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Received: 28 February 2022

Accepted: 25 March 2022

Published: 30 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Transdermal Delivery of Indirubin-Loaded Microemulsion Gel:
Preparation, Characterization and Anti-Psoriatic Activity
Enxue He 1, Hailing Li 1, Xiaokun Li 1, Xunxun Wu 1 , Kun Lei 2,* and Yong Diao 1,*

1 School of Biomedical Science, Huaqiao University, Quanzhou 362021, China; heexue@stu.hqu.edu.cn (E.H.);
lihailing925@163.com (H.L.); 18014071010@stu.hqu.edu.cn (X.L.); wuxunxun2015@163.com (X.W.)

2 School of Medical Technology and Engineering, Henan University of Science and Technology,
Luoyang 471023, China

* Correspondence: leikun@haust.edu.cn (K.L.); diaoyong@hqu.edu.cn (Y.D.); Tel.: +86-595-2269-2516 (Y.D.)

Abstract: Psoriasis is an immune disease caused by rapid and incomplete differentiation of skin
basal cells. Natural products such as indirubin have historically served as excellent sources for
the treatments of psoriasis. However, the poor solubility and bioavailability due to its plane and
rigid crystal structure, which limits its efficacy. Herein, to improve the efficacy of indirubin, a
hydrogel-based microemulsion drug delivery system was developed for transdermal delivery. The
mean droplet size of the optimized microemulsion was 84.37 nm, with a polydispersity index (PDI)
less than 0.2 and zeta potential value of 0~−20 mV. The transdermal flux and skin retention of
indirubin at 24 h were 47.34 ± 3.59 µg/cm2 and 8.77 ± 1.26 µg/cm2, respectively. The optimized
microemulsion was dispersed in carbomer 934 hydrogel to increase the consistency. The indirubin-
loaded microemulsion gel was tested on an imiquimod-induced psoriasis mouse model. Results
showed that this preparation can improve psoriasis symptoms by down-regulating the expression of
IL-17A, Ki67, and CD4+T. This experiment provides great scalability for researchers to treat psoriasis,
avoid first-pass effects, and increase the concentration of targeted drugs.

Keywords: indirubin; microemulsion; hydrogel; psoriasis; transdermal delivery system

1. Introduction

Psoriasis is a chronic inflammatory skin disease occurring worldwide [1]. Skin cells
renew about every four weeks in healthy people, while skin cells rapidly grow and migrate
to the epidermis within several days forming thick skin patches called squamous silvery
patches in psoriasis patients [2,3]. Depending on the severity, the treatment of psoriasis
includes local treatment, phototherapy, and systemic drug therapy. Local treatment with
creams and ointments containing corticosteroids or vitamin A/D analogues is effective for
mild to moderate psoriasis [4–6]. With continued use of the drug, the skin becomes resistant
to various treatments, and psoriasis often recurs periodically [7]. However, due to the low
efficacy and despite fewer side effects, these treatments are unsatisfactory. Therefore, the
effective treatment of psoriasis is still a challenging topic, and it is necessary to develop
alternative treatment methods.

Natural products have historically served as excellent sources of active compounds
for alleviating psoriasis. With the advantage of being generally safe and having few side
effects, great attention has been paid to natural products in the past few decades [8,9].
Indirubin (IR), isolated from indigo naturalis, has been shown to improve psoriasis without
causing any serious adverse events [10,11]. Previous studies have shown that IR could
alleviate psoriasis via regulation of keratinocyte proliferation and reduces inflammatory
processes [12]. Clinical studies have proved that IR ointment is an effective method in the
treatment of psoriasis [11,13]. Mechanistic studies revealed that local application of IR can
improve psoriasis symptoms without causing any serious adverse events. For example, IR
can inhibit keratinocyte proliferation by inhibiting the activation of EGFR. By up-regulating
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the mRNA and protein expression of Claudin-1, the function of tight junctions in human
primary keratinocytes was improved. Inhibition of the TAK1 signaling pathway attenuates
the expression and production of IL-17A-induced CCL20 in keratin-forming cells. Psoriasis
symptoms were improved by down-regulating proliferation marker PCNA expression
and up-regulating protective skin protein expression. IR also improved the inflammatory
severity of imiquimote-induced psoriatic skin in mice by inhibiting γδT cell-mediated
inflammatory response, and in this model, local application of IR proved to be effective
and safe [12–14].

However, the low solubility and bioavailability limits the effect and application of
IR [14]. Nanocarrier-based local drug delivery systems, such as increasing the solubility of
hydrophobic drugs and improving drug permeability, were established to overcome these
shortcomings [15,16]. Nevertheless, people with psoriasis have lower levels of ceramides,
higher cholesterol levels, and an over-proliferation of keratinocytes, leading to an increase
in scaly plaques that make the skin thicker and harder [17]. Therefore, how to effectively
deliver IR analogs to the deep skin of psoriasis is a great challenge. Currently, several
drug carriers have attempted to increase percutaneous penetration, such as microemulsion
(ME), nanoparticles, and nanosuspensions [18]. ME has been widely used for transdermal
drug delivery due to their remarkable penetration-enhancing effect [19,20]. ME refers to a
thermodynamically stable system consisting of an oil phase, aqueous phase, surfactants,
and co-surfactants. ME can be divided into three types of o/w, w/o and bicontinuous
phase, among which the o/w type ME has a strong solubilizing effect on drugs with poor
water solubility [21,22]. The ME has the advantage of high moisturizing and permeability,
and forms a drug depot in the skin after transdermal administration so as to realize the
effective penetration of the drug. In addition, ME diameters are usually small in size, which
makes them a suitable vehicle for drug delivery [18]. Therefore, ME has great potential for
skin drug delivery.

The present study intended to prepare and evaluate a microemulsion-based hydrogel
as a transdermal delivery carrier for IR. Herein, IR-loaded ME gel was prepared and
characterized. In addition, its anti-psoriasis effect was demonstrated by in vitro transdermal
tests and in vivo animal experiments. Therefore, this study is expected to lay a good
theoretical and application foundation for the preparation of stable and transdermal IR-ME
gel formulations. The experimental flow chart is shown in Figure 1.
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Figure 1. The schematic illustration of the study on indirubin microemulsion gel. Firstly, indirubin
microemulsion was prepared and characterized, then carbomer 934 was used as a gel matrix to
increase the viscosity of the microemulsion, and the anti-psoriatic activity of the preparation was
evaluated by H&E and immunohistochemical assays.
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2. Results
2.1. Preparation of IR-ME and IR-ME Gel
2.1.1. Solubility Study and Selection of Adjuvants for ME System

Different oil phases, surfactants, and co-surfactants have great influence on the forma-
tion of ME. Surfactant and co-surfactant are significant for droplet stability by reducing
surface tension [23]. Herein, suitable adjuvants for the composition of the ME system
were screened. The solubility of IR in various oil phases, surfactants, and co-surfactants
were investigated (Figure 2A). Of the oil phases listed, IR had the highest solubility
in MCT (0.067 ± 0.007 mg/mL). Then, when different surfactants and co-surfactants
were tested, IR had a satisfying solubility in T-80 (0.671 ± 0.018 mg/mL) and PEG-400
(0.696 ± 0.014 mg/mL). However, PEG-400 and T-80 were not mutually miscible, result-
ing in delamination in a few minutes. Therefore, Cremophor EL (0.588 ± 0.006 mg/mL)
was selected as the surfactant for further study. In brief, MCT was selected as the oil
phase, Cremophor EL as the surfactant, and PEG-400 as the co-surfactant to develop the
IR-ME system.
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(B) pseudo-ternary phase diagrams of the MCT/Cremophor EL/PEG-400/water system; (C) the curve
of ME conductivity with water content.

2.1.2. Determination of Efficient ME Region

A pseudo-ternary phase diagram was constructed to calculate the region of the micro-
emulsion region when the mass ratio of surfactant versus co-surfactant was calculated as
4:1, 3:1, 2:1, 1:1, 1:2, and 1:3. Then, the mixed surfactant (surfactant mixture; Smix) was
prepared and the self-microemulsifying region was determined. The microemulsion area
was large, which indicated that the ME formulation was stable. In addition, with increasing
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surfactant concentration, the self-microemulsifying region was increased, and the largest
emulsification region was found at the ratio of 4:1 (Figure 2B). The increased interfacial
fluidity, entropy, and decreased interfacial tension might be a possible explanation [24].
Then, according to the mass ratio of oil phase and Smix, the microemulsion was prepared
at the ratio of 9:1~1:9 (Km). The results showed that the Km of the oil phase and mixed
emulsifier was 1:9 and 2:8 displayed with a clear and transparent state. The remaining
ratios changed from clarification to turbidity. Comprehensive evaluation of the color and
the amount of surfactants was performed, and the ratio of the oil phase to the mixed
surfactant was determined as 2:8.

2.1.3. Determination of Water Content of ME

The conductivity value of the ME was measured using a conductivity meter [25,26].
The conductivity of ME with different water contents were measured and three trends were
observed (Figure 2C): when the water content increased from 10% to 60%, the conductivity
of ME showed a rapid increase trend; when the water content was 60–68%, the increase
trend was flat. When the water content was 68–90%, the conductivity decreased rapidly.
According to the above results, it can be divided into three regions, representing the w/o
type, the bicontinuous phase, and the o/w type, respectively. With the conductivity of the
solution gradually decreasing, the peak was the critical point of w/o. According to the
conductivity method, the optimum water content of the microemulsion was 68%.

2.1.4. Preparation of IR-ME Gel

However, the fluidity, aggregation, and drug precipitation during storage of ME highly
limited the application to the skin. Therefore, ME gel was prepared to reduce the fluidity of
the emulsion, increase the adhesion ability, and improve the absorption and bioavailability
of the drug. Carbomer 934 is a polymer compound formed by cross-linking of acrylic
acid and acryloyl sucrose, which belongs to the water-based gel in the single-phase gel.
It is spreadable, non-greasy, easy to clean, comfortable to use, and lubricating, making it
suitable for topical delivery systems [27].

2.2. Characterization of IR-ME and IR-ME Gel
2.2.1. Fourier-Transform Infrared (FT-IR) Analysis

FT-IR analysis was performed to investigate the chemical structures of drug molecules
in ME and ME gel (Figure 3A). In the FTIR spectrum, peaks were observed at 3345 cm−1

due to N-H stretch: 3346 cm−1 due to the stretching vibration of the chelation structure of
C=O and hydrogen bonds, and 3230–2857 cm−1 due to C–H stretch. Stretching vibration of
the conjugated system of C=C, C=O, and N–H groups was observed at 1703–1595 cm−1

and 1481 and 1464 cm−1 corresponding to the ring C–C stretching bands. The region below
1381 cm−1 was due to the deformation vibration of N–H and C–H [28]. The results showed
that there was no obvious deviation of the above absorption peaks in ME, and the main
peak of IR will not be greatly shifted due to adjuvants, indicating that ME does not produce
chemical changes to drug molecules. The drug and ME are primarily physically bound.
However, the spectrum of ME gel hardly represents the corresponding drug peaks, which
may be due to the dense hydrogel framework of carbomer 934.

2.2.2. Differential Scanning Calorimetry (DSC) Analysis

The analytical DSC was adopted to determine the thermal properties (melting points,
phase transitions) of drugs and adjuvants. Differential scanning calorimetry maps among
different groups are shown in Figure 3B. The endothermic value of 355.3 ◦C was the crystal
endothermic peak of IR, and the adjuvants showed a constant temperature. There were
no such peaks in both ME and physical mixture spectra. The reason for the analysis may
be that the IR crystals were melted in the molten carrier without showing the crystal
endothermic peak.
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Figure 3. Drug and adjuvants compatibility. (A) FTIR spectra of IR, IR-ME, and IR-ME gel (arrows
indicate the characteristic infrared absorption peak of IR). (B) DSC thermograms of IR, Pharmacevtic
adjuvant, physical mixture and IR-ME.

2.2.3. TEM and SEM Analysis

The particle size is an important factor for the successful preparation of ME formula-
tions, as it determines the smooth release and penetration of the formulation through the
epidermis. Nanoscale droplets help penetrate the multi-layered skin structure and provide
a larger surface area for faster drug release [29]. Furthermore, Kotta et al. [30] reported that
the presence of a large amount of Smix in ME is beneficial for reducing the liquid size. The
polydispersity index (PDI) is also a measure that demonstrates the uniformity of droplets in
a formulation. A PDI closer to zero indicates more uniform nanoparticles. Furthermore, the
negative charge on the surface of ME droplets is beneficial to help the droplets penetrate
the skin. Therefore, this study characterized the above factors (Figure 4A–D). The average
particle size of the prepared IR-loaded ME was 84.37 nm, and PDI < 0.2, and zeta potential
were in the range of 0~−20 mV. The SEM of ME gel is shown in Figure 4E.
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2.3. In Vitro Skin Permeation and Deposition Study

Franz diffusion cells were established to assay the in vitro penetration behavior of ME,
ME gel, medicinal olive oil solution, and aqueous solution. Steady-state transdermal flux
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was determined from the curve of cumulative drug penetration versus time. After 24 h, the
cumulative permeability of ME, oil solution, and aqueous solution were 47.34 ± 3.59 µg/cm2,
22.21 ± 2.14 µg/cm2, 3.60 ± 0.11 µg/cm2, and the skin retention was 8.77 ± 1.26 µg/cm2,
4.18 ± 0.79 µg/cm2, and 2.68 ± 0.36 µg/cm2, respectively (Figure 5A,B). The results showed
that the accumulated drug exudation in ME was 2.1-fold and 13.1-fold higher than that of the
oil solution and the aqueous solution, respectively; both the permeation and retention of the
skin increased. The reason for the analysis may be that the particle size of ME is small and
interacts with the stratum corneum, which ultimately improves the permeability of the
drug. In addition, the optimal gel concentration of ME was 1%, and the transdermal flux
and skin retention at 24 h were 39.01 ± 3.21 µg/cm2 and 6.5 ± 0.6 µg/cm2, respectively
(Figure 5C,D). Table 1 lists the in vitro penetration parameters among different formulations
of IR through mouse dorsal skin. The results showed that the transdermal flux of ME gel
was lower than that of ME, which may be due to the high viscosity of the gel itself. Despite
the reduced flux of ME gel, it is still favored for their long-lasting effect, ease of application
to the skin, and ease of cleaning.
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Figure 5. In vitro transdermal permeation profiles. (A) The vitro transdermal release curve of IR
in different carriers. (B) The retention amount of IR in the skin of different carriers. (C) The vitro
transdermal release curve of IR in different substrate concentrations. (D) The retention amount of IR
in the skin of different substrate concentrations. The results were expressed as the mean ± SEM. The
comparisons between groups were performed using one-way ANOVA (Tukey’s multiple comparisons
test). ** p < 0.01 vs. Oil solution and Aq solution; * p < 0.05 vs. 0.5%, 1.5% and 2% gel (n = 3).

Table 1. In vitro permeation parameters of IR from different formulations through mice back skin (n = 3).

Parameter Q a Jss b Q (Skin) c

ME 47.34 ± 3.59 1.96 ± 0.08 8.77 ± 1.26
ME gel (1%) 39.01 ± 3.21 1.65 ± 0.12 6.5 ± 0.6
Oil solution 22.21 ± 2.14 0.94 ± 0.09 4.18 ± 0.79

Aqueous solution 3.60 ± 0.11 0.05 ± 0.01 2.68 ± 0.36
a Cumulative amount of IR permeated (µg·cm−2) after 24 h. b Flux (permeation rate constant) at steady state
(µg·cm−2·h−1), obtained from the slope of the regression line after plotting the amount of IR permeated vs. time.
c Amount deposited in the skin after 24 h (µg·cm−2).

2.4. In Vivo Studies
2.4.1. Macroscopic Observation of Dorsal Tissue

Imiquimod (IMQ) cream was applied to develop psoriasis-like skin features on the
back of mice (Figure 6). From the third day onwards, the degree of skin lesions in the model
group increased sharply, scale accumulation appeared, and the skin felt thick and hard.
Compared with the model group and the oil solution group, ME gel treatment significantly
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reduced the scales, erythema, and thickening of the skin; the surface was smooth and
flat, and there was basically no scaling. After treatment of the formula on the established
IMQ model, each group of mice was scored using corrected psoriasis area and severity
index (PASI) score, as shown in Figure 7A. These results suggested that ME gel has good
therapeutic activity, and the efficacy was better than the oil solution group.
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skin and after treatment).
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Figure 7. The therapeutic effect of IR. (A) PASI score of indirubin on the back skin of IMQ-induced
mice. (B) Effects of IR on body weight change of IMQ-induced mice. (C) Effects of IR on spleen index
of IMQ-induced mice. The results were expressed as the mean ± SEM. The comparisons between
groups were performed using one-way ANOVA (Tukey’s multiple comparisons test). * p < 0.05 and
** p < 0.01 vs. Model; ## p < 0.01 vs. Control (n = 6).
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2.4.2. Body Weight and Spleen Index of Mice

The spleen is the largest immune organ in humans and animals, and it is also the
center of cellular and humoral immunity, containing a large number of immune cells. When
the body suffers from an inflammatory disease, the spleen undergoes changes to a certain
extent, and the spleen index is an important sign of an immune disease. Therefore, the
therapeutic effect of drugs on inflammatory diseases can be judged by changes in the
color and the spleen index. The body weight of the mice in the model group continued
to decrease until it eased slightly on the 6th day (the symptoms began to subside on the
6th day after modeling). After drug treatment, the weight loss trend of mice was reduced on
the third day (Figure 7B). After the mice were modeled, the immune system was stimulated
by a large amount of IMQ ointment, resulting in an enlarged and blackened spleen and
increased spleen index. As shown in Figure 7C, the spleen index of mice in the model group
was significantly larger than that of control mice. After the drug treatment, the spleen
index of the mice decreased, and especially the ME gel treatment group had a significant
difference compared with the model group.

2.4.3. Skin Histopathology

The anti-psoriatic effect of ME gel formulation was observed by H&E staining. The
histological changes of different groups of skin specimens are shown in Figure 8. The
epidermal layer of mice in the model group was significantly thickened, and there was
obvious parakeratosis and hyperkeratosis, regular downward extension of the epidermis,
high-density anucleated cells and a continuous granular layer, a large amount of inflam-
matory cell infiltration, and Munro microabscesses. These are typical of human psoriatic
skin. The olive oil group showed that the thickening of the epidermis and acanthosis was
reduced, but the regular downward protrusion of the epidermis still existed. The effect of
ME gel in reducing epidermal hyperplasia, hyperkeratosis, and acanthosis on day six was
very similar to that of the control group.
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2.4.4. Immunohistochemical

Dysregulation of the IL-23/IL-17 cytokine axis has been reported to be central to the
pathogenesis of human psoriasis. Il-23 and IL-17 play an important role in the pathogenesis
of psoriasis by affecting T-Helper 17 (Th17) [31]. Th17 cells produce cytokines such as IL-21,
IL-17, and IL-22 to accelerate psoriasis symptoms. In addition, Ki67 is a nuclear protein
closely related to cell proliferation, and is usually used as a marker protein for detecting
cell proliferation. By detecting the expression of Ki67 in disease-like skin, the proliferation
state of the skin can be judged. Furthermore, CD4+T cells are important immune cells
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in the pathogenesis of psoriasis. Under the stimulation of various inflammatory factors,
they can differentiate into Th17 cells, Th22 cells, and other helper T cells to promote the
inflammatory response of psoriasis. Therefore, the present study analyzed the levels
of key cytokines IL-17A (Figure 9), Ki67 (Figure 10), and CD4+T (Figure 11). With the
change of time, the expression levels of IL-17A, Ki67, and CD4+T in the model group
were significantly increased. Compared with the model group, the expression levels of
IL-17A, Ki67, and CD4+T in the ME gel group were significantly decreased on the sixth
day. The decrease of IL-17 suggests that the therapeutic effect of IR on psoriasis mouse
model may be related to the intervention of IL-23/IL-17 inflammatory axis. Ki67 staining
demonstrated that hyperproliferation of epidermal cells was inhibited, possibly due to the
immunomodulatory effects of IR. In addition, the decreased portion of CD4+T-positive
cells indicates that ME gel could alleviate psoriasis disorders via immune regulation.
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Figure 9. Effects of IR on the expression of IL-17 on the back skin of psoriatic mice (magnification 100×;
scale bar 100 µm).
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3. Discussion

The self-microemulsion drug delivery system (SMEDDS) is a new type of transdermal
drug delivery system with great potential [32]. Due to the low interfacial tension of ME, it
can be formed spontaneously under certain conditions. Due to the fluidity of the interfacial
film, the drug can be freely transported between the phases. The transdermal mechanisms
of ME include: improving the solubility and loading of drugs, increasing the hydration of
the stratum corneum, and destroying the lipid bilayer of the stratum corneum. The basic
composition of self-microemulsion includes an oil phase, surfactant, and co-surfactant.
When selecting preparation adjuvants, it is necessary to fully consider the compatibility
between adjuvants, the compatibility of adjuvants and drugs, and the toxicity and irritation
of adjuvants to ensure that the selected self-microemulsion components are non-toxic, non-
irritating, and do not affect drug efficacy [26]. Adjuvants having a high dissolving ability
to the drug is particularly important for the preparation of self-microemulsion. Therefore,
in view of the properties and characteristics of IR, a suitable oil phase, emulsifier, co-
emulsifier, and the ratio of each auxiliary material are key for the successful preparation of
self-microemulsions. In this study, we found that appropriate surfactants and co-surfactants
could significantly improve the solubility and stability of drugs. ME can enhance drug
penetration by dilating sweat glands and hair follicles through the permeation-enhancing
effect of surfactants and co-surfactants. In addition, surface, particle size and charge are
important characteristics of ME in transdermal drug delivery. For example, a PDI less than
0.2 is a key parameter to ensure an even distribution of the ME [33]. In addition, previous
reports have shown that when the particle size of ME is greater than 600 nm, the drug
mainly stays in the stratum corneum and cannot be delivered to the deep layers of the skin.
However, while the particle size is less than 300 nm, it can be effectively delivered to the
deep layers of the skin. In addition, the high surface charge prevents particle aggregation,
resulting in good stability [34].

However, as a liquid preparation, ME has the characteristics of strong fluidity, short
residence time, and poor adhesion. These shortcomings limit the practical applications of
ME. Therefore, in order to create a formulation with a certain adhesion ability, a hydrogel
thickener was adopted in this experiment. As a transdermal drug delivery carrier, ME gel
concentrates the characteristics of the gel’s adhesion to the skin, the deformation fluidity
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under the action of external force, and the complete dispersibility to the drug, which keeps
the drug spreading evenly and in the lesion for a long time. This finding also suggest
that ME could walk freely in the hydrogel network and successfully deliver drugs to
the stratum corneum before penetrating and releasing the drug into the deeper layers of
the skin. Appropriate viscosity could ensure good adhesion of the hydrogel to the skin.
However, high gel viscosity could impede the diffusion of the drug to the skin, probably
due to its dense three-dimensional network structure. Therefore, it is important to choose
an appropriate matrix concentration. Topical application of ME gel has proven to be an
essential option for the treatment of skin diseases such as psoriasis, avoiding the first-pass
metabolism associated with oral doses and increasing the drug concentration of drug
targets. In addition, the versatility and ease of preparation offer tremendous scalability for
industrial companies. However, several limitations still exist, such as a lack of comparison
with known drugs for the treatment of psoriasis in this study.

In conclusion, ME gel can be used as a transdermal drug delivery carrier to increase
the transdermal flow of drugs, release high doses of drugs for a long time, and reduce skin
irritation, thereby achieving the purpose of improving drug efficacy and safety. Therefore,
ME gel has unique advantages in the field of transdermal drug delivery systems.

4. Materials and Methods
4.1. Materials

IR (purity ≥ 98%) was synthesized in the laboratory of Huaqiao University. Olive oil,
castor oil polyoxyethylene ether, and Tween 80 glycerin were purchased from Shanghai
Rin en Technology Development Co., Ltd. (Shanghai, China). Sino chain triglyceride
was purchased from Beijing Ita Biotechnology Co., Ltd. (Beijing, China). Diethylene
glycol monoethyl ether was purchased from Shanghai Bide Medical Technology Co., Ltd.
(Shanghai, China). Kapom was purchased from Shanghai Maclean Biochemical Technology
Co., Ltd. (Shanghai, China). Ethanol and other chemical reagents were purchased from
China Pharmaceutical Group Co., Ltd. (Beijing, China). 5% IMQ cream was purchased
from Sichuan Mingxin Pharmaceutical Co., Ltd. (Chengdu, China). Other chemicals were
analytical grade or chromatographic grade.

4.2. IR Detection Method

The concentration of IR was determined by the high performance liquid chromatogra-
phy (HPLC) method, and the chromatographic condition was shown as below. Column:
Diamonsil C18 column (250 mm × 4.6 mm, 5 µm); Mobile phase: methanol/water (70:30);
Flow rate: 1.0 mL/min; Detection wavelength: 292 nm; Column temperature: 40 ◦C; Injec-
tion volume: 20 µL. Taking the mass concentration of IR as the abscissa (C) and the peak
area as the ordinate (A) to draw the standard curve, the linear regression equations are:
A = 34,156C − 6356.4 (R2 = 0.9993). The results showed that indirubin had a good linear
relationship in the concentration range of 0.5–20 µg/mL.

4.3. Preparation of IR-ME and IR-ME Gel

The solubility of IR in different phases was analyzed. At room temperature, 2 mL of
solvent (oil phase, surfactant, cosurfactant) was added into the EP tube with a capacity of 5 mL,
and the excess IR was added and vortexed for dispersion. After shaking at room temperature
for 48 h to reach solution equilibrium, centrifuging was performed at 6000 g/min for 15 min.
Then, the supernatant was collected, diluted, and analyzed by a UV-vis spectrophotometer at
UV-absorption wavelength of 535 nm. Each sample was tested three times.

Medium chain triglyceride was selected as the oil phase; castor oil polyoxyethylene
ether was selected as the surfactant; PEG-400 was selected as the emulsifier. First, according
to the mass ratio of surfactant versus co-surfactant of 4:1, 3:1, 2:1, 1:1, 1:2, and 1:3, the mixed
surfactants (surfactant mixture; Smix) were prepared. Then, the oil phase and Smix were
mixed at room temperature at varying weight ratios of 1:9 to 9:1 %w/v to characterize
phase boundaries. The mixtures were slowly titrated with distilled water as the aqueous
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phase and stirred until equilibrium (800 rpm). Under the ratio, the solution changed from
clear to cloudy or from cloudy to clear, and the volume of water at the end point of the
titration was recorded. Pseudo-ternary phase diagrams were drawn with oil phase, Smix,
and distilled water as three vertices, respectively. Origin 2021 software was used to create a
pseudo-ternary phase diagram and determine the optimal scale according to the size of the
pseudo-ternary phase diagram. The IR was then added to the ME system.

A certain amount of Carbomer 934 was weighed and dispersed in water such that its
final concentration was 0.5%, 1%, 1.5%, and 2%, respectively. Then, 10% glycerol was added
as a humectant, and left overnight to fully swell it. Afterwards, 20% triethanolamine was
added dropwise after swelling to adjust the pH value to 5.5~6.5. In the end, an appropriate
amount of microemulsion was added to the blank matrix and stirred at 1000 rpm for 10 min
to obtain the IR-ME gel.

4.4. Characterization of IR-ME and IR-ME Gel

Infrared spectra (FT-IR) of IR, ME and ME gel were recorded with a Nicolet IS50 FT-IR
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) with a range of 4000–400 cm−1

and a resolution of 4 cm−1.
Heat maps of indirubin, adjuvants, physical mixtures, and ME were recorded using a

Netzsch DSC214 differential scanning calorimeter (Netzsch, Germany). Each sample was
sealed in an aluminum crucible and heated to 400 ◦C from room temperature at a rate of
10 ◦C·min−1 under nitrogen.

The morphology of the microemulsion was observed by FEI TECNAI G2 F20 (TEM)
(FEI, Hillsboro, OR, USA) at an accelerating voltage of 100 kV. A few samples were dropped
onto the copper mesh, wetted for several minutes, stained with 2% phosphotungstic acid
staining solution for 5 min, dried at room temperature, and observed by TEM.

The morphology and surface characteristics of ME gel were detected by JEOL JSM-
7800F scanning electron microscope (SEM) (JEOL Ltd., Tokyo, Japan). The ME gel was
coated on the tin foil, vacuumed and adhered to the copper plate with double-sided tape,
and sprayed with gold under reduced pressure, and the morphological structure of the
sample was observed under the scanning electron microscope.

4.5. In Vitro Transdermal Test

SPF BALB/c female mice (6–8 weeks; body weight 18–22 g) were purchased from
Shanghai Slack Laboratory Animal Co., Ltd. (Shanghai, China). All animal testing protocols
were approved by the Animal Care and Use Committee of Huaqiao University, and all
experimental procedures were in accordance with the National Institutes of Health Guide
for the Care and Use of Laboratory Animals. All mice were placed in an environmental
control room with a temperature of 22 ± 2.0 ◦C, a light-dark cycle of 12 h, and ate freely.

4.5.1. Preparation of Excised Skin

Mice were sacrificed by cervical vertebrae, and the back hair was shaved with an
electric shaver. Then an appropriate amount of depilatory cream was applied, and washed
off with water after one to two minutes. The skin on the back of the mouse was excised,
removed subcutaneous tissue and fat, then rinsed with normal saline. The retrieved samples
were subsequently stored at −20 ◦C and used within 1 week. Prior to the experiment,
isolated mouse skin was removed, naturally thawed to room temperature, tested for skin
integrity and rinsed with saline.

4.5.2. In Vitro Transdermal Test

In the present study, the transdermal diffusion of ME, ME gel, and olive oil solution
in vitro was investigated by Franz diffusion cells. The mouse skin was fixed between the
two halves of the diffusion cell, with the epidermis facing the donor compartment and
the dermis facing the receptor compartment and in close contact with the receiving fluid.
The volume of the receiving tank was 10 mL, and the effective area of the diffusion tank
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was 0.8 cm2. The receiving solution was a saline solution containing 30% ethanol, and the
receiving solution was degassed by ultrasonic waves at the same time. The temperature
of the constant temperature water bath was 35 ◦C, and the rotation speed was 500 rpm.
After 24 h, the skin was removed, and the effective skin through which the drug penetrated
was carefully cut off and rinsed with normal saline. The skin samples were minced,
1 mL of DMF was added for sonication for 1 h, the above steps were repeated once. The
two supernatants were combined, filtered through a 0.22 µm microporous membrane,
and injected into a high-performance liquid chromatography analyzer. The amount of IR
retained in the formulation was calculated after 24 h. At the same time, samples were taken
from the receiving medium to study the transdermal accumulation of the drug.

4.6. In Vivo Studies
4.6.1. Experimental Design

Twenty-four female BALB/C mice were randomly divided into 4 groups: control
group, model group, ME gel group, and olive oil solution group, with 6 mice in each group.
One week after acclimatization, both sides of the back and spine of mice were depilated 24 h
before the experiment. Psoriasis model was induced on the mice skin by the application of
IMQ cream as a dose of 62.5 mg/day/mouse for a period of 6 days. Mice in the intervention
group were given corresponding drugs at 4 and 8 h after IMQ induction.

4.6.2. Assessment of Psoriasis-like Symptoms

The skin thickness, erythema, and scale of the back skin of the experimental mice
were scored using the corrected PASI score, and the severity of inflammation was observed.
According to skin thickness, severity of erythema and scaling, a scale of 0 to 4 was used,
namely 0, asymptomatic; 1, slight; 2, moderate; 3, severe; 4, very severe. Scoring was
performed on each day of the experimental period.

4.6.3. Histopathology

The purpose of this study was to investigate the pathological changes in mouse skin
after applying each preparation. Mice were sacrificed six days later, and skin samples were
collected and immersed in 4% paraformaldehyde for fixation. Then tissue paraffin sections
were made, the tissues were stained with hematoxylin and eosin, and the histopathological
changes of each experimental group were observed under an inverted microscope.

4.6.4. Immunohistochemistry

First, the paraffin sections were dried in a 60 ◦C oven for 30 min to melt the wax,
and then placed in xylene-gradient ethanol-water for dewaxing and immersion; hydrogen
peroxide was added to eliminate endogenous peroxidase; then, antigen retrieval solution
was used to repair antigens. After permeabilization and blocking, the diluted primary anti-
body was added for incubation, the primary antibody was washed off, and the secondary
antibody was added to incubate at room temperature. After that, DAB was used for color
development, hematoxylin staining was used, and the results were observed and recorded.

4.7. Statistical Analysis

Experiments were performed in triplicate and data were expressed as mean ± standard
deviation. Statistical analysis of the acquired data was performed using GraphPad Prism
software version 5.0. Analysis of variance (ANOVA) with Tukey method as a post-hoc test
and Student’s t-tests were used to analyze the data. These differences were considered
statistically significant at p < 0.05.

5. Conclusions

The poor solubility and bioavailability limited the application of IR. Herein, to improve
the skin permeability, the ME system was adopted to the local delivery of IR. The ME was
physically stable, nano-sized, spherical, and with a narrow-size distribution. Moreover,
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the ME gel highly improved the permeation rate in vitro and alleviated psoriasis disorders
induced by IMQ. This study suggests that IR-loaded ME formulation could be used for
topical administration in the treatment of psoriasis or other topical skin disorders. In
summary, this study presents a new direction for the treatment of psoriasis with limited
solubility and transdermal efficiency.
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