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Introduction

The product of a protein-coding gene that is delivered to the 
cytoplasm is an export competent mRNA–protein (mRNP) 
complex [1]. An mRNP contains a processed mRNA and a 
large number of associated proteins [2, 3]. The formation of 
an mRNP requires multiple and coordinated processes. The 
active gene is a crucial nuclear subdomain where synthe-
sis, processing, and assembly of pre-mRNPs and mRNPs 
take place [4]. Chromatin structure, RNA polymerase II 
(RNA pol II) transcription elongation rate, and the inte-
grated action of a number of processing machineries will 
all have an impact on the formation of the pre-mRNPs and 
mRNPs. Pre-mRNAs exist, very rarely, if ever, as complete 
copies of the gene, because the processing machineries that 
execute capping, splicing, and 3′ cleavage and polyadenyla-
tion also operate at the transcribing gene. Transcription by 
the RNA pol II elongation complex results in a pre-mRNA. 
During ongoing transcription, various proteins associate 
rapidly with the newly synthesized pre-mRNA. Further-
more, as a consequence of processing, defined proteins 
will be deposited onto the pre-mRNA at specific positions 
[5–8]. Proteins bind to pre-mRNAs in a highly ordered 
assembly process. The resulting pre-mRNPs change their 
structure as additional RNA is added, as additional proteins 
associate and as processing modifies the RNA. The associ-
ated proteins are important for every aspect of the fate of 
an mRNP, including export, localization in the cytoplasm, 
engagement with the translation machinery, quality control, 
stability, and degradation.

After release from the gene, an mRNP enters the inter-
chromatin compartment and moves by diffusion mainly 
through the interchromatin channel network of diploid 
cells [9]. Some processing and protein acquisition can 
occur in the interchromatin, but to what extent an mRNP 
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is modified, as to composition and structure remain to be 
determined. Apparently, mRNPs spend some time in the 
interchromatin. Varying sizes of pools of gene-specific 
mRNPs, therefore, exist. Unproductive encounters between 
the nuclear pore complexes (NPCs) and individual mRNPs 
can occur [10–12], either because the mRNPs do not have 
the necessary components, in this sense, are not export 
competent, or because the docking process at the NPC 
simply fails. When export competent mRNPs success-
fully dock at the NPCs, they are subsequently translocated 
through the NPC channel and thereafter released into the 
cytoplasm. During translocation, both conformational and 
compositional changes take place within the mRNPs.

We will outline the processes at the active gene, in the 
interchromatin and at the NPC that together result in the 
formation and export of functional mRNPs. It is clear that 
there is a close physical and functional coupling between 
transcription, processing, and assembly of pre-mRNPs and 
mRNPs. The mRNP obtains a processed structure and a 
collection of proteins that will influence the downstream 
events. The intricate physical and functional couplings are 
likely to have evolved, because they enhance coordina-
tion, efficiency, and regulation of the multiple steps of gene 
expression (Fig. 1). We will provide a cell biological view, 
focusing on the spatial and temporal aspects of formation 
and export of mRNPs, a perspective that is required for a 

A At the gene
Transcription
RNA folding
Recruitment of proteins
Pre-mRNP assembly
Recruitment of processing machineries
Capping, splicing, 3´end processing
Recruitment of export adaptors
Quality control
Dissociation of components
Release

B In the interchromatin
Diffusion
Pools of mRNPs
Completion of processing
Recruitment of export receptors

C At the NPC
Productive/non-productive interaction
Conformational change
Translocation
Compositional change
Release into the cytoplasm 
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Fig. 1   Schematic representation of the nuclear steps in gene expres-
sion. a At the gene. b In the interchromatin. c At the NPC. Processes 
that occur at each location are listed to the left. a The actively tran-
scribing protein-coding gene (parallel black lines) provides an opti-
mal environment in which RNA pol II (blue oval) produces a pre-
mRNA (purple oval). During transcription, the pre-mRNA is folded 
and assembled with proteins (green triangle and grey square) into a 
pre-mRNP (purple oval). Several processing machineries (orange 
circle) transiently interact with the pre-mRNA, modify it, and leave 
protein marks at specific positions. b After release from the gene, 
processing can be completed and the mRNPs (purple ovals) move by 

diffusion within the interchromatin channel network, making up pools 
of gene-specific mRNPs. Additional components, for example the 
main export receptor NXF1, can be recruited to the mRNPs, that then 
become export competent (dark blue oval). Chromatin is depicted 
as striped areas. c mRNPs interact with the NPCs (green) that are 
imbedded in the nuclear membrane (parallel black lines). A majority 
of the interactions are non-productive and the mRNPs return into the 
interchromatin. If fully export competent, the mRNPs are translocated 
through the central channel of the NPC. The export is coupled to con-
formational and compositional changes of the mRNPs
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full understanding of the intranuclear steps of gene expres-
sion. This cell biological view is largely based on studies of 
specialized, polytene cells that allow morphological, spa-
tial, and temporal insights into the nuclear processes [13].

Active genes—optimal nuclear microenvironments 
for transcription, pre‑mRNP assembly, 
and processing

The cell nucleus contains several functional compartments 
which are maintained despite the lack of an enclosing 
membrane and the dynamic exchange of components with 
the surrounding nucleoplasm [14]. Compartmentalization 
creates microenvironments that are believed to facilitate 
coordination, efficiency, and regulation. The molecular 
mechanisms for establishing nuclear compartments are not 
well understood, but it has been suggested that they can be 
formed by either random self-organization or by an ordered 
assembly pathway. In addition, a so-called seeding mecha-
nism could contribute [15, 16]. Several compartments form 
at sites of transcription, in a transcription-dependent man-
ner, suggesting a role for RNA. The RNA can then nucleate 
the formation of the compartment. Both coding and non-
coding transcripts are capable of attracting and retaining 
freely diffusible components from the nucleoplasmic pool 
[16, 17]. In vitro, interactions between RNAs and proteins 
can result in reversible membrane-free structures [18]. If 
such structures, so-called droplets or hydrogels, reflect the 
in vivo situation, special physical and biochemical proper-
ties could possibly favour different biological processes. 
RNA–protein assemblies may associate with components 
that play important roles in gene expression [19] or influ-
ence aggregates involved in diseases [20].

Transcribing genes may represent transient microenvi-
ronments favourable for mRNP formation (Fig. 1). Upon 
gene activation, the chromatin is extensively modified 
and unfolded, forming loops. Such loops can be readily 
visualized in specialized cells, such as amphibian oocytes 
[21] and polytene cells [13, 22]. Electron microscopy 
(EM) has revealed unfolded active genes also in mam-
malian diploid cell nuclei in perichromatin regions [23]. 
In situ hybridization experiments have also demonstrated 
unfolding of active genes [24]. Transcription activa-
tion can lead to transient physical proximity of the genes 
[25]. It has been suggested that transcription occurs in 
statically assembled structures, so-called transcription 
factories [26]. However, clustering of RNA pol II upon 
gene activation has been demonstrated to be transient 
[27]. In the polytene Balbiani ring (BR) gene loci, effi-
cient recruitment of RNA pol II and proteins needed for 
pre-mRNP assembly and processing takes place upon 
transcription activation and apparently at the level of the 

individual gene locus. The presence of many active gene 
copies in the polytene chromosome results in a high local 
concentration of transcription and processing machiner-
ies that could be beneficial.

The functional significance of chromatin unfolding 
and the establishment of a microenvironment for tran-
scription and pre-mRNA processing need to be further 
investigated. The relative contribution of chromatin mod-
ifications, the transcription process itself, and the pres-
ence of transcripts must be clarified. We need specific 
examples of endogenous genes in living cells to learn the 
rules and variations that appear to exist in different types 
of cells (mammalian diploid cells, yeast cells, polytene 
cells). Even if technologies have been developed, such as 
3C (chromatin conformation capture), 4C-seq [28], and 
sophisticated fluorescence microscopy techniques, new 
methods are needed that allow analyses in vivo.

It is still not clear how recruitment of factors to active 
genes is brought about, although several mechanisms 
have been proposed (Fig.  2). Many proteins and pre-
formed complexes, for example SR proteins and snRNPs, 
have affinity for the nascent transcript. The binding is 
sometimes mediated by specific sequences in the RNA 
[29–31]. Other proteins and complexes bind not directly 
to the transcript, but in layers of interactions to already 
bound components [32, 33]. While it is clear that protein 
modifications influence binding affinities, for example the 
phosphorylation status of SR proteins [34], it remains to 
understand to what extent diffusion and regulated affini-
ties contribute. Other mechanisms could be important, 

Pre-mRNP, co-transcriptional recruitment of components:
a. direct to the RNA 
b. via other proteins
c. as pre-formed complexes
d. as a consequence of processing
e. via chromatin
f. via RNA pol II
g. via CTD of RNA pol II

a
b

c

d

e
f

g

Fig. 2   Recruitment of components for pre-mRNA processing and 
pre-mRNP assembly at the gene. The transcribing protein-coding 
gene (parallel black lines), the RNA pol II with its CTD (blue), the 
growing pre-mRNA (purple), processing machineries (boxes in 
shades of green), and various components (orange circles) are shown 
schematically. a–g Different pathways for recruitment of factors to the 
growing pre-mRNP. These pathways are briefly explained in the fig-
ure (listed to the left)
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such as preformation of sub complexes [35] and local 
recycling. The latter has been suggested for RNA pol II 
through coordination between transcription and 3′ end 
processing [36, 37]. Another way of coordinating interac-
tions between the transcript and specific proteins is via 
the RNA pol II elongation complex. As the 5′ end of the 
RNA emerges from the exit tunnel, the capping enzyme, 
bound to the RNA pol II, is in position to rapidly cap the 
5′ end [38]. The C-terminal domain (CTD) of the largest 
subunit of RNA pol II is implicated as a flexible interac-
tion platform that helps to recruit different factors [39]. 
The CTD consists of many heptapeptide repeats that are 
phosphorylated differently during initiation, elongation, 
and termination of transcription. It has been shown that 
the RNA guanyltransferase binds to the CTD during tran-
scription initiation [40, 41]. Several 3′ processing factors 
bind to the CTD [42–44], as well as the Transcription-
Export (TREX) sub complex THO [45]. It is less clear 
to what extent spliceosomal components reach the nas-
cent transcript via the CTD. The splicing factors U2AF65 
[46] and PSF and its related protein p54nrb/NonO [47, 48] 
have been shown to bind to the CTD. Presumably, the 
role of the CTD modifications for recruitment of process-
ing components will be even more appreciated. Methods 
to couple phospho-specific CTD modifications to interac-
tions with defined proteins using specific antibodies com-
bined with mass spectrometry is a promising start [49].

Structural studies of purified spliceosomes are improv-
ing [50], but high-resolution structural analyses of coupled 
transcription complexes and spliceosomes, at genes, are 
not yet reached [51]. The elongating RNA pol II contains 
additional components that help in recruiting mRNP bio-
genesis factors. In yeast, phosphorylated hexa-repeats in 
the elongation factor Spt5 are involved in recruiting cap-
ping enzymes [52], the 3′ end cleavage factor CFI [53], and 
the Paf1 complex [54] which is possibly involved in 3′ end 
processing.

Influences of chromatin on transcription 
and pre‑mRNA processing

The study of mRNP formation must consider all the coor-
dinated events and interacting molecules at the active 
gene. One such consideration is the influence of chro-
matin on the transcription rate and pre-mRNA splicing 
[55]. The transcription rate can be uniform along exons 
and introns in long human genes [56], but it is also estab-
lished that transcription rates can change along a gene 
[57, 58] and that this influences splice site choices [59]. 
The presence of alternative binding sites in the nascent 

transcript can lead to competition for binding of the inter-
acting machineries. To what extent a high transcription 
rate results in the presence of alternative binding sites is 
likely to depend on the exon–intron structure, the bind-
ing affinities, and the kinetics of processing reactions. 
Therefore, a simple relationship does not exist between 
transcription rate and for example alternative splice site 
choices [60].

Nucleosome density and deposition of histone variants 
can modulate the movement of RNA pol II [61]. Nucle-
osomes are unequally distributed in exons and introns. 
In general, they are more closely packed in exons than in 
introns and may thereby contribute to different transcrip-
tional elongation rates in introns and exons, respectively 
[62–65]. RNA pol II pause sites correlate with splice sites 
[66, 67]. Nucleosome positioning and composition could 
influence splice site recognition, although it is unclear to 
what extent the splicing process itself contributes to RNA 
pol II elongation slow down [68]. Several observations 
show that splicing and 3′ end processing can influence 
transcription [69–71].

A number of histone modifications have been shown 
to influence splicing. Some of these may work through 
affecting the RNA pol II transcription rate and others 
by influencing the recruitment of splicing factors. One 
example is the H3K36 methylation that plays a role in 
nucleosome positioning and in limiting elongation rate 
and thereby influencing splicing [72]. H3K36 meth-
ylation can also indirectly recruit the splicing regulators 
PTB and SRSF1 to the gene via so-called histone mark 
readers [73, 74]. In addition, the recruitment of spliceo-
somal components can be controlled by histone modifica-
tions [75]. In addition to methylation, other modifications 
of histones have been described, for example phospho-
rylation, sumoylation, and ubiquitination. It remains to be 
determined if also these modifications have an impact on 
splicing. An emerging field is the role of small and long 
non-coding RNAs in local alterations of chromatin modi-
fications that will influence the splicing pattern [76].

The close contact between the chromatin and the pre-
mRNP enables functional interactions between them. It 
has been reported that a pre-mRNP can influence tran-
scription by recruiting a histone acetyltransferase to the 
active gene [77].

Chromatin structure is likely to affect transcription 
termination. Nucleosomes are enriched downstream pol-
yadenylation sites [64], and may thereby be involved in 
RNA pol II pausing in the termination region. A possi-
ble mechanism could be R-loop induced antisense tran-
scription leading to histone H3K9me2 modification and 
recruitment of heterochromatin protein1γ [78].
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Nascent pre‑mRNP formation

Pre‑mRNA folding

All RNAs, including pre-mRNA and mRNA, have the 
ability to fold in alternative ways, following energy rules. 
Folding starts during transcription [79, 80]. The folding 
of an RNA is functionally important and it can influence 
interactions with trans-acting factors and itself be influ-
enced by such interactions. Folding can have an impact 
on transcription [81] and the transcription rate can have 
an effect on RNA folding [82]. In addition, the folding of 
the pre-mRNA is dynamic, for example dictated by inter-
actions with spliceosomes and not surprisingly, and the 
local structure in the pre-mRNA can affect splicing [83, 
84]. Throughout the life of a pre-mRNA and an mRNA, the 
RNA exists in the context of an RNA–protein complex and 
this complex is repeatedly remodelled. Association of the 
pre-mRNA and mRNA with proteins has a profound effect 
on the folding of the RNA–protein complex.

Proteins that interact with pre‑mRNA and mRNA

The repertoire of proteins that associate with RNA is 
substantial and diverse [85]. Large-scale methods have 
broaden the identification of RNA–protein interactions, but 
in many cases, the functional importance of the interactions 
remains to be determined [29]. In general, RNA-binding 
proteins associate with RNAs using specific domains [30]. 
Several such domains have been characterized, for example 
the RBD (also called RRM) and the KH (hnRNP K-homol-
ogy) domains. Many proteins with regulatory functions in 
gene expression contain multiple KH domains [86]. Other 
proteins involved in processes in gene expression contain 
one or more copies of RBDs. In fact, about 2% of the mam-
malian proteins contain this domain [87]. Examples include 
SR proteins [88], hnRNP proteins [89], poly(A)-binding 
protein (PABP) [90], and the 3′-processing protein CstF-64 
[91]. RBDs have a typical structure and recognize crucial 
nucleotides in short degenerate sequence motifs. Sequence 
specificity and the binding domain sequence are often con-
served [92]. In  vitro, the binding affinity for individual 
tested domains is usually low, but in the cell, affinity might 
be higher, because other regions of the protein or even cou-
pling to other proteins assist. In a given protein, an RBD 
can be combined with other kinds of domains that perform 
other types of functions, for example helicase activity or 
mediating protein–protein contacts. Proteins can recog-
nize common mRNA structural elements, for example the 
m7G cap [93], the poly(A) tail [8], and the sugar-phosphate 
backbone [32]. Some proteins recognize specific sequence 
motifs, for example the poly(A) signal, and others associate 
in a sequence-independent manner with either secondary or 

tertiary folds [31]. They can be stably bound, for example 
as architectural elements that help to define mRNP organi-
zation, or transiently bound, for example involved in modu-
lating specific steps of gene expression. Proteins can also 
bind indirectly to the pre-mRNA and mRNA via other fac-
tors, as in the exon junction complex (EJC) [32]. It should 
be pointed out that pre-mRNA processing machineries 
operate in the context of RNA–protein complexes and many 
proteins bind to the pre-mRNPs and mRNPs as a conse-
quence of pre-mRNA processing, and examples include the 
cap-binding complex (CBC), the EJC, and PABPN1.

Approximately, 20 different proteins (named A1 to 
U) belong to the group of heterogeneous nuclear proteins 
(hnRNPs) [94, 95]. These proteins bind to many different 
RNA pol II produced transcripts. They can bind at several 
positions in the pre-mRNA with some sequence preference. 
The hnRNPs are preferentially present in cell nuclei. This 
reflects that they can leave the mRNP before export or that 
they rapidly shuttle back from the cytoplasm to the nucleus 
or a combination of the two. Some hnRNPs can accompany 
the mRNP to the cytoplasm and into polysomes. When 
bound to pre-mRNPs, they can affect packaging and stabil-
ity. It has been suggested that hnRNP C tetramers organ-
ize the pre-mRNA [96]. The hnRNPs influence the tran-
scripts in many different ways, for example as part of the 
pre-mRNPs, they can influence processing [97] and in the 
cytoplasm, they play roles in mRNP translation and stabil-
ity [95].

Methodological improvements are needed to character-
ize the complete protein content of specific endogenous 
pre-mRNPs. One must consider that the composition of 
pre-mRNPs is dynamic over time and along a gene. The 
BR pre-mRNPs at the gene, and the BR mRNPs in both 
the interchromatin and at the NPCs, are morphologically 
identifiable. This fact has made it possible to decide, using 
immune-EM, where proteins associate with and dissoci-
ate from these specific endogenous transcripts. So far, 34 
different proteins were identified within BR pre-mRNPs. 
These proteins have functions related to transcription, cap-
ping, 3´ end cleavage and processing, splicing, packaging, 
export, and quality control [13]. Some proteins, such as 
hrp36 (an hnRNP), a Y-box protein, and some SR proteins, 
become incorporated into BR pre-mRNPs and stay asso-
ciated with the mRNPs throughout export and into poly-
somes. Some proteins like Rrp6, UAP56, ALY/REF, RSF, 
and PABPN1 associate with the BR pre-mRNPs and leave 
the BR mRNPs at the NPC.

Pre‑mRNP assembly and packaging

During transcription, the growing pre-mRNA is rapidly and 
continuously assembled into a pre-mRNP complex, proba-
bly as soon as the transcript emerges at the surface of RNA 
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pol II [98]. Many different proteins and processing machin-
eries are incorporated (Fig. 2) [22, 99], but the mechanisms 
of recruitment are not yet fully elucidated. Some of the 
interacting components bind to essentially all pre-mRNAs, 
such as the capping enzymes, CBC proteins, and PABPN1. 
The protein content in pre-mRNPs is also partly gene-spe-
cific, depending on the sequence and exon–intron structure 
of the pre-mRNA. The pre-mRNPs from different genes 
contain different combinations of proteins. This is exem-
plified by the observation that pre-mRNPs from different 
genes contain different combinations of members of the SR 
protein family. The protein distribution within pre-mRNPs 
also differs between genes [100, 101].

The molecular background for packaging of pre-mRNPs 
is unknown in almost all cases. It has been suggested that 
interactions between SR proteins and the EJC compact pre-
mRNPs [102]. Dimerization of the poly(A)-binding protein 
Nab2, not only influences poly(A) tail length, but may also 
contribute to mRNP compaction [103]. Data show that spe-
cific pre-mRNPs are packaged into compact RNA–protein 
complexes, in close proximity to the elongating RNA pol 
II. High-resolution imaging of lampbrush nascent tran-
scripts shows that these transcripts are tightly packed with 
proteins [104].

In perichromatin regions in mammalian cell nuclei, short 
fibrillar and granular structures presumably represent nas-
cent pre-mRNPs [105]. The packaging of the endogenous 
BR1 and BR2 pre-mRNPs has been described using EM 
[22]. These approximately 40 kb-long pre-mRNAs, consist-
ing mainly of exon sequences, are initially packaged into 
thin, 5–10 nm pre-mRNP fibers. Remodelling takes place, 
resulting in an approximately 20 nm thick, flexible RNP in 
which a thin 7 nm fibre probably is a basic structural ele-
ment. The 20  nm fibre grows at its root until obtaining a 
length of 90 nm. At this stage, about 8 kb of the transcript 
is incorporated. Then, a conformational change at the tip 
of the 20  nm fibre results in a ribbon with a diameter of 
26 nm, and subsequently, this ribbon compacts into a ring-
like RNP with a final diameter of 50  nm. In contrast, in 
the BR3 gene, the pre-mRNA contains alternating short 
exons and introns throughout its length. The BR3 gene is 
10.5 kb long, but because of the structurally dynamic splic-
ing process, a full-length pre-mRNA is not present. The 
BR3 pre-mRNP structure is then dominated by the assem-
bly, action, and release of spliceosomes [51]. Evidently, the 
exon–intron organization greatly influences the packaging 
of the pre-mRNPs. So far, a completely processed BR3 
mRNP has not been possible to identify, and therefore, no 
structural information is available.

The evolution of packaging of the pre-mRNP and mRNP 
has presumably been important for a number of reasons. 
Packaging might reduce the formation of RNA–DNA 
hybrids, so-called R-loops, which can cause genomic 

instability [106]. Furthermore, packaging of the pre-mRNP 
and mRNP in compact complexes probably facilitates dif-
fusion through the interchromatin and at the same time 
provides a stable but yet flexible complex that can change 
structure and composition at the NPC.

Pre‑mRNP processing at the gene and coupling 
to export

At the gene, the pre-mRNA interacts with the process-
ing machineries responsible for capping, splicing, and 3′ 
cleavage and polyadenylation. The processing machineries 
all contribute to the composition and structure of the pre-
mRNP and all leave marks in the mRNP that are important 
for subsequent events in gene expression, including export.

Capping

Capping enzymes recognize the 5′ end of the pre-mRNA, 
essentially as soon as it appears at the RNA pol II exit tun-
nel [38]. The nuclear cap-binding complex proteins CBC20 
and CBC80 then bind to the cap, forming the CBC, also at 
the gene [107]. The CBP80 protein is important for recruit-
ment of the TREX complex, including the export adaptor 
ALY/REF [108]. In the cytoplasm, the CBC is involved in 
the initial translation and is then replaced by eIF4E for effi-
cient translation [5].

Splicing

Intron excision requires the multicomponent spliceosome 
[109]. Spliceosome assembly takes place during ongo-
ing transcription [110, 111], evidently for a majority of 
pre-mRNAs [112–116]. Close proximity between the 
spliceosome, the RNA pol II, and the chromatin has been 
demonstrated [51]. Many studies have reported interac-
tions between individual components of transcription and 
processing machineries. In most cases, these interactions, 
and especially their functional significance, are difficult to 
evaluate. We need improved methods to characterize and 
functionally evaluate protein–RNA and protein–protein 
interactions at active genes in living cells. In vivo rates for 
the splicing process have been reported to range from 30 s 
to several minutes [117–119]. Recent studies have dem-
onstrated that the spliceosome can assemble on the pre-
mRNA already when the RNA pol II has synthesized in the 
order of 24 nucleotides downstream a 3′ splice site [120]. 
Efficient RNAseq methods combined with robust extrac-
tion of nascent transcripts are required for analysis of addi-
tional endogenous genes to learn the rules. Understanding 
the principles for constitutive splicing will be important for 
understanding regulation of splicing. Measurements of the 
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precise kinetics of alternative splicing will be important to 
verify the molecular mechanisms involved. It will also be 
important to learn if and to what extent the rate of splicing 
can be modified. Introns are excised in an overall 5′ to 3′ 
order [117, 121], but all introns are not necessarily excised 
at the gene. In a population of gene-specific pre-mRNAs, 
some of the transcripts lose their introns in the interchro-
matin [111, 121]. This may be due to variation in splic-
ing kinetics, the length of the gene [56, 111], and alterna-
tive splicing regulation. A nascent pre-mRNP can contain 
more than one intron, showing that spliceosome assembly 
and activity do not stall the RNA pol II until an intron is 
excised [51].

SR proteins are characterized by having one or more 
RNA-binding domains and a domain rich in serine-argi-
nine repeats [122]. SR proteins bind to many different 
pre-mRNAs in gene-specific combinations [100, 101]. SR 
protein binding is at least partly sequence specific and is 
essential for the splicing reaction. Their phosphorylation 
level is important for the recruitment to pre-mRNAs and 
for the splicing reaction. SR proteins are required for con-
stitutive splicing and can influence alternative splice site 
choices [123]. SR proteins influence also other steps in 
the biogenesis of mRNPs [124, 125]. As pointed out, SR 
proteins, in combination with EJC core components, may 
compact mRNPs [102]. SR proteins remain associated with 
mRNPs and are important for export, serving as export 
adaptors for NXF1, the main mRNP export receptor. It has 
also been described that SR proteins regulate 3′ processing 
of pre-mRNAs [126], mRNA stability [127], and transla-
tion initiation [128].

Splicing is not only necessary for obtaining correct open 
reading frames. Splicing also leads to deposition of the EJC 
core [129]. EJCs associate in a splicing-dependent manner 
with pre-mRNAs, 20–24 nucleotides upstream the bound-
ary between two joined exons [6]. The EJC core contains 
four proteins, eIF4AIII, the heterodimer Mago-Y14 and 
Barentsz. All four core proteins associate with the nascent 
pre-mRNA [130]. Mapping of binding sites shows that the 
full set of EJC core proteins, including Barentsz, are pre-
sent at most exon–exon junctions, but additional binding 
sites exist for eIF4AIII [102, 131, 132]. The EJC core has 
the ability to recruit different proteins and thereby plays 
central roles in several post-transcriptional processes [129, 
133]. These include recruitment of export adaptors and 
translation initiation factors and assembly of a functional 
nonsense-mediated decay (NMD) complex.

3′ end cleavage, polyadenylation, and termination 
of transcription

Essentially, all pre-mRNAs are cleaved and polyadenylated 
by the 3′ cleavage and polyadenylation machinery. The 

processes and responsible components are biochemically 
well characterized. Proper 3′ end formation is necessary 
for mRNA export [134]. More than 70% of the mammalian 
protein-coding genes produce isoforms differing in alterna-
tive polyadenylation sites [135].

A part of the polyadenylation machinery is recruited to 
the transcript via the RNA pol II CTD [42, 43]. Interactions 
between the TREX components ALY/REF and THOC5 
with several proteins of the 3′ processing machinery indi-
cate that TREX is important for 3′ processing and possi-
bly for release of the transcript from the gene. The cleavage 
reaction takes place at the gene. In the BR1 gene, microdis-
section revealed that a population of correctly spliced and 
cleaved mRNPs was present at the gene. This population 
had a short poly(A) tail, 10–20 adenylate residues long 
[136]. In the interchromatin, a switch from a distributive 
to a processive elongation mode of polyadenylation then 
took place, adding on average 100 adenylate residues. The 
presence of a population of mRNPs with short poly(A) tails 
at the gene could be due to retention of the mRNP during 
the initial polyadenylation reaction, possibly involving the 
3′ processing machinery. Moreover, it could reflect the ini-
tial distributive phase of polyadenylation observed in vitro. 
The length of the poly(A) tail is controlled by PABPN1 
[8]. Other proteins are also involved, for example the mam-
malian protein Nucleophosmin 1 that is deposited onto 
the mRNA upstream the poly(A) signal [137]. Release of 
mRNPs from the gene requires splicing, cleavage at a cor-
rect polyadenylation signal, and polyadenylation [138]. 
The mechanism for mRNP release from the gene and the 
potential relationship to termination of transcription is still 
unclear.

Some genes are extremely long, emphasising that syn-
thesis of pre-mRNAs is dependent on the processivity of 
RNA Pol II [56]. Synthesis is also dependent on the rec-
ognition of appropriate transcription termination signals 
[139]. During transcription, RNA Pol II may be stalled or 
prematurely terminated [139]. Several situations can influ-
ence transcription termination, for example viral infection 
[140], cancer [141] and osmotic stress [142]. Transcription 
termination influences alternative poly(A) site usage [135]. 
This is functionally important, because mRNA isoforms 
with different lengths of their 3′ UTRs can have differ-
ent stability, localization in the cytoplasm, and translation 
properties [143].

Studies in yeast show that both Nab2p and Pab1p, the 
mammalian orthologs PABPN1 and PABPC1, bind poly(A) 
tails. Nab2p is predominantly located in the nucleus and 
Pab1p in the cytoplasm. Nab2p protects poly(A) RNA from 
degradation by the exosome [144] and promotes export by 
interacting with the NPC protein Mlp1 [145]. Nab2p may 
further interact with the spliceosome and with Rrp6 to inte-
grate splicing and pre-mRNP decay [146].
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Quality control

Synthesis and processing of pre-mRNPs are complex 
molecular events that are not always perfectly performed. 
Aberrant products can be made and the cell must be able to 
handle these. The presence of quality control systems has 
been demonstrated in cells having specific mutations in the 
RNA or by knocking down enzymes that normally degrade 
aberrant RNAs. Transcripts with defects in capping, assem-
bly, splicing, and 3′ end formation have all been shown to 
be degraded [147]. Degradation can occur at the gene by 
5′–3′ exonucleases such as Xrn2 or by the exosome [148].

Transcripts with retained introns or defective 3′ ends 
have been shown to be retained at the gene [149–152]. 
The exosome is needed for this retention [147]. In yeast, 
export-incompetent mRNPs are retained at the gene 
through the action of the chromatin remodelling complex 
ISW1 in cooperation with Rrp6 [153]. The retention can 
lead to degradation [154], or an alternative outcome could 
be increased time for completion of processing [155]. It is 
likely that the degradation, processing, and RNA–protein 
assembly events balance each other. These balances may be 
examples of kinetic proofreading [156].

In a broader sense, it can be argued that also the depo-
sition of proteins in connection to pre-mRNA processing 
provides a quality control. For example, a non-correct EJC 
will not support downstream processes such as export and 
translation.

Recruitment of export adaptors is linked 
to transcription and processing

An mRNP released from its gene is in several aspects likely 
to be ready for export to the cytoplasm. It is folded in a 
compact but flexible manner. It is equipped for downstream 
processes, with a CBC, a large number of different pro-
teins, a poly(A) tail, and it is spliced to have a translatable 
open reading frame. The question is what more an mRNP 
must contain to be export competent in the sense that it can 
be channelled through an NPC. An obvious answer is that 
each mRNP requires export adaptors and export receptors. 
Evolution has resulted in multiple different export adaptors 
and their recruitment to mRNPs is promoted by transcrip-
tion and processing. The two main export receptors, NXF1 
and CRM1, interact with different sets of export adaptors 
(Fig.  3). Many adaptors are present in the mRNP at the 
time of release from the gene.

The TREX complex is a conserved complex that has 
functions in transcription elongation, mRNA export, and 
genome stability [157, 158]. It includes the THO com-
plex and the helicase UAP56. UAP56 promotes spliceo-
some assembly and is also an EJC component. In addition, 

many other proteins are found in the TREX complex [158], 
among these, the export adaptor ALY/REF. Recruitment of 
TREX to the pre-mRNP is coupled to transcription elonga-
tion, capping, splicing, and 3′ end processing. The recruit-
ment is facilitated through the association with the Ser2 
phosphorylated CTD of RNA pol II [45, 159] and by the 
elongation Prp19 complex [160]. TREX can be recruited 
to the 5′ UTR of the pre-mRNA, dependent on the CBP80 
protein [108] and on splicing [161]. The TREX subu-
nit ALY/REF interacts with the EJC component eIF4AIII 
[162], making it likely that the EJC is involved in loading 
TREX onto the pre-mRNA. In yeast, ALY/REF can also 
interact with Pcf1, a 3′ cleavage factor [163]. UAP56 is 
involved in recruiting ALY/REF [164] and other proteins 
that influence export adaptor function. The mammalian 
DDX39 protein is a UAP56 paralog and has overlapping 
functions. UAP56 has also been shown to interact with 
UIF, which can bind to NXF1 and thus serve as an export 
adaptor [165].

TREX-2 is another conserved protein complex that has 
been shown to interact with the NPC basket [166, 167] 
and also with the export receptor NXF1 in mammals and 
Mex67 in yeast [168, 169]. In addition, studies in yeast 
have shown that subunits of TREX-2 interact with the 
SAGA histone acetylase complex and the promoter-bound 
Mediator complex [170, 171] and could thereby provide a 
functional link, and possibly physical coupling, between 
transcription initiation and mRNP export through the NPC. 
The TREX-2 subunit GANP can interact directly with 
NXF1, but it is unclear whether it is a general export factor. 
It has been shown that GANP is involved in the selective 
export of specific mRNAs, including those coding for com-
ponents involved in mRNA processing and ribosome bio-
genesis [172]. The GANP-dependent export pathway may 
thereby facilitate rapid changes in gene expression.

SR proteins can serve as export adaptors [173, 174]. SR 
proteins remain bound to mRNAs after splicing and dif-
ferent mRNPs have different combinations of SR proteins 
[100, 101]. SRSF3 has been shown to bind to the last exon 
and may promote export of mRNA isoforms with long 3′ 
UTRs, by recruiting NXF1 [175].

mRNPs in the interchromatin compartment

Even if many processes in mRNP formation occur at the 
gene, important events such as completion of processing, 
binding of export receptors, and intranuclear transport take 
place in the interchromatin compartment (Fig. 4). The pro-
tein content of gene-specific mRNPs, and how this might 
change in the interchromatin, is essentially unknown. 
This is difficult to analyse, and so far, only average data 
for mRNP populations are available. The fact that most 
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Recruitment of export factors

A The NXF1 pathway
a-c. TREX recruitment
a. coupled to transcription
b. coupled to processing
c. coupled to EJC

d-e. other adaptors
d. SR proteins
e. sequence- and tissue- specific
binding proteins

f. recruitment of export receptor

B The CRM1 pathway
CRM1 is recruited to the mRNP
via different adaptors:
a. HuR
b. NXF3
c. eIF4E

TREX or
TREX components

HuDEJC

SR proteins

CBC

3´ processing

spliceosome
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Fig. 3   Export of mRNPs depends on several different export adap-
tors and two main export receptors. a NXF1 pathway. The transcrib-
ing gene (black line), the RNA pol II with its CTD (blue), processing 
machineries (boxes in shades of green), the EJC (light purple oval). 
a–c TREX or subcomponents of TREX (yellow stars), for example 
ALY/REF, THOC2 and THOC5 bind to the pre-mRNA (purple line) 
through several different pathways (listed to the left). (d) SR proteins 
(orange oval) can also serve as export adaptors to NXF1. e In neu-
rons, the HuD adaptor protein (blue triangle) binds sequence specifi-
cally to the RNA. f NXF1 (blue hexagon) is subsequently recruited, 
via the export adaptors, to the mRNP, that becomes export compe-
tent (dark blue oval). Binding of export adaptors is shown to occur at 

the gene (as been shown to occur for some of the adaptors). Recruit-
ment of NXF1 occurs in the interchromatin [121]. b CRM1 pathway. 
Export of a subset of mRNPs requires the export receptor CRM1. The 
transcribing gene (black line), the RNA pol II with its CTD (blue) 
and the pre-mRNP (purple). CRM1/Ran-GTP (blue hexagon/blue 
star) is recruited via several different adaptors, HuR (pink triangle), 
NXF3 (blue circle), and eIF4E (yellow oval) (a–c). HuR has two 
cofactors, April and pp32 (light pink triangles), and is recruited to 
ARE sequences (striped box). The protein LRPPRC (orange oval) 
promotes the release of eIF4E (yellow oval) from PML bodies (green) 
and the binding to a specific RNA eIF4E sequence (dotted box)
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mRNPs cannot be structurally studied in diploid cells is 
further a drawback. Until better methods are developed, we 
rely on special cell types and special genes, such as poly-
tene cells and BR mRNPs, for model studies.

Processing in the interchromatin

Splicing can occur post-transcriptionally. Fractionation of 
cell nuclei, followed by quantification of the catalytically 
active SF3b155 protein, estimated that about 20% of splic-
ing takes place in the nucleoplasmic fraction [112]. Several 
other examples of post-transcriptional removal of introns 
have been reported [83, 176–178]. The time remaining 
from the synthesis of an intron until transcription termi-
nation and 3′ processing influences if intron excision is 
completed co- or post-transcriptionally [56, 111, 121]. In 
a population of gene-specific pre-mRNAs, excision of a 
given intron can take place during transcription in most 
transcripts and be completed after release from the gene 
in the remaining transcripts [111]. This suggests that even 
if spliceosome assembly is initiated during transcription, 

the splicing reaction does not need to occur at the gene. 
An interesting question is, if co-transcriptional splicing 
requires the RNA Pol II and its CTD, how can post-tran-
scriptional splicing do without it? Possibly, the initial steps 
of spliceosome assembly take place during transcription, 
while completion of splicing can be performed away from 
the gene.

Clusters of granules in the interchromatin, called inter-
chromatin granule clusters at the EM level and speckles at 
the light microscope level, contain high concentrations of 
spliceosome components [179]. The full functional signifi-
cance of this compartment remains to be elucidated. Stor-
age sites for spliceosomal components are one possibility 
and it is well established that SR proteins are recruited 
from the granule clusters to nascent pre-mRNPs and that 
phosphorylation regulates this recruitment [180]. Tran-
scribing genes are often located at the surface of the gran-
ule clusters. The proximity between active genes and the 
granule clusters may well-facilitate spliceosomal recruit-
ment to the nascent transcripts. Active spliceosomes have 
been detected in speckles [112], suggesting that some 

Fig. 4   Processes taking place 
during mRNP transport through 
the interchromatin. An actively 
transcribed gene is shown as 
an unfolded loop (black line), 
with RNA pol II (blue) and 
pre-mRNPs (purple). a After 
release from the gene, splicing 
can be completed (intron, pur-
ple box), for some pre-mRNPs 
possibly involving interchroma-
tin granule clusters (green cir-
cles). b Polyadenylation can be 
completed after release from the 
gene. c Export receptor NXF1 
(blue hexagon) is recruited via 
its adaptors. d Folded mRNP 
(purple oval) may transiently 
interact with interchromatin 
structures (grey striped) dur-
ing diffusion (irregular lines) 
within the interchromatin

In the interchromatin
a. completion of splicing
b. completion of polyadenylation
c. recruitment of export factors
d. movement by diffusion,

transient interactions with
interchromatin structures

a

b

c

d
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introns are excised in this environment. During influenza 
A viral infection, a balance between synthesis of unspliced 
M1 mRNA and spliced M2 mRNA is established. The M2 
mRNA seems to be generated by splicing within interchro-
matin granule clusters. It may be a way to ensure efficient 
supply of spliceosomal components. Interestingly, the viral 
NS1 protein in combination with a host NS1-binding pro-
tein is needed for targeting the M1 mRNAs to the speckles 
[181].

Synthesis of the poly(A) tail can be completed in the 
interchromatin. In BR genes, isolation by microdissection 
showed that polyadenylation is initiated at the gene and can 
be completed after release into the interchromatin [136].

Structure of mRNPs

So far, we know very little about the structure of endog-
enous gene-specific mRNPs. The best characterized exam-
ples are the BR1 and BR2 mRNPs. These mRNPs, contain-
ing approximately 40 kb-long mRNAs, have a well-defined 
three-dimensional structure, and this structure has a hierar-
chy of folding that is established largely during transcrip-
tion. At a first level, a 7 nm mRNP fibre is further folded, 
forming a 26 nm ribbon. This ribbon is folded into an over-
all ring-like complex [182].

In yeast, EM analyses of purified mRNP populations 
suggest that mRNPs have an extended shape with lateral 
restrictions [183]. The length of these ribbon-like struc-
tures increased when the length of the mRNA increased, 
while their diameter remained approximately 5  nm. The 
mRNA in mRNPs is thus folded into a compact structure. 
Furthermore, the length of the mRNA influences the over-
all dimensions of the compacted mRNPs.

Association of proteins with mRNPs 
in the interchromatin

High sensitive mass spectrometry analyses of proteins that 
UV-crosslink to and co-purify with poly(A) RNAs have 
revealed a large number of proteins in direct contact with 
mRNAs. In mammalian cells, approximately 800 proteins 
are associated with the mRNA population [184, 185]. 
Enriched yeast mRNPs have been shown to contain several 
examples of export factors [183]. Purified in vitro spliced 
defined mRNPs contain approximately 45 different proteins 
[186].

Studies of endogenous gene-specific mRNPs are rare, 
but required for knowledge of the fate and behaviour of 
mRNPs. Experimental advantages make it possible to 
analyse properties of the BR1 and BR2 mRNPs. Already 
at release from the gene, these mRNPs are packaged and 

equipped with the majority of its associated proteins. 
BR1 and BR2 mRNPs have a protein content of about 
60%, presumably corresponding to about 500 individual 
proteins [187]. Some proteins are likely to be present in 
multiple copies in a single mRNP. Immune-EM has iden-
tified 41 different proteins within BR pre-mRNPs and 
mRNPs. These proteins have functions related to tran-
scription, capping, 3′ end cleavage and processing, splic-
ing, packaging, export, quality control, and translation 
[13].

BR mRNPs retain their morphology at the ultrastruc-
tural level from the release from the gene until translo-
cation through the NPC. Even so, immune-EM has dem-
onstrated that BR mRNPs recruit some proteins in the 
interchromatin. One example is the RNA helicase Ct-
hrp84 [188]. Most notably, this is the case for the export 
receptor NXF1 and the NMD factors UPF2 and UPF3 
[13]. The BR pre-mRNPs and the mRNPs released from 
the gene contain several export adaptors and it is so far 
unknown why NXF1 is not recruited until the mRNP 
is present in the interchromatin. Possible explanations 
include necessary structural adaptor rearrangements in 
the BR mRNP and requirement of so far unknown factors 
only present in the interchromatin. In mammalian cells, 
NXF1 has been located throughout the nucleus but not at 
active genes [189]. Furthermore, NXF1 has been shown 
to interact with ALY/REF close to speckles [190].

mRNA modifications

Modified bases are important for the function of non-
coding RNAs, such as tRNAs and rRNAs. More recently, 
it has been discovered that also mRNAs are subjected to 
chemical modifications that can influence and regulate 
their function and fate [191–193]. So far, N6-methyl-
adenosine, pseudouridine, 5-methylcytosine, N1-methyl-
6adenosine, and 5-hydroxymethylcytosine modifications 
of coding RNAs were identified in eukaryotic cells. The 
m6A modification is the one most thoroughly analysed 
and described to date. The modifications can induce con-
formational changes of the RNA. They can also inter-
fere with RNA–protein interactions by either blocking or 
facilitating the binding of specific proteins.

The enzymes that mediate and the enzymes that 
remove the modifications are mostly found in the nucleus, 
but can, in some cases, also be localized to the cyto-
plasm. Thus, both nuclear and cytoplasmic pre-mRNAs 
and mRNAs can be targeted and, perhaps, influenced 
in different ways, depending on the location. Studies of 
the modifications identified so far have reported conse-
quences for splicing, export, translation, and stability of 
the pre-mRNPs and mRNPs [194, 195].
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Export receptors

For export, mRNPs depend on association with export 
receptors (Fig.  3). These receptors mediate productive 
interactions with the NPC. Export receptors need adaptor 
proteins for binding to mRNPs. The majority of mRNPs 
uses the receptor NXF1/NXT1 heterodimer for their export 
[157, 196, 197]. NXF1 has an N-terminal RBD and can 
bind to RNA weakly, but with increased affinity in the pres-
ence of ALY/REF. It has a leucine-rich region that together 
with the RBD can bind to CTE motifs in viral RNAs [198]. 
In addition, NXF1 has a C-terminal ubiquitin-associated 
domain and a domain similar to that found in NTF2. This 
domain is important for several protein interactions [199]. 
The two latter domains can interact with FG-containing 
NPC proteins. NXF1 binds weakly and unspecific to 
mRNA, but upon recruitment via the adapter ALY/REF 
and THOC5, NXF1 is remodelled to expose its RBD, facil-
itating the binding to RNA [200]. Consistent with NXF1 
binding to several export adaptors, at the 5′ and 3′ ends, as 
well as within transcripts, it is likely that multiple copies of 
NXF1 bind to individual mRNPs. Analysis by iCLIP has 
demonstrated many NXF1-binding sites in close proximity 
to the SR protein SRSF3 [175]. NXF1 interacts with sev-
eral different proteins of the NPC during the translocation 
process. This will be discussed below.

The major protein exporter CRM1, in association with 
Ran-GTP [201], is also required for export of rRNPs, 
snRNPs, microRNAs, and tRNAs. In addition, it serves 
as an export receptor for a subset of mRNPs. CRM1 binds 
indirectly to mRNPs via different adaptors. Some mRNAs 
contain AU-rich sequence elements (AREs) in their 3′ 
UTRs. The Human antigen R (HuR) protein that contains 
a Nuclear Export Signal (NES) binds to these elements 
and, in turn, binds CRM1. HuR has two ligands, pp32 and 
April, that link HuR to CRM1. The requirement for the 
HuR ligands appears to be mRNA specific. The ligands 
have been shown to mediate export of ARE-containing 
c-fos mRNA [202–204].

A number of mRNAs have a 50 nucleotides-long 
sequence in their 3′ UTR that is sufficient to direct these 
mRNAs into an eIF4E and CRM1-dependent export path-
way [205]. This so-called eIF4E-sensitivity element binds 
the adaptor protein, LRPPRC. This protein relocates eIF4E 
from PML bodies, possibly by competing for overlapping 
binding sites on eIF4E and also promotes the association of 
eIF4E with mRNAs [206]. LRPPRC mediates contact with 
CRM1, allowing transport through the NPC.

The NXF family member NXF3 can also recruit CRM1 
to mRNPs.

Several observations show that interactions between 
export adaptors and receptors are more diversified than 
previously thought. Binding of the main mRNP export 

receptor, NXF1, to export adaptors shows variation. For 
example, in addition to SR proteins and ALY/REF, the 
neuron-specific HuD protein is an adaptor for NXF1 [207]. 
Components of TREX, other than ALY/REF, can contrib-
ute in recruiting NXF1. For example, THOC2 and THOC5 
are involved in export of subsets of mRNPs [208], and 
THOC5 is required for export of heat shock HSP70 mRNPs 
[209].

The combination of various ways of recruiting differ-
ent export adaptors, dependent on processing and sequence 
specificity, and the subsequent binding of the export recep-
tors, show that there are alternative export pathways. 
Through such diversified interactions, export of selected 
subpopulations of mRNAs can occur [210, 211]. During 
cellular stress, stress-specific mRNAs elude export qual-
ity control using an alternative mode of binding the export 
receptor Mex67 [212].

Pools of mRNPs in the nucleus and movement 
through the interchromatin

Diploid cell nuclei contain chromosome territories and dif-
ferent compartments [213, 214]. Active chromatin is found 
in perichromatin regions at the periphery of the inactive 
chromatin. The interchromatin compartment makes up 
nearly 50% of the nuclear volume and forms an irregular 
network of narrow channels, often connected to NPCs. The 
differences in chromatin density are likely to considerably 
affect the movement of mRNPs.

EM analyses have demonstrated that BR mRNPs in 
polytene nuclei, largely devoid of chromatin, move in all 
directions after release from the genes [215]. This observa-
tion is in agreement with studies of single mRNPs in dip-
loid cell nuclei where no directionality in mRNP movement 
has been recorded. Accordingly, inside nuclei, mRNPs 
move by diffusion [216–219]. The movement is likely to be 
restricted by the chromatin and mainly taking place through 
the network of interchromatin channels. It has been calcu-
lated that the movement of mRNPs from the active gene 
to the NPC takes between 6 and 50 min in diploid nuclei 
[9, 220]. Different diffusion characteristics have been 
described for different mRNPs. Small mRNPs tend to move 
faster than large mRNPs [9]. Thus, a nucleus contains pools 
of mRNPs and the pools are of different sizes for specific 
mRNPs. For a specific gene, the size of such a pool is likely 
to be influenced by transcription, processing, and diffusion 
characteristics. Nuclear pools of processed mRNPs have 
been described for several genes and suggested to buffer 
the level of cytoplasmic mRNPs [221].

Quantitative measurements and calculations for BR 
mRNPs show that the interchromatin in polytene nuclei 
contains a pool of BR mRNPs. No or little degradation 
of BR mRNPs takes place in the nucleus [222]. In  vivo, 
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individual BR mRNPs in the pool move irregularly by dif-
fusion and they interact occasionally with interchromatin 
fibers [223–225]. Approximately equal numbers of BR 
mRNPs, about half the size of the interchromatin pool, are 
synthesized and are exported to the cytoplasm per time 
unit. Immune-EM analyses show that BR mRNPs associate 
with the export receptor CRM1 at the gene [226], although 
CRM1 does not seem to be important for export of BR 
mRNPs. The BR mRNPs also associate with several NXF1 
adaptors, for example SR proteins. However, in the inter-
chromatin pool, only about 25% of the BR mRNPs contain 
NXF1 at a given moment [130]. It is, therefore, possible 
that BR mRNPs move around by diffusion in the interchro-
matin and randomly bind NXF1.

In the nuclei of mammalian cells, it appears that pools 
of poly(A) RNAs with retained introns are frequent [227, 
228]. It has also been shown that subsets of introns in mam-
malian mRNAs have long half-lives and that their excision 
is influenced by the kinase Clk, possibly by affecting the 
phosphorylation of SR proteins and splicing [228]. Export 
of unspliced mRNAs may normally be restricted [229, 
230]. Restricted export of incompletely spliced mRNAs 
using NXF1 involves the NPC associated protein Tpr [231]. 
However, both endogenous and viral mRNAs with retained 
introns can be exported and translated [232–234]. Incom-
pletely spliced mRNAs are often subjected to degradation 
by the NMD pathway.

It is likely that a balance between intranuclear process-
ing, degradation, and diffusion regulates mRNP export 
and thus influences the size of the pool of specific mRNPs. 
Retention and degradation of incompletely spliced mRNAs 
may be involved in neuronal development. It has been pro-
posed that the protein PTB represses splicing, and that 
nuclear degradation of the incompletely spliced mRNA 
follows. The exosome and Tpr are involved [235]. Spe-
cific cases of intron retention may be important in homeo-
static control of gene expression. The PABPN1 is such an 
example, where an interplay between the level of PABPN1, 
retention of a 3′ terminal intron, and nuclear exosome activ-
ity regulates PABPN1 synthesis [236].

At the nuclear pore complex (NPC)

The NPC mediates almost all bidirectional transport of 
molecules between the nucleus and cytoplasm. In special 
circumstances, unconventional transport pathways may be 
used. For example, viruses can rebuild the NPC, allowing 
transport of viral mRNPs [237] and large mRNPs can exit 
the nucleus through nuclear envelope budding [238, 239].

As shown in the BR system, an mRNP is largely pro-
duced at the gene and appears only modestly reorgan-
ized or modified in the interchromatin compartment [13]. 

Additional studies of specific mRNPs are needed to sub-
stantiate this conclusion. In contrast, during interaction of 
the mRNP with the NPC, drastic structural and composi-
tional changes take place, concomitant with its delivery 
into the cytoplasm (Fig. 5).

Structure and composition of NPCs

The structure and composition of NPCs are well char-
acterized [240, 241]. The size of an NPC is estimated to 
be between 50 and 125 MDa, depending on the species. 
The NPC has an eightfold ring symmetry. The core con-
sists of a central channel positioned between a nuclear 
and a cytoplasmic ring. Fibrillar structures are present on 
both the nuclear and cytoplasmic sides. An NPC is built 
from about 500–1000 individual proteins belonging to the 
approximately 30 different types of nucleoporins (Nups). 
The transmembrane Nups anchor the NPC in the nuclear 
membrane. The structural Nups provide a scaffold for other 
Nups. The FG Nups contain domains with repetitive motifs 
of phenylalanine (F) and glycine (G) residues. The FG-
rich domains are flexible and disordered, and they fill the 
central channel of the NPC, forming a barrier. Small mol-
ecules can diffuse through the NPC, but as the size reaches 
approximately 5 nm in diameter and/or 30–40 kDa in mass, 
the permeability is restricted. The fibrillar structure on the 
nuclear side consists of eight fibrils attached to the nuclear 
ring of the core. The ends of the fibrils can interconnect, 
forming a basket. On the cytoplasmic side, there are eight 
fibril structures, making up an mRNP export interaction 
platform [242].

Export kinetics

Transport of mRNPs through the NPC occurs in three steps: 
docking onto the nuclear basket, translocation through the 
central channel, and release from the cytoplasmic fibrillar 
structures. Measurements of fluorescently labelled single 
mRNPs regarding the time for NPC interaction vary, rang-
ing from 12 ms to several seconds [9–12, 243, 244]. These 
differences may be due to technical differences or reflect 
variations for different mRNPs. In several cases, translo-
cation through the central channel was fast, while times 
for docking and release were longer. Furthermore, only a 
minority (25–35%) of the interactions between the mRNPs 
and the NPCs resulted in export.

Mechanism of translocation

At the ultrastructural level, the interaction between the NPC 
and endogenous gene-specific mRNPs has been best char-
acterized for the BR mRNPs. The process lasts for 65 ms 
to several seconds [11]. In  vivo, interactions between BR 
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mRNPs with the NPCs result in productive translocations 
in a minority of the occasions. In 60–75% of the cases, the 
BR mRNPs return into the interchromatin compartment. 
The explanation for unproductive NPC association is not 
known, but may reflect that some mRNPs lack a full set of 
export receptors. In the case of BR mRNPs, about 75% of 
the mRNPs in the interchromatin lack the NXF1 receptor 
[12]. It is also possible that unprocessed mRNPs can be 
retained, as mediated by Mlp1 in yeast [245] and Tpr in 
mammals [231]. Since only a very small part of the pool 
of BR mRNPs in the interchromatin still contains introns 
(less than 5%) [111], we consider this explanation unlikely 
in this case.

When export occurs, a BR mRNP first interacts with 
the closed basket [246]. The basket ring opens up and the 
BR mRNP moves into the basket and subsequently into the 
opening of the central channel. This initial process involves 
Nup153 [247] and transient contact with Rae1 [248]. Sev-
eral studies in other cell types demonstrate interactions 
between NXF1 and the basket component Tpr/Mlp1 at this 
stage. A complex between Rae1 and Nup98 is also involved 
[249].

For the BR mRNPs, a partial unfolding then follows and 
its bent 26 nm ribbon becomes more straight as it moves 
through the central channel. The 5′ end leads the way 
[250], while the 3′ end of the BR mRNP remains in con-
tact with the basket ring. Other studies have shown that 
during translocation, NXF1 interacts sequentially with the 

FG Nups [251]. The transport of large mRNPs is facili-
tated if the cargo binds multiple export receptors. The exact 
mechanism of mRNP translocation is still unclear. Several 
transport models have been proposed for how export recep-
tors (and import receptors) facilitate transport through the 
FG-Nup barrier. These include the selective phase, the 
reduction of dimensionality, and the virtual gating models 
[252, 253]. Extensive unfolding may be necessary for large 
mRNPs, such as the BR mRNPs. The reason for unfolding 
may be coupled to the translocation process or be dictated 
by space limitations of the NPC. We do not know if a con-
formational change is obligatory also for smaller mRNPs. 
Furthermore, the fact that BR mRNPs reach the cytoplasm 
with its 5′ end first could reflect efficient assembly of poly-
somes already in the perinuclear compartment, in a secre-
tory cell. It remains to be demonstrated if this polarity of 
translocation is valid also for mRNPs, in general. If so, it 
could rather reflect the translocation process.

At the cytoplasmic side of the NPC, there is additional 
unfolding of the BR mRNP into a 7–10 nm mRNP fibre. 
Other studies have shown that upon exit from the central 
channel, mRNPs associate with the cytoplasmic part of the 
NPC [254]. A recent study has described how the Nups at 
the cytoplasmic side are oriented inward towards the cen-
tral channel [242], presumably streamlining the passage of 
the mRNPs from the FG-repeats in the channel to a cyto-
plasmic platform. At this platform, the mRNPs are remod-
elled as a result of the coordinated action of the DEAD-box 

At the NPC
a. binding
b. entry, docking and conformational change
c. translocation and compositional change
d. release into the cytoplasm 

a

b

c

d ATP

ADP

ATP

ADP
GTP

GDP

Fig. 5   Principal steps during mRNP transport through NPCs (green). 
The parallel black lines indicate the nuclear membrane. a The export 
competent mRNP (dark blue) interacts with the basket of the NPC 
(green). b mRNP changes conformation and is fed into the channel of 
the NPC, where interaction with FG-repeats (light green) occur. c, d 
mRNP changes conformation extensively in the central channel dur-

ing translocation. The cytoplasmic fibers are in close contact with the 
exit of the channel. Here, the mRNP looses many, but not all proteins 
(blue hexagon and grey square). The helicase Dbp5 (light purple 
ovals) associated with the fibers and ATP hydrolysis are involved. In 
the CRM1-dependent export pathway, GTP hydrolysis is required for 
mRNP release
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helicase DDX19 (in yeast Dbp5), Gle1 (in yeast Gle), and 
its cofactor inositol hexakisphosphate (IP6), and Nup214 
(in yeast Nup159) [255]. Export factors are removed during 
remodelling, and eventually recycled back to the nucleus 
[256]. It is likely that many proteins remain bound to the 
mRNP. In the case of BR mRNPs, it has been demonstrated 
that, for example, SR, hnRNP, and Y-box proteins are not 
removed at this stage. The compositional and conforma-
tional change of the mRNP promotes directionality and it 
will prevent the mRNP from traveling back into the NPC. 
A deeper insight into the molecular changes in mRNP 
composition and where and when these changes occur in 
relation to NPCs and the translocation process will require 
high-resolution studies of endogenous mRNPs.

In the cytoplasm, the mRNP is again remodelled [257]. 
For example, the CBC proteins are replaced by eIF4E, 
thereby permitting steady-state translation and PABPN1 is 
replaced by PABPC, important for stability and translation.

Formation and export of mRNPs linked to disease

Given the importance of mRNP formation and export for 
gene expression, it is not surprising that a great number 
of defects in these processes have been connected to dis-
eases. An important field of investigation is how dysregu-
lation of splicing can be involved in cancerogenesis [258, 
259]. Splicing defects in cancer cells can result from base-
pair substitutions in splice sites or in splicing regulatory 
sequences. Mutations can also affect the structure and func-
tion or expression levels of spliceosomal components and 
proteins that regulate splicing. Splicing defects have also 
been described in many other diseases [260]. These include 
neurological disorders such as Amyotrophic lateral sclero-
sis and Spinal muscular dystrophy.

Dysregulation of export components, including CRM1, 
THOC1, Rae1, and eIF4E, is described in different types 
of cancer cells [261]. In accordance with their roles in 
gene expression, several hnRNPs (hnRNP A1, C, and 
E1) influence expression of oncogenes in cancer cells and 
in neurons [262]. A possible link between mutations in a 
gene encoding a mammalian Nab2 orthologue and a neu-
rodevelopment disorder has been reported [263]. Proteins 
connected to the NPC, for example, mammalian Nup88, 
Nup214, Nup98, and Gle1, have also been implicated in 
cancer, developmental, and neural diseases [264–266].

Replication of viruses depends on host cell gene expres-
sion machineries and can thereby affect mRNP formation 
and transport. Viruses are studied for the obvious medical 
implications for developing treatments against viral infec-
tions. A second reason is that viral infections often provide 
experimental advantages and short cuts in understanding 

cellular processes. This is exemplified by the fruitful stud-
ies of splicing of adenovirus pre-mRNAs [267].

During viral infection, the host cells activate defense 
mechanisms and the viruses interfere with the host cells 
to maximize viral replication. A common viral strategy is 
to shutoff host cell gene expression. In this way, the cel-
lular immune response is evaded and resources are directed 
towards viral replication. Down-regulation of host cell gene 
expression can take place at most levels and individual 
viruses can use more than one mechanism.

Transcription can be inhibited. For example, the 3C pro-
tease of the poliovirus cleaves TFIID [268] and Sindbis 
virus protein nsP2 induces degradation of the largest subu-
nit of RNA pol II [269].

Pre-mRNA processing is also targeted. The influenza 
virus protein NS1 binds CPSF and inhibits PABP binding, 
thus interfering with 3′ cleavage and polyadenylation [140, 
270]. NS1 furthermore inhibits splicing by interfering with 
spliceosomal snRNP interactions [271]. The herpes sim-
plex virus ICP27 protein inhibits splicing using multiple 
mechanisms [272, 273].

Many viruses, including herpes, influenza, and corona 
viruses, use viral or cellular endonucleases to degrade host 
cell mRNAs [274]. At the same time, it is important that 
viral mRNAs avoid being targeted for degradation [275].

Export of viral mRNAs from the nucleus to the cyto-
plasm has attracted considerable interest. In general, 
viruses take over cellular export factors, for example, the 
NXF1 and CRM1 export receptors, using a variety of strat-
egies. Several viruses produce mRNAs that contain ele-
ments that can bind TREX [276] or that can directly bind 
NXF1 [277]. Other viruses, such as influenza and Hepatitis 
B viruses, produce specific export adaptor proteins. These 
proteins recruit ALY/REF or DDX39B and TREX and sub-
sequently NXF1 [278, 279]. Other examples of cis-acting 
elements present in viral mRNAs that can bind export fac-
tors are the element in type D retroviruses that directly bind 
NXF1 [277, 280], and the Rev response element in HIV-1 
mRNA that binds multimerized Rev proteins which, in 
turn, bind CRM1 [281, 282].

Future perspectives

A deeper understanding of the processes of gene expres-
sion in the intact cell nucleus will have a great impact on 
many aspects of biology, ranging from evolution to cell 
differentiation and neurobiology. It will also be essential 
for diagnosis and treatment in most disciplines of medi-
cine. It is important to continue to identify and charac-
terize processes and the involved individual components, 
probably with an emphasis on multi-molecular com-
plexes and the dynamic changes of such complexes. The 



2890	 P. Björk, L. Wieslander 

1 3

most important and, at the same time, most challenging 
area is how everything operates in the living cell. Knowl-
edge about the compositional and conformational dynam-
ics of complexes and their interactions must be studied in 
the perspective of functional importance for endogenous 
genes in intact cells. This goal is demanding and exciting, 
and will require that new methods are developed. Such 
methods should be able to map the interplay within and 
between RNA–protein and protein–protein complexes, 
including the temporal and spatial dimensions. As an 
example, it is already evident that the pre-mRNP, the 
processing machineries, and the chromatin are all in very 
close contact. It is desirable to learn which interactions 
are the functionally important ones. Furthermore, we 
need to know more about how various components are 
recruited to sites of action and thereafter recycled, in the 
intact cell.
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