
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Science of the Total Environment 728 (2020) 138890

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Impact of temperature on the dynamics of the COVID-19 outbreak
in China
Peng Shi a,1, Yinqiao Dongb,1, Huanchang Yan c,1, Chenkai Zhao a,1, Xiaoyang Li a,1, Wei Liu a, Miao He a,
Shixing Tang c, Shuhua Xi a,⁎
a Department of Environmental Health, School of Public Health, China Medical University, Shenyang, China
b Department of Occupational Health, School of Public Health, China Medical University, Shenyang, China
c Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Temperature is an environmental driver
of the COVID-19 outbreak in China.

• The incidence of COVID-19 decreases
with the increase of temperature.

• A modified susceptible-exposed-
infectious-recovered model was
developed.
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A COVID-19 outbreak emerged inWuhan, China at the end of 2019 and developed into a global pandemic during
March 2020. The effects of temperature on the dynamics of the COVID-19 epidemic in China are unknown. Data
on COVID-19 daily confirmed cases and dailymean temperatureswere collected from31 provincial-level regions
in mainland China between Jan. 20 and Feb. 29, 2020. Locally weighted regression and smoothing scatterplot
(LOESS), distributed lag nonlinear models (DLNMs), and random-effects meta-analysis were used to examine
the relationship between daily confirmed cases rate of COVID-19 and temperature conditions. The daily number
of new cases peaked on Feb. 12, and then decreased. The daily confirmed cases rate of COVID-19 had a biphasic
relationship with temperature (with a peak at 10 °C), and the daily incidence of COVID-19 decreased at values
below and above these values. The overall epidemic intensity of COVID-19 reduced slightly following days
with higher temperatures with a relative risk (RR) was 0.96 (95% CI: 0.93, 0.99). A random-effect meta-
analysis including 28 provinces inmainland China, we confirmed the statistically significant association between
temperature and RR during the study period (Coefficient=−0.0100, 95% CI:−0.0125,−0.0074). The DLNMs in
Hubei Province (outside ofWuhan) andWuhan showed similar patterns of temperature. Additionally, amodified
susceptible-exposed-infectious-recovered (M-SEIR) model, with adjustment for climatic factors, was used to
provide a complete characterization of the impact of climate on the dynamics of the COVID-19 epidemic.
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1. Introduction

During Dec. 2019, an outbreak of a novel coronavirus pneumonia
occurred in Wuhan, Hubei Province, China. On Jan. 30, 2020, the
World Health Organization (WHO) declared an international public
health emergency due to infections by this virus. On Feb. 20, the WHO
officially named this condition coronavirus disease as coronavirus dis-
ease 2019 (COVID-19) and the causative virus as SARS-CoV-2 (Wu
and McGoogan, 2020; Zu et al., 2020).

Initial studies of disease severity in early cases showed that COVID-
19 had a 2.3% case-fatality rate (She et al., 2020), much lower than in
other diseases caused by other coronaviruses, such as Middle East Re-
spiratory Syndrome (MERS, 34.4%) and Severe Acute Respiratory Syn-
drome (SARS, 9.2%) (Ceccarelli et al., 2020; Wu and McGoogan, 2020).
However, Wu et al. reported that the number of COVID-19 cases dou-
bled every 6.4 days from Dec. 2019 to Jan. 2020, indicating COVID-19
was much more infectious than SARS and MERS (Wu et al., 2020b). In
March 2020, the WHO declared that COVID-19 was a global pandemic.
At that time, SARS-CoV-2 had spread rapidly throughout China and
was present in 116 other countries and territories worldwide.

Environmental factors can affect the epidemiological dynamics of
many infectious diseases. In particular, several studies of climate and
weather conditions found that these environmental factors affected
the spatial distribution and timing of infections (Bedford et al., 2015;
Sooryanarain and Elankumaran, 2015; Lemaitre et al., 2019). Based on
analysis on climatic variables, there is evidence that temperature affect
influenza epidemics in tropical regions (Tamerius et al., 2013). Temper-
ate regions of the Northern and Southern Hemispheres experience
highly synchronized annual influenza epidemics during their winter
months (Tamerius et al., 2013; Bedford et al., 2015; Sooryanarain and
Elankumaran, 2015). The seasonality of influenza in temperate mon-
soon climate regionsmay result from themeteorological factors that af-
fect the environmental and physical stability of virus particles and
human social behaviors, both of which contribute to virus epidemiolog-
ical dynamics.

SARS-CoV-2 can be transmitted through aerosols, large droplets, or
direct contact with secretions or fomites, similar to the influenza virus
(Li et al., 2005). However, the effects of different environmental factors
on the incidence of COVID-19 remain to be elucidated. Based on dynam-
ical equations, previous researchers developed susceptible-exposed-
infectious-recovered (SEIR) modeling to estimate key epidemic param-
eters to better characterize themechanisms underlying the dynamics of
epidemics (Chanprasopchai et al., 2017; Liu et al., 2017; Niakan et al.,
2019).

We examined the association of the daily confirmed cases rate of
COVID-19 with temperature using locally weighted regression and
smoothing scatterplot (LOESS) and distributed lag nonlinear models
(DLNMs), based on weather and epidemiological data from 31
provincial-level regions in mainland China between Jan. 20 and Feb.
29, 2020. We also considered environmental factors using a SEIR
model, and developed a modified (M-SEIR) model to characterize the
effect of climate on the dynamics of the COVID-19 epidemic in China.

2. Methods

2.1. Study data

Data on COVID-19, including the number of newly confirmed and
probable cases, were retrieved from the ChinaNational Health Commis-
sion (CNHC, http://www.nhc.gov.cn/) and the CoV2019 package (Wu
et al., 2020a). COVID-19 data were collected from all 31 provincial-
level regions in mainland China between Jan. 20 and Feb. 29, 2020.
Data from Hong Kong, Macao, and Taiwan were not included in the
study because these areas had major differences in the methods used
for data collection. COVID-19 emerged in Wuhan at the end of 2019,
and rapidly spread across mainland China. Thus, population dynamic
factors, including birth rate and death rate, were not considered. Finally,
the daily confirmed cases rate of COVID-19 in each of the 31 provincial-
level regions and Wuhan were calculated by dividing the number of
newly confirmed cases by the population size as of the end of 2018.
These results were reported as cases per 100,000 people.

The daily mean temperature of 344 cities of during the same time
period were collected from the meteorological authority in mainland
China (http://data.cma.cn). These city-wide data were consolidated
into 31 provincial regions, and were calculated as means. Data on cli-
mate conditions and population were from official reports previously
released in mainland China. Therefore, ethical review was not required.

2.2. Statistical analysis

Changes of temperature and daily COVID-19 incidence, including the
rate and the common logarithm of newly confirmed cases (Log[N]),
were analyzed using a LOESS in the 31 provincial-level regions of main-
land China from Jan. 20 to Feb. 29, 2020.

DLNMs, based on a quasi-Poisson distribution generalized additive
model (GAM), were used to infer the exposure-lag-response associa-
tions between daily mean temperatures and daily confirmed cases of
COVID-19 (Gasparrini et al., 2010; Gasparrini, 2011). Artificial distortion
occurred inHubei Province on February 12, 2020 and in other provinces
on February 20, 2020. To deal with this artificial distortion, we used a 5-
day moving average of confirmed COVID-19 cases number to replace
case number on the day. Separate DLNMs were constructed for main-
land China outside of Hubei Province, Hubei Province outside of
Wuhan, and Wuhan. Additionally, mean temperature of sites in Hubei
Province outside of Wuhan were calculated as a representative of
Hubei Province overall. To assess the exposure-lag-response relation-
ship, a cross-basis function was used for temperature. The resulting
model is:

Log E ytð Þ½ � ¼ α þ
X

cb T;df ; lag; dfð Þ þ ns time; dfð Þ ð1Þ

where t is the day of observation; E(yt) is the expected value of the ob-
served number of COVID-19 cases on day t;α is the intercept, cb is cross-
basis matrix used to estimate the non-linear relationship between tem-
perature and COVID-19 incidence and also describe lag effects of tem-
perature. In the cross basis, T is the daily mean temperature with 2
degree of freedom (df) and the lag is up to 5 days. time is the indicator
variable constructed using natural spline with 1df to control long-
term trends. The df for each variable was determined by the quasi-
Akaike Information Criterion (qAIC). Among the confirmed cases re-
ported in Qinghai Province and Tibet Province, imported cases
accounted for themajority, but those cases were not related to the tem-
perature of each province. Therefore, after completing the modeling of
each province, we used a random-effects meta-analysis to summarize
the relationship between temperature and exposure-lag-response asso-
ciations for 28 provinces in mainland China, with exclusion of Hubei
Province, Qinghai Province, and Tibet Province.

To better understand the impact of temperature on the COVID-19
epidemic, temperature was considered based on an SEIR model, and
anM-SEIR model was used to simulate the COVID-19 outbreak dynam-
ics in Wuhan after implementation of travel restrictions. Sensitivity
analysis was performed for quantitative risk assessment to evaluate
the relationships between temperature and COVID-19 incidence.

The equations of M-SEIR model were:

ds tð Þ
dt

¼ −βtS tð ÞI tð Þ
N

ð2Þ

dE tð Þ
dt

¼ βtS tð ÞI tð Þ
N

−σE tð Þ ð3Þ
dI tð Þ
dt

¼ σE tð Þ−γI tð Þ ð4Þ

http://www.nhc.gov.cn/
http://data.cma.cn
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dR tð Þ
dt

¼ γI tð Þ ð5Þ

βt ¼ β1 1þ β2Tð Þ ð6Þ

where S(t), E(t), I(t), and R(t) are the number of susceptible, exposed,

infectious, and removed individuals at time t,
1
σ

and
1
γ
are the mean la-

tent and infectious periods, βt is a time-dependent rate of infectious
contact, and β1 and β2 are coefficients.

The simulations of the dynamics of the COVID-19 epidemic and sen-
sitivity analysis were conducted using the system dynamics section in
AnyLogic software (version 8.5.2). Supplementary Table 1 provides
the specific parameter values used in the modified model and basic
model and further details.

3. Results

There were 80,981 confirmed cases of COVID-19 in the 31
provincial-level regions of mainland China between Jan. 20 and Feb.
29, 2020. Due to the change in the diagnostic criteria used in Hubei
Province, some patients with confirmed clinical diagnoses were consid-
ered healthy, so these data were removed and not considered in this
study. A total of 68,034 of these cases (84.01%) were diagnosed in
Hubei Province. Analysis of newly confirmed cases and daily confirmed
cases rate in mainland China (Supplementary Table 2) indicated the
daily number of new cases peaked on Feb. 12, and then decreased, al-
though themaximum at this time was affected by a change in the diag-
nostic criteria used in Hubei Province. The number of daily new cases
and the incidence outside of Hubei Province began to decline in early
February.

From Jan. 20 to Feb. 29, 2020, the temperature varied in the 31
provincial-level regions in mainland China (Fig. 1A). The highest tem-
perature (26 °C) was in Hainan Province (south-eastern China), and
the lowest temperature (−22 °C) was in Jilin Province (north-eastern
China). There was a biphasic relationship of daily confirmed cases rate
with temperature (with a peak at about 10 °C) (Fig. 1B and C). Separate
analysis of Hubei Province (outside of Wuhan) and of Wuhan (Supple-
mentary Figs. 1 and 2) indicated some differences. This is likely because
some cases were clinically diagnosed without nucleic acid testing in
Hubei Province prior to Feb. 12.

The association between average cumulative relative risk over lags
0–5 and temperature across 28 provinces in China was shown in
Fig. 2A and Supplementary Fig. 2. The overall epidemic intensity of
COVID-19 reduced slightly following days with higher temperatures as-
sociated with the relative risk (RR) was 0.96 (95% CI: 0.93, 0.99). A
random-effect meta-analysis including 28 provinces in mainland
China, we found the statistically significant association between tem-
perature and RR during the study period (Coefficient = −0.0100, 95%
CI:−0.0125,−0.0074) by the use of meta-regression (Fig. 2B). The re-
sult of Fig. 2B confirms the negative relationship between temperature
and RR among the 28 provinces in China once again. In order to further
explore the impact of dailymean temperature on the confirmed cases of
COVID-19 with different lag, 0–5 days lag were explored. We find that
with the following lag days, RR gradually increases, reaching a peak
when lagging by 2 days, and then decreases with the number of lag
days increases (Fig. 2C).

We analyzed the association between temperature and RR of COVID-
19 in Hubei Province (outside of Wuhan), and Wuhan (Fig. 3, Supple-
mentary Figs. 4, and 5). The results indicate that temperature had a sig-
nificant effect on COVID-19 incidence. The curves for Hubei andWuhan
were similar. These two regions each had a peak at 8 to 10 °C suggesting
an inverse relationship of RR with temperature. In Hubei province (out
of Wuhan city), for lag0 the highest RR was at 9 °C (RR = 1.15, 95% CI:
1.02, 1.30). For lag5, the highest RR was 1.29 (95% CI: 1.01, 1.65) at 8 °C
(relative to a reference value of 10 °C), suggesting a delayed effect of
temperature on the RR of COVID-19 in this region. In Wuhan, for lag 0
the highest RR was 1.07 (95% CI: 1.01, 1.14) at about 10 °C, for lag 5,
the RR was not significant (relative to a reference value of 11 °C). How-
ever, the incidence was more likely to decrease (immediate or delayed
effect) with temperatures rises over 8, 10 °C. For example, In Hubei
(out of Wuhan city) the RR was 0.81 (95% CI: 0.70, 0.93) at 11 °C for
lag 0, and the RR was 0.15 (95% CI: 0.05, 0.48) at 16 °C for lag 0; In
Wuhan the RR was 0.91 (95% CI: 0.85, 0.98) at 12 °C for lag 0, and the
RR was 0.30 (95% CI: 0.13, 0.69) at 16 °C for lag 0.

Considering the impact of temperature, we constructed an M-SEIR
model to simulate the dynamics of the COVID-19 epidemic using the
system dynamic sections in AnyLogic software. The SEIR dynamic trans-
mission model compartmentalized the population into four disease
states (susceptible, exposed, infected, and recovered) and analyzed
the relationships and interconnections using stock and set parameters,
flows, and table functions (Fig. 4A and Supplemental Video 1). We set
the initial values of the parameters and imported the temperature
data for Wuhan from Jan. 20 and Feb. 29, 2020 into the M-SEIR model.

Supplemental Table 3 compares the M-SEIR model in the present
study with classic SEIR models used in similar studies. When we strati-
fied the four curves by disease state, the patternswere similar: the pop-
ulation size increased early in the epidemic and then decreased as the
period ended (due to recovery). The M-SEIR model predicted that the
number of infections in Wuhan would peak on about Mar 5 (inflection
point) and the outbreak would end by late April (Fig. 4B; Supplemental
Video 1). A sensitivity analysis of the transmission rate that adjusted for
temperature indicated high stability of our M-SEIR model (Fig. 4C; Sup-
plemental Video 2). We adjusted the transmission rate from 0 to 1 at
steps of 0.1, and conducted simulations to reduce the bias introduced
by themodel, parameters, and functional relationships. The results indi-
cated that the transmission rate, which is updated by the real-time tem-
perature data in AnyLogic software, decreased as temperature
increased, so that the infection rate and size of the outbreak decreased.
4. Discussion

In the study, we found temperature was an environmental driver of
the COVID-19 outbreak in China. Our LOESS showed that the daily inci-
dence was lowest at−10 °C and highest at 10 °C. Our DLNMs indicated
that temperature was significantly associated with the daily incidence
of COVID-19 with and without time lags. Our M-SEIR model for
Wuhan predicted the COVID-19 outbreak would peak on about March
5, 2020 and would end in late April. Additionally, we found that the
transmission rate decreased as temperature increased, and that the in-
creasing temperature contributed to further decreases of the infection
rate and size of the outbreak. Therefore, we found that temperature
drove the spatial and temporal correlations of the COVID-19 outbreak
in China, and should be considered the optimal climatic predictor for
the incidence of COVID-19.

Our results indicated a significant association between temperature
and COVID-19 daily incidence based on LOESS, DLNMs, and an M-SEIR
model. This suggests that temperature played an important role in the
outbreak of COVID-19 in China, and may be useful in predicting the po-
tential spread of COVID-19 in other geographic areas. Temperatures
above about 8 to 10 °C appear to decrease the incidence of COVID-19,
an important finding that sheds new light on the environmental drivers
of the COVID-19 epidemic in China. Our results are in line with previous
studies that examined SARS. In particular, an analysis of SARS data and
climate in 4 cities found that temperature was a powerful indicator for
SARS-CoV transmission, and the risk of increased daily incidence dif-
fered greatly at high and low temperatures (Tan et al., 2005). Addition-
ally, Lowen's laboratory work using a guinea pig model suggested that
temperature affected the spread of viral aerosols (Lowen et al., 2007).
However, the temperature DLNM results for Hubei Province differed



Fig. 1. (A) Temperature in 31 provincial-level regions in mainland China from Jan. 20 to Feb. 29, 2020. (B) and (C) COVID-19 daily confirmed cases indicators (daily rate and log[N]) as a
function of temperature inmainland China (outside of Hubei Province) from Jan. 20 to Feb. 29. The black central line in each figure represents the expected daily confirmed cases rate and
log(N) based on a LOESS regression for all days when there were available estimates. The solid colored lines represent estimated values of different regions and the gray shaded regions
represent the corresponding 95% confidence intervals. Log(N): common logarithmof the number of newly confirmed cases; LOESS: locallyweighted regression and smoothing scatterplot.
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from those for mainland China andWuhan, in which the RR for COVID-
19 increased at moderate temperatures.

A model that considers infectious disease dynamics and environ-
mental variables is required to explain the relationship between
environmental factors and epidemics (He et al., 2010). Dynamic trans-
missionmodels are usually used to predict the genesis and spread of in-
fectious diseases and to evaluate the effects of interventions. However,
few dynamic transmission models have considered environmental fac-
tors, and this could increase the uncertainty of their results. To better
characterize the dynamics of an infectious disease, it is better to con-
sider the impact of environmental factors within a dynamic transmis-
sion model (Bakker et al., 2016; Martinez et al., 2016).

Environmental factors, along with lag effects and threshold effects,
can affect the host and virus during the outbreak of an infectious dis-
ease. On one hand, environmental factors affect human activity patterns
and immunity. We found that environmental conditions had a limited
effect on the COVID-19 outbreak, due to the absence of extreme
weather conditions during our limited study period and the lack of spe-
cific immunity to this new virus. On the other hand, environmental fac-
tors have a greater impact on the causative virus (SARS-CoV-2) than the
host population because the transmission and virulence of this virus
varies in different conditions. Finally, our results indicated that the im-
pact of environmental factors on virus transmission should be charac-
terized using a dynamic model, because infectiousness estimated from
a traditional model is biased by confounding from environmental
variables.

It is necessary to consider environmental variables in a dynamic
transmission model so that their impact can be isolated and quantified.
A dynamic model is compatible with an infectious disease transmission
model for the virus itself, and can also be coupledwith surveillance data
of environmental variables (Pitzer et al., 2015). Consequently, we con-
structed an M-SEIR model to correct for temperature changes in our
simulation of the dynamics of the COVID-19 epidemic in China. Our
M-SEIR model predicted that the outbreak would reach its peak on
about March 5, 2020, consistent with the actual data released by the
CNHC (Wan et al., 2020; Tang et al., 2020; Shi et al., 2020; Pan et al.,
2020; Hong et al., 2020). Our results also predicted that the COVID-19
outbreak in Wuhan would end in late April. In addition, we conducted
a sensitivity analysis on the temperature-adjusted transmission rate.
These analyses indicate that the transmission rate decreased as temper-
ature increased, so that the infection rate and size of the epidemic de-
clined over time.

Our analysis is subject to some limitations. First, multiple factors,
including virus properties, additional climatic factors, socio-economic
development, populationmobility, population immunity, and urbaniza-
tion, presumably affected the dynamics of the COVID-19 epidemic in
China, but we cannot consider every factor in this study. Second, we op-
timized the parameters of M-SEIR model based on previous analysis,
and this might have led to bias due to the lack of official data and the



Fig. 2. A random-effect meta-analysis across 28 provinces in China. (A) Summary association between temperature and exposure-lag-response in China 28 provinces based on a meta-
analysis, the estimated sizes for each province (square) with 95% CI (horizontal line) are shown in the forest plot. The weight of each province is represented by the size (area) of the
square. Using all the provinces, an overall pooled estimate size is shown at the bottom. This is depicted by a diamond to distinguish it from the individual provinces with squares; the
left and right vertices of the diamond represent the lower and upper 95% CI, respectively. (B) Meta-regression bubble plot relating themagnitude of the association between temperature
and RR in 28 China provinces. The solid lines represent estimated values of different regions and the gray shaded regions represent the corresponding 95% confidence intervals. Each open
circle represents a value of temperature. The size of the circle indicates the precision of the effect estimate and the weight given to that value of temperature. (C) Meta-analysis of the
exposure-lag-response association. CI, confidence interval; RR, the relative risk;Weight, the percentage of cases in each province amount to the total cases among 28 provinces; For tem-
perature, lag is distributed over lags 0–5 as described in the text.

Fig. 3. RR of COVID-19 as a function of temperature and lag time in Hubei Province (outside of Wuhan) (left), and Wuhan (right). RR, the relative risk.
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Fig. 4. COVID-19 dynamics and sensitivity analysis from the M-SEIR model inWuhan. (A) Over-all structure of M-SEIRmodel constructed using the system dynamic sections in AnyLogic
software. (B) “Snapshot” of the different fractions of susceptible, exposed, infected, and recovered disease states at specific times, and forecasts of the trend of the COVID-19 epidemic in
Wuhan. (C) Sensitivity analysis for different temperature scenarios in Wuhan. As the temperature-corrected transmission rate increased, the maximum of the incidence rate curve
increased and occurred on an earlier date. M-SEIR model: modified susceptible-exposed-infectious-recovered model; TR: temperature-corrected transmission rate (i.e. transmission
rate for susceptible to exposed, βt).
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adjustment of diagnostic criteria during the outbreak. Third, our study
was an ecological analysis that examined a very short period of time,
so our conclusions regarding climatic factors as being causative in
virus transmission are limited. In particular, we cannot avoid the possi-
ble bias caused by other ecological factors that also changed over time.
Fourth, the temperature on the reporting date was not the actual tem-
perature experienced by each case at infection. However, it is not feasi-
ble to determine the temperature on actual datewhen each patientwas
first infected. Fifth, the current researchonGAM-DLNManalysiswasde-
veloped in the context of non-infections disease death of incident
counts. There may be limitations in applying this method to short-
term infectious diseases. But the research of Lowe hasmade exploration
on the infections disease at present (Lowe et al., 2018). Finally, all con-
firmed cases for each province in China include “imported” cases and
“local” cases. An imported case (i.e., from another province, especially
Hubei Province) should ideally be counted for the province of the
patient's origin. However, this information was not available.
5. Conclusions

Temperature was an environmental driver of the COVID-19 out-
break in China. Temperatures above 8 to 10 °Cwere associatedwith de-
creased COVID-19 daily confirmed cases rate. Our M-SEIR model for
Wuhan predicted that the COVID-19 outbreak would peak on about
March 5, 2020 and end in late April. M-SEIRmodels provide better guid-
ance for national and international prevention and intervention mea-
sures that target COVID-19.
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Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.138890.
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