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Abstract

Non-alcoholic fatty liver disease (NAFLD), represents an unmet medical need that can prog-

ress to non-alcoholic steatohepatitis (NASH), which, without intervention, can result in the

development of cirrhosis and hepatocellular carcinoma (HCC). Inflammation is a pathologi-

cal hallmark of NASH, and targeting key inflammatory mediators of NASH may lead to

potential therapeutics for the disease. Herein, we aimed to investigate the role of IL-23 sig-

naling in NASH progression in murine models. We showed that recombinant IL-23 can pro-

mote IL-17 producing cell expansion in the liver and that these cells are predominately γδ T

cells and Mucosal Associated Invariant T cells (MAITs). Reciprocally, we found that IL-23

signaling is necessary for the expansion of γδ T cells and MAIT cells in the western diet

(WD) diet induced NASH model. However, we did not observe any significant differences in

liver inflammation and fibrosis between wild type and Il23r-/- mice in the same NASH model.

Furthermore, we found that Il23r deletion does not impact liver inflammation and fibrosis in

the choline-deficient, L-amino acid-defined and high-fat diet (CDA-HFD) induced NASH

model. Based on these findings, we therefore propose that IL-23 signaling is not necessary

for NASH pathogenesis in preclinical models and targeting this pathway alone may not be

an effective therapeutic approach to ameliorate the disease progression in NASH patients.

Introduction

Non-alcoholic fatty liver disease (NAFLD) is defined as a chronic liver disease that imparts

excess lipid accumulation in the liver without secondary causes such as viral infections or alco-

hol abuse [1,2]. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohe-

patitis (NASH) characterized by inflammation and fibrosis, which is a significant risk factor

for cirrhosis and hepatocellular carcinoma (HCC) [3–6]. Within the past decades, the epi-

demic of obesity has led to the sharp rise of NALFD/NASH incidence [2,7]. However, there

are no FDA-approved therapies for NASH driven chronic liver disease, which may be largely
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due to our limited understanding of molecular underpinnings of liver inflammation and

fibrosis.

IL-23 is a cytokine that has been implicated in IL-17 driven pathologies such psoriasis, coli-

tis, and autoimmune diseases [8–11]. As an IL-12 cytokine family member, IL-23 is composed

of a heterodimer of IL-12p40 subunit and IL-23p19 subunit (IL-23p19/p40) which signals

through the IL23R and IL12Rβ1 dimeric receptor [12]. Mice that lack IL-23p19 demonstrate

an inability to drive the expansion of pathogenic IL-17 producing cells [13–15]. All IL-17

expressing cells also express RAR-related orphan receptor gamma t (RORγt), the master tran-

scription factor driving the differentiation of IL-17 producing T cells [16,17]. In this regard,

previous studies have implicated that IL-17 producing cells promote liver inflammation and

fibrosis [18]. It has also been reported that there is accumulation of IL-17 producing cells in

the livers from NASH patients or diet induced NASH murine models [19–22]. Additionally,

IL-17 has been shown to be elevated by hepatotoxic agents such as carbon tetrachloride and

Concanavalin A in models of acute hepatitis [18,20–23]. While these studies suggest that IL-17

producing T cells may contribute to a pro-inflammatory milieu, which can predispose to

chronic liver disease, the role of IL-23 signaling in NASH pathogenesis has not been fully

dissected.

In this study, we hypothesized that IL-23 signaling may play an important role in NASH

pathogenesis. We showed that systemic administration of recombinant IL-23 protein induces

IL-17 producing cell expansion in the liver and that these cells are predominately γδ T cells

and Mucosal Associated Invariant T cells (MAITs). Reciprocally, genetic ablation of Il23r
attenuates γδ T and MAIT cell expansion in western diet (WD)-induced NASH model. How-

ever, we did not observe that Il23r deletion reduces liver inflammation and fibrosis or

improves liver function in the same model. Similarly, we found that Il23r-/- mice are not pro-

tected from liver inflammation and fibrosis in another model, the choline-deficient, L-amino

acid-defined and high-fat diet (CDA-HFD) induced NASH model. Thus, these results do not

support a causal role of IL-23 signaling in NASH pathogenesis and suggest that targeting IL-23

signaling alone may not be a viable therapeutic strategy to treat NASH patients.

Materials and methods

Mouse studies

All animal experiments were performed after approval from the Institutional Animal Care and

Use Committee (IACUC) of Genentech. Il23r-/- mice were generated as described previously

[24], the control group was littermate wild type (WT) mice. Diet used in this study was pur-

chased from Research Diets; normal diet (ND) was compared either to Western Diet (WD)

(cat#D19021501) composed of 40% kcal fat, 22% kcal fructose, and 1.25% cholesterol or cho-

line deficient L-amino acid derived high fat diet (CDA-HFD) (cat#A06071302) composed of

60% kcal fat, 0.1% methionine, and no added choline. All mice were fed with diet starting at 8

weeks of age, and all mice used were males. The ND and WD cohorts were challenged with

diet for 20 weeks. The ND and CDA-HFD cohorts were challenged with diets for 9 weeks.

C57BL/6J mice from Jackson Laboratory were used for intraperitoneal injection (IP) with PBS

or recombinant IL-23. Recombinant murine IL-23 was purchase from R&D. Mice were

injected with either PBS or 0.5ug recombinant IL-23 for three consecutive days and livers were

harvested 24hrs after last injection.

Liver digestion and flow cytometry

Upon CO2 euthanasia, serum was collected, and livers were perfused with 1X PBS, via portal

vein. Livers were collected for either histology, or RNA extraction, or tissue processing for
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non-parenchymal cell (NPC) isolation. All liver samples were processed at the same time by

transferring the livers in c-tubes (Miltenyi) and adding 5mL of digestion media consisting of

0.2% Collagenase Type 2 (Worthington), 0.1% DNAse I (Roche), 1% BSA (Sigma), in RPMI

media. Samples were digested using MACS Miltenyi dissociator followed by incubation at 37

degree for 30mins in shaker at 120rpm. Samples were then centrifuged at 1600rpm for 5mins

and resuspended in 1X PBS and passed through a 70um cell strainer. Samples were pelleted,

and resuspend in 15% Percoll, centrifuged for 1600rpm for 15mins without brake. The pellets

were NPC fraction, free of hepatocytes. NPCs were then resuspended in 1X PBS, stained with

LIVE/DEAD fixable dye (Invitrogen) at a 1:1000 dilution, incubated on ice for 15mins,

washed, resuspended in FACS buffer (PBS + 2.5mM EDTA + 5% BSA) with FcR block (Milte-

nyi), and stained with the appropriate conjugated fluro-antibodies. For RORgt staining, cells

were processed and stained using the FOXP3 Transcription Factor staining kit (BD). For intra-

cellular staining of IL-17A, NPCs were stimulated with leukocyte activation cocktail with Gol-

giPlug (BD) for 4hours in RPMI media. Then cells were washed, FcR blocked, and stained

with appropriate antibodies. Samples were run and analyzed on Symphony analyzer (BD).

Antibodies

Antibodies are listed: anti-CD45 (BD, 30-F11), anti-γδ chain receptor (BD, GL3), anti-TCRβ
chain (BD, H57-597), anti-CD3e (BD, 145-2C11), anti-CD4 (BD, RM4-5), anti-CD8 (Biole-

gend, 53–6.7), anti-CD90 (BD, 53–2.1), anti-SiglecF (BD, E50-2440), anti-Ly6G (BD, 1A8),

anti-Ly6c (BD, AL-21), anti-CD11c (BD, N418), anti-CD11b (BD, M1/70), anti-CD64 (Biole-

gend, X54-5/7.1), anti-IA/IE (BD, M5/114.15.2), anti-F4/80 (Biolegend, BM8).

RNA extraction, reverse transcription and quantitative realtime PCR

RNA was isolated from approximately 100mg of liver tissue using 1mL Trizol using the bead

homogenizer Qiagen method, followed by addition of 200uL chloroform, resuspended sam-

ples were centrifuged for 10mins at 13krpm, 300uL clear top aqueous layer was transferred to

new tube followed by the addition of 300uL 70% Ethanol. The 600uL samples were then loaded

on a RNeasy Mini purification column (Qiagen) for RNA isolation. RNA quantification and

purity was analyzed with NanoDrop 2000 (Thermo Scientific). 1ug of RNA was used for

cDNA synthesis using Iscript First Strand cDNA kit (BioRad). cDNA templates were com-

bined with Taqman probes (Thermo), and Taqman Universial PCR Master Mix (Thermo),

and run on QuantaStudio 6 Flex (Applied Biosystems). The cat# for Taqman probes used in

qPCR are listed in Table 1.

Table 1. Taqman probe information.

Gene Taqman probe cat#

Rpl19 Mm01606039_g1

Cxcl2 Mm00436450_m1

Ccl2 Mm00441242_m1

Cd68 Mm03047343_m1

Cxcl10 Mm00445235_m1

Col1a1 Mm00801666_g1

Col3a1 Mm01254476_m1

Col1a2 Mm00496696_g1

https://doi.org/10.1371/journal.pone.0274582.t001
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Histology

Paraffin embedded liver tissues were sectioned for hematoxylin and eosin (H&E) or for tri-

chrome staining. Automated image analysis was conducted on trichrome stained slides to

assess fibrosis and inflammation. Features counted towards inflammation include inflamma-

tory cells (lobular inflammation), primarily macrophages with some neutrophils, and areas of

hepatocyte injury/ductular reaction.

Serum biomarker and cytokine analysis

The liver chemistry panel consists of the following assays: Alanine Transaminase (ALT),

Aspartate Transaminase (AST), Alkaline Phosphatase (AP), Albumin (ALB), and Triglycerides

(TRIG). All assays were performed on the Beckman Coulter Au480 chemistry analyzer using

the analytical principle of spectrophotometry and potentiometry. (Beckman Coulter Inc., Brea

CA). Serum cytokines were measured using Luminex bead assay (Millipore platform).

Quantification and statistical analysis

GraphPad Prism 6 was used for statistical analysis using the unpaired student t-test or one-

way ANOVA. Statistical details are provided in the figure legends.

Results

Recombinant IL-23 increases RORγt cell accumulation in the liver

In order to determine whether IL-23 is sufficient to induce hepatic expansion of RORγt posi-

tive IL-17 producing cells, we intraperitoneally injected 0.5ug recombinant mouse IL-23

(rmIL-23) daily for three consecutive days into mice fed on normal diet (ND) and analyzed

the livers 24hrs after the last injection. Administration of rmIL-23 led to a five-fold expansion

of hepatic Ki67+ RORγt cells (Fig 1A and 1B) and a two-fold increase in the percentage of

Ki67+ RORγt cells when compared to vehicle control (Fig 1C). RORγt cells that proliferated

actively were identified as MAIT and γδ T Cells (Fig 1D and 1E). rmIL-23 treatment also

induced an increase in the percentage of hepatic neutrophils and inflammatory monocytes

when compared to vehicle control (Fig 1F and 1G). These results thus suggest that IL-23 is suf-

ficient to induce RORγt cell accumulation and pro-inflammatory response in the liver.

Western Diet induced hepatic expansion of RORγt cells is dependent on

IL-23R

Next, we investigated whether IL-23 signaling is required for RORγt cell accumulation in the

animal model of NASH. Western Diet (WD) consisting of high fat, high fructose, and added

cholesterol have been established to induce several NASH phenotypes including hepatic

inflammation, fibrosis and an increase in hepatocellular injury measured by the serum bio-

markers such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), all in a

nutritional setting without liver damaging chemicals [25,26]. We fed WT and Il23r-/- mice

with normal diet (ND) or WD for 20 weeks (Fig 2A) [27]. The WD induced the expansion of

RORγt+ γδ T cells and MAIT cells in the livers from WT mice (Fig 2B and 2C). In Il23r-/-

mice, we found that WD-induced expansion of γδ T cells and MAIT cells were normalized to

the baseline (Fig 2B and 2C). Furthermore, we observed a significant decrease of IL-17A pro-

duction in γδ T cells from Il23r-/- NPCs compared to WT (Fig 2D). These data suggest that

IL-23 plays an important role in regulating IL-17 producing cells in WD induced NASH

model.
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IL-23 signaling is not critical for liver inflammation and fibrosis induced

by WD in mice

Having established its critical role in WD-indued RORγt cell accumulation, we explored the

contribution of IL-23 signaling to WD-induced liver inflammation and fibrosis. While there is

a clear increase of liver inflammation induced by WD, we did not observe any noticeable dif-

ferences in liver inflammation between WT and Il23r-/- livers from WD fed mice as assessed

by histology and pro-inflammatory gene expression (Fig 3A and 3B). On the other hand, while

we observed a modest, but statistically significant, reduction of pro-inflammatory monocytes

in the WD indued Il23r-/- liver (Fig 3C), there was no significant difference of neutrophil infil-

tration to the liver between Il23-/- and WT mice (Fig 3D), the main myeloid cell known to be

recruited by IL-17 induced chemokines. In addition, we found that the serum levels of

Fig 1. rmIL-23 administration induces RORγt proliferation in liver. FACS staining was performed in liver NPCs isolated from mice

administered either PBS or recombinant mouse IL-23 (rmIL-23) by IP injections (A-G): Representative FACS gate, IL-23 induced greater

frequency of RORγt+Ki67+ T Cells gated from CD3e+CD4-CD8- (A). Total RORγt+Ki67+ T Cells, indication of proliferative cell, and total RORγt

(CD4-CD3-) T Cells quantified in the liver (B-C). Percentage quantification of Ki67+ of RORγt+MAITs and RORγt+ γδ T Cells (D-E). Percentage

of Neutrophils and Ly6c+ monocytes from CD45+ Cells (F-G). Groups: Vehicle (PBS): n = 6, rmIL-23 (3x 0.5ug): n = 6. Data represents mean ± S.

D. �p< 0.05, ��p< 0.001, ����p< 0.0001, two-tailed t-test.

https://doi.org/10.1371/journal.pone.0274582.g001
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keratinocytes-derived chemokine (KC) (Fig 3E) and interferon gamma-induced protein 10

(IP-10) (Fig 3F) were not changed in Il23r-/- mice. Next, to address the role of IL-23 signaling

in liver fibrosis in WD-induced NASH model, we evaluated hepatic collagen content by tri-

chrome staining analysis and hepatic collagen gene expression. We did not observe a signifi-

cant difference of collagen content at the histology level as well as at the transcriptional level

(Fig 4A and 4B). Overall, these results do not support IL-23 signaling as the main driver of

liver inflammation and fibrosis in WD-induced NASH model.

IL-23 signaling does not contribute to WD induced liver dysfunction

Next, we examined the impact of Il23r deletion on liver function. In this regard, we measured

several serum biomarkers of liver function. The results showed that there is little difference of

serum ALT/AST, alkaline phosphatase (AP), albumin, cholesterol, and triglyceride levels

Fig 2. IL-23 is required for WD-induced hepatic IL-17 producing cell expansion. WT or Il23r-/- mice were fed a ND or WD for 20 weeks, followed by terminal analyses

(A). FACS quantification of percent RORγt+ from γδ T Cells and RORγt+ from MAIT cells (CD3e+TCRb+CD4-CD8-) (B-C). Percentage of IL-17A positive cells in γδ T

cells from WD fed WT and Il23r-/- liver NPCs stimulated with leukocyte activation cocktail with GolgiPlug (BD) for 4 hours (D). Groups: ND WT n = 5, ND Il23r-/-

n = 5, WD WT n = 7, WD Il23r-/- n = 7. Data represents mean ± S.D. �p< 0.05, ��p< 0.005, one-way ANOVA.

https://doi.org/10.1371/journal.pone.0274582.g002
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between WT and Il23r-/- mice fed on WD (Fig 5C–5H). Similarly, IL23R deficiency appears

not to affect the WD-induced whole-body weight as well as liver weight gains (Fig 5A and 5B).

Collectively, these data suggests that IL-23 signaling may not contribute to liver dysfunction

caused by WD-induced metabolic imbalance.

IL-23 signaling does not contribute to liver inflammation and fibrosis in

the CDA-HFD model of NASH

To complement our findings in WD-induced NASH model, we sought to determine whether

IL-23 signaling contributes to NASH pathogenesis in another animal model. In this regard, we

chose the CDA-HFD model (Fig 6A) because this model has been demonstrated to recapitu-

late steatosis, inflammation, and progressive fibrosis in the liver [28]. The CDA-HFD signifi-

cantly induced the expansion of RORγ+ γδ T Cells and MAIT cells in the liver (Fig 6B and

Fig 3. IL-23 signaling is dispensable for WD-induced hepatic inflammation. H&E staining images of livers from WT and Il23r-/- mice on ND or WD (A). Liver

mRNA levels of Tnf, Cd68, Ccl2, Cxcl2, and Cxcl10 (B). Liver FACS analysis of percent Ly6c+ monocytes and neutrophils between groups. Luminex results for serum

levels of KC (E) and IP-10 (F). Groups: ND WT n = 5, ND Il23r-/- n = 5, WD WT n = 7, WD Il23r-/- n = 7. Data represents mean ± S.D. �p< 0.05, ��p< 0.005,
����p< 0.00005, one-way ANOVA.

https://doi.org/10.1371/journal.pone.0274582.g003
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6C). Consistent to our observation in WD-induced NASH model, we found no impact of IL-

23R depletion on liver inflammation and fibrosis by histology (Fig 6D). Similarly, we observed

that Il23r deletion does not affect pro-inflammatory monocyte and neutrophil infiltration to

liver induced by CDA-HFD treatment (Fig 6E and 6F). Furthermore, no significant changes in

hepatic inflammatory or fibrogenic gene expression were detected between WT and Il23r-/-

mice fed on CDA-HFD (Fig 6G). In addition, we did not observe any significant change in

body weight, liver weight, and a variety of serum biomarkers for liver function between WT

and Il23r-/- mice (Fig 7A–7H). Taken together, these results suggest that IL-23 signaling does

not contribute to liver inflammation and fibrosis in CDA-HFD NASH model.

Discussion

NAFLD/NASH is an unmet medical need that is increasingly common around the world. The

incidence of NAFLD world-wide is approximately 25%, and the prevalence of NASH patients

in NAFLD patients appears to be associated with biopsy status and regions. For example, the

pooled global prevalence of NASH from biopsied NAFLD patients was estimated to be 59.1%

while this ratio decreases to 7–30% in NAFLD patients without an indication for biopsy [7,29].

There are currently no approved therapies for NAFLD/NASH, and pro-inflammatory path-

ways have been proposed to be a class of appealing targets for this complex disease [30]. In this

regard, it came to our attention that hepatic IL-17 producing cells have been shown to promote

liver inflammation and dysfunction [18–21]. However, genetic dissection of this pathway, par-

ticularly its upstream regulator IL-23, in preclinical NASH models is lacking and the target

candidacy of this IL-17/IL-23 axis in NASH is yet to be fully established.

In this context, we therefore chose to investigate the contribution of IL-23 signaling to

NASH pathogenesis by testing IL23R deficient mice in animal models of NASH. Our data

showed that, while recombinant IL-23 is sufficient to drive IL-17A producing cell expansion

and pro-inflammatory myeloid cell infiltration in liver, Il23r-/- mice are not protected from

Fig 4. IL-23 signaling does not contribute to WD-induced liver fibrosis. Trichrome staining images of livers from WT and Il23r-/- mice on ND or WD

(A). Liver mRNA levels of Col1a1, Col1a2, and Col3a1. Groups: ND WT n = 5, ND Il23r-/- n = 5, WD WT n = 7, WD Il23r-/- n = 7.

https://doi.org/10.1371/journal.pone.0274582.g004
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liver inflammation and fibrosis in two NASH models, suggesting the contribution of IL-23 sig-

naling to NASH pathogenesis is minimal. These observations thus challenge the assumption

that IL-17 producing cells that have been shown to be present in NASH patient liver samples

Fig 5. IL-23 signaling does not contribute to WD-induced liver dysfunction. Body weight (A) and percent liver weight to

body weight (B). Measurement of serum liver enzymes for Alanine Aminotransferase (ALT) (C), Aspartate

Aminotransferase (AST) (D), and Alkaline Phosphatase (AP) (E). Serum albumin protein (F), serum cholesterol (G) and

serum triglycerides (H) were also measured. Groups: ND WT n = 5, ND Il23r-/- n = 5, WD WT n = 7, WD Il23r-/- n = 7.

Data represents mean ± S.D, one-way ANOVA.

https://doi.org/10.1371/journal.pone.0274582.g005
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may play a causal role in the disease pathogenesis [31]. It should also be noted that we cannot

rule out IL-23’s contribution to non-NASH liver fibrosis as some reports suggest IL-23 signal-

ing plays a role in cholestatic or viral driven liver fibrosis [18,32]. Nevertheless, the dispensabil-

ity of IL-23 signaling in NASH driven liver inflammation is intriguing given its critical role in

a wide variety of pro-inflammatory diseases. Since it is well documented that many inflamma-

tory factors such as cytokines and PAMPs are elevated in NASH models, it is not inconceivable

Fig 6. IL-23 signaling does not contribute to liver inflammation and fibrosis in the CDA-HFD NASH model. WT and Il23r-/- mice were fed CDA-HFD for 9

weeks, followed by liver analysis (A). Percent quantification of hepatic RORγt in γδ T Cells (B) and MAITs (C). Trichrome staining images and quantification of

Inflammation (E) and Trichrome Collagen content (F). Liver mRNA expression of Tnf, Cd68, Ccl2, Cxcl2, Col1a1, Col1a2, and Col3a1 (G). Groups: ND WT n = 3, ND

Il23r-/- n = 3, CDA-HFD WT n = 6, CDA-HFD Il23r-/- n = 6. Data represents mean ± S.D. ���p< 0.0005, one-way ANOVA.

https://doi.org/10.1371/journal.pone.0274582.g006
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that the accumulation of these factors may mask any effects of IL-23 in the NASH models

[30,33]. Further studies are warranted to dissect the potential crosstalk between IL-23 and

other proinflammatory cytokines during the pathogenesis of NASH.

Fig 7. IL-23 signaling does not contribute to CDA-HFD-induced liver dysfunction. Body weights in gram (g) (A) and percent

liver weights from body weight (B). Quantification of serum liver enzymes for Alanine Aminotransferase (ALT) (C), Aspartate

Aminotransferase (AST) (D), and Alkaline Phosphatase (AP) (E) measured. Serum Albumin protein (F), serum cholesterol (G)

and serum triglycerides (H) quantified. Groups: ND WT n = 3, ND Il23r-/- n = 3, CDA-HFD WT n = 6, CDA-HFD Il23r-/- n = 6.

Data represents mean ± S.D.

https://doi.org/10.1371/journal.pone.0274582.g007
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While we examined the role of lL-23 signaling in two preclinical models of NASH, it should

be noted that, currently, there is no single animal model that can perfectly replicate all disease

features of human NASH patients [34]. For examples, WD diet model mimics metabolic pro-

files of human patients such as obesity, insulin resistance and inflammation but this model is

unlikely to progress to advanced liver fibrosis (F3/4) unless animals are fed on the diet for an

extended period of time (>25 weeks) [34,35]. On the other hand, CDA-HFD model elegantly

develops progressive liver fibrosis and inflammation although it lacks the certain metabolic

features of human NASH patients [28,34]. Therefore, by recognizing the limitations of preclin-

ical models used in this manuscript, we cannot fully rule out the contribution of IL-23 signal-

ing to NASH pathogenesis in a more human disease relevant setting. Future studies using

improved animal models or human samples may be warrantied to test this hypothesis.

Conclusions

In summary, we present the evidence that Il23r-/- mice are not protected from liver inflamma-

tion and fibrosis in two NASH preclinical models, thus suggesting that targeting IL-23 signal-

ing alone may not be an effective therapeutic approach for NASH. Our study also supports the

necessity of leveraging genetic models to validate drug targets when possible and suggests that

the overall role of IL-23/IL-17 axis in NASH may need to be re-evaluated.
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