rates of other chemical compounds [20]. In this study, we estimated the concentrations of
C30αβ-hopane in the GB residue as 81±6 mg/kg oil. The concentration of C30αβ-hopane in the
DWH residue has already been reported in Mulabagal et al. [12] as 91±6 mg/kg oil. These

Fig 3. Field observation made at the Texas Dike road (Photographs taken on March 29th 2014, by Auburn University team): a) oil sheen observed in
nearshore water; b) oil on a plastic sheet and rocks; c) oil on rocks and on a beached soccer ball and other objects; and d) beached oil blobs
observed close to the waterline.

doi:10.1371/journal.pone.0118098.g003
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concentration levels can be used as a starting point for understanding future weathering pat-
terns of these oil residues.

The diagnostic ratios of different types of hopanes can be used to identify and differentiate
oil spill sources [12,14,18,21]. Various ratios including those of Ts/Tm, C29/C30, C31(S)/
C31(S+R), C32(S)/C32(S+R), C33(S)/C33(S+R), C34(S)/C34(S+R) and C35(S)/C35(S+R) in GB and
DWH residues are summarized in Table 2 (a portion of the hopane data for DWH oil are from
our previous work [12]). These data are also presented as radar plots in Fig. 7; the plots reveal
that unique fingerprint patterns exist for these two oils, and these patterns can be used to dif-
ferentiate these two spills from other past or future oil spills.

Fig 4. Comparison of extracted ion chromatograms of n-alkanes (m/z of 57) for Galveston Bay and Deepwater Horizon oil spill residues.

doi:10.1371/journal.pone.0118098.g004
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The total steranes in GB and DWH samples were found to be 221±5 and 720±30 mg/kg oil,
respectively. Similar to hopane data, sterane data can also be used for source identification.
Fig. 8 shows the chromatograms of steranes (at m/z 217) for both GB and DWH residues. The
data show that steranes in GB residue are dominated by several high molecular weight com-
pounds (such as C29-steranes). We have identified several sterane peaks based on published
data [22,23] and used them to compute various diagnostic ratios that are suggested in the liter-
ature [14,18,19]; these results are summarized in Table 2. The sterane dataset provides an addi-
tional line of evidence for identifying and differentiating other residues from these two
oil spills.

Fig 5. Concentration levels of various n-alkanes (ranging from C13 to C30) measured in Galveston Bay and Deepwater Horizon oil spill residues.

doi:10.1371/journal.pone.0118098.g005
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Chemical Characterization Data for PAH Compounds
Fig. 9 presents PAH concentration levels measured in DWH and GB residues. In Table 3 we
summarize these concentrations in terms of five groups of alkylated PAHs (namely naphtha-
lenes, phenanthrenes, dibenzothiophenes, fluorenes and chrysenes) with their parents, and sev-
enteen other PAHs. The extracted ion chromatograms used for quantifying the alkylated PAHs
in the GB residue are shown in S1 Chromatogram, S2 Chromatogram, S3 Chromatogram, S4
Chromatogram, S5 Chromatogram. For the DWH sample, the total amount of PAHs was esti-
mated to be 1,714 mg/kg oil. The data also show that the five groups of alkylated PAHs were

Fig 6. Comparison of extracted ion chromatograms of hopanes (m/z of 191) for Galveston Bay and Deepwater Horizon oil spill residues.

doi:10.1371/journal.pone.0118098.g006
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the most dominant compounds and they accounted for about 95% of total PAHs. Among the
five groups, phenanthrenes (Group-2) were the most abundant compounds in the DWH sam-
ple with a total concentration of 1,183 mg/kg oil (which is about 69% of total PAHs), followed
by chrysenes (Group-5) with a total concentration of 178 mg/kg oil (which is 10% of total
PAHs), fluorenes (Group-4) with a total concentration of 132 mg/kg oil (which is 8% of total
PAHs), dibenzothiophenes (Group-3) with a total concentration of 98 mg/kg oil (which is 6%
of total PAHs), and naphthalenes (Group-1) with a total concentration of 46 mg/kg oil (which
is 3% of total PAHs). The total concentration of all other 3- to 6-ring parent PAHs was estimat-
ed to be 33 mg/kg oil; biphenyl was not detected in the DWH sample.

The total amount of PAHs measured in the GB sample was 12,651 mg/kg oil, which is about
7 times higher than the levels measured in the DWH sample (see Table 3). Similar to the DWH

Table 2. Hopane and sterane diagnostic ratios (mean ± SD) estimated for Galveston Bay and
Deepwater Horizon oil spill residues.

Diagnostic ratio GB residue DWH residue

Hopane ratio

Ts/Tm 0.41±0.02 0.92±0.05

C29/C30 0.67±0.03 0.37±0.01

C31(S)/C31(S+R) 0.63±0.01 0.63±0.01

C32(S)/C32(S+R) 0.61±0.02 0.65±0.01

C33(S)/C33(S+R) 0.59±0.02 0.61±0.01

C34(S)/C34(S+R) 0.65±0.02 0.63±0.01

C35(S)/C35(S+R) 0.65±0.04 0.65±0.03

Sterane ratio

DiaC27βα(S)/ DiaC27βα(R) 1.48±0.06 1.47±0.01

C27αββ(R+S)/C29αββ(R+S) 1.60±0.07 3.0±0.3

C27αββ(R+S)/C27(αββ(R+S)+ ααα(S+R)) 0.50±0.01 0.67±0.01

C28αββ(R+S)/C28(αββ(R+S)+ ααα(S+R)) 0.55±0.03 0.62±0.03

C29αββ(R+S)/C29(αββ(R+S)+ ααα(S+R)) 0.38±0.02 0.51±0.01

doi:10.1371/journal.pone.0118098.t002

Fig 7. Radar plots of hopane diagnostic ratios of Galveston Bay and Deepwater Horizon oil spill residues.

doi:10.1371/journal.pone.0118098.g007
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sample, PAHs in the GB sample were also dominated by the five groups of alkylated PAHs and
accounted for about 95% of total PAHs. However, the relative distribution of various types of
PAHs in the GB residue was different from the distribution observed for the DWH residue (see
Fig. 9). More importantly, individual concentration levels of almost all the PAHs measured in
the GB sample were much higher than the levels measured in the DWH sample. Interestingly,
phenanthrenes are also the most abundant group of PAHs in GB residue and the total concen-
tration of phenanthrenes (Group-2) estimated was 5,119 mg/kg oil (which is about 40% of

Fig 8. Comparison of extracted ion chromatograms of steranes (m/z of 217) for Galveston Bay and Deepwater Horizon oil spill residues [Peak 1:
DiaC27βα(S); Peak 2: DiaC27βα(R); Peak 3: C27ααα(S); Peak 4: C27αββ(R); Peak 5: C27αββ(S); Peak 6: C27ααα(R); Peak 7: C28ααα(S); Peak 8: C28αββ
(R); Peak 9: C28αββ(S); Peak 10: C28ααα(R); Peak 11: C29ααα(S); Peak 12: C29αββ(R); Peak 13: C29αββ(S); Peak 14: C29ααα(R)].

doi:10.1371/journal.pone.0118098.g008
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total PAHs). This concentration level is about 4 times higher than the level measured in the
DWH sample. The second dominant group of compounds are naphthalenes (Group-1) with a
total concentration of 3,699 mg/kg oil (which accounted for about 29% of total PAHs); this
level is about 80 times higher than the level observed in the DWH sample. The next group is
chrysenes (Group-5) with a total concentration of 1,751 mg/kg oil (which is about 14% of total
PAHs); followed by fluorenes (Group-4) with a total concentration of 1,117 mg/kg oil (which
is about 9% of total PAHs); and dibenzothiophenes (Group-3) with a total concentration of
345 mg/kg oil (which accounted for about 3% of total PAHs). The concentration of biphenyl
and the sum of other 3- to 6-ring PAHs were estimated to be 18 mg/kg oil and 603 mg/kg oil,
respectively. Since GB residues were collected a short time after the spill, the concentration lev-
els of light molecular weight PAHs, such as naphthalenes and biphenyl (volatile compounds
that can easily evaporate during the early stage of a spill) were high, indicating the GB sample
experienced very little weathering.

According to the Agency for Toxic Substances and Disease Registry [24], most heavy PAHs
are either known or probable human carcinogens. For example, the 5-ring compound benzo[a]
pyrene (BaP) has been shown to cause chromosomal replication errors, and can also affect
human fertility levels. The concentration levels of BaP in GB and DWH samples were estimat-
ed to be 43 and 0.4 mg/kg oil, respectively. These data suggest that, in terms of BaP toxicity

Fig 9. Concentration levels of various PAHs and alkylated PAH homologs measured in Deepwater Horizon and Galveston Bay oil spill residues.

doi:10.1371/journal.pone.0118098.g009
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effects, GB residues will be substantially more toxic than DWH residues. Furthermore, concen-
trations of several alkylated PAHs in the GB residue were relatively high. Previous studies have
shown that alkylated phenanthrenes, for example, can induce various types of ecological toxic
effects in marine organisms [25–27]. Our data show that phenanthrene levels in the GB sample
were approximately 4 times higher than the DWH sample, and these values were mostly domi-
nated by alkylated phenanthrenes. These data also indicate that GB residues might be more
toxic than DWH residues. Furthermore, recent studies have demonstrated that alkylated
chrysenes in oil residues are likely to be recalcitrant for many years [10,28]. Emerging research
has shown that although the measured aqueous solubility limits of individual alkylated chry-
senes are very low, these chemicals could still induce chronic toxic effects in certain sensitive
species, e.g., Japanese medaka embryos (Oryzias latipes) [29]. Additionally, studies have shown
that the toxic effects of multiple PAHs present in oil spill residues can be additive [30]. There-
fore, based on total PAHs alone, the much higher concentrations present in GB residues are
likely to cause far more adverse effects to fishes and other marine species. However, since the
toxicity of individual PAHs can vary significantly [31–34], better understanding of overall det-
rimental ecological effects associated with GB and DWH spills warrants further studies.

Conclusions
This is the first study that reports field observations and chemical characterization data for the
2014 GB oil spill and compares the results against observations made during another major
spill (the DWH oil spill). Our data document the differences in weathering patterns of GB and
DWH oil spill residues. When compared to DWH first-arrival oil residue, the GB first-arrival
sample experienced much less weathering due to the proximity of the accident site to the shore-
line. Furthermore, the environmental weathering characteristics of the heavy, highly refined
GB fuel oil are vastly different from the characteristics of raw light, sweet crude oil released
during the DWH spill. For example, heavy fuel oil (like the GB oil) is expected to have a very
low evaporation rate [35]. In comparison, as documented in previous studies, the evaporation
rate of DWH raw crude oil is very high and evaporation process alone likely removed over 40%
of the DWH oil mass within a week of surface weathering [10,36].

The hopane fingerprinting data show that GB residue has a wider m/z 191 chromatogram
and displays a distinctly different fingerprint compared to the DWH fingerprint. Interestingly,
both GB and DWH residues had similar amounts of total hopanes; however, the relative ratios

Table 3. Summary of average PAH concentration levels measured in Deepwater Horizon and
Galveston Bay oil spill residues (unit: mg/kg oil).

Compound DWH residue [10] GB residue

Five groups of alkylated PAHs and their parents

Group-1: C0- to C4-naphthalenes 46 3,699

Group-2: C0- to C4-phenanthrenes 1,183 5,119

Group-3: C0- to C3-dibenzothiophenes 98 345

Group-4: C0- to C3-fluorenes 132 1,117

Group-5: C0- to C4-chrysenes 178 1,751

Sum of five groups of PAHs 1,636 12,031

Other seventeen PAHs

Biphenyl (2-ring) - 18

Sum of 3 to 6-ring PAHs 33 603

Total amount of PAHs 1,714 12,651

doi:10.1371/journal.pone.0118098.t003
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of various types of hopane were different, yielding distinctly different fingerprints. GB residue
also showed distinctly different sterane fingerprints from the DWH residue; also, the total
amount of sterane measured in the GB residue was about three times lower than the
DWH residue.

DWH oil spill residues arriving along GOM beaches interacted with suspended sand in
nearshore waters and formed submerged oil mats (SOMs; often called tar mats). SOMs are
continuously worked by waves and other nearshore processes yielding surface residual oil balls
(SRBs; often called tar balls). Field studies have shown that the presence of SRBs continue to be
a problem along Florida and Alabama beaches more than four years after the DWH spill, espe-
cially after major storm events [8,12,37]. Also, PAHs and their post-spill derivatives (such as
oxygenated species whose effects are yet to be determined), trapped in buried DWH oil spill
residues, continue to pose serious environmental concerns [16,38–42]. For the GB spill, early
predictions indicated that the oil would be carried by northeasterly winds out into the GOM,
and onshore winds would deposit oil onto various beaches [35]. Later, overflight observations
documented beached oil being rapidly buried under clean sand on Matagorda Island, located
about 200 km away from the spill location [1]. Based on both predicted and observed oil spill
trajectories, and also based on the prior knowledge gained from studying the DWH accident,
GB oil should have formed SRBs containing heavy fuel oil that are potentially distributed along
various beaches located to the southwest of the GB. Since GB residues contain much higher lev-
els of PAHs, these SRBs could pose long-term environmental risks. However, the total amount
of oil released from the GB spill is substantially low when compared to the DWH spill and
hence the spatial extent of these impacts will likely be small. Managing oil spill impacts to
beach systems is a significant environmental challenge, and it becomes more complex in sys-
tems that experience multiple spill events (such as the GB system). The biomarker and PAH
datasets provided in this study are important baseline information for monitoring the long-
term fate and the potential environmental impacts of the GB oil spill event.
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