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Simple Summary: Skinks are the most species-rich group of lizards and are widely distributed
around the world. The family Scincidae (Reptilia: Lacertiformes) includes limbed and limbless
representatives occupying diverse habitats and showing a range of morphologies. Both limbed and
limbless skinks have unique locomotion patterns in their habitats. Locomotion is the process of
energy consumption, of which different modes may have different energy demands. As the center of
energy metabolism in organisms, mitochondria provide most of the energy for physiological and
biochemical activities via oxidative phosphorylation. Here, we employed mitochondrial genomes to
investigate potential selective pressures among limbless skinks. Isopachys gyldenstolpei, as a typical
limbless skink, has a different locomotion pattern compared to a limbed skink. Thus, I. gyldenstolpei
can be used to study whether limb loss has a positive selection on mitochondrial genes. Two typical
limbed skinks, Sphenomorphus indicus and Tropidophorus hainanus, were included in this study to
compare the selective pressure analysis on mitochondrial genomes. In addition, the phylogenetic
relationships within Scincidae are also discussed.

Abstract: In order to adapt to diverse habitats, organisms often evolve corresponding adaptive
mechanisms to cope with their survival needs. The species-rich family of Scincidae contains both
limbed and limbless species, which differ fundamentally in their locomotor demands, such as relying
on the movement of limbs or only body swing to move. Locomotion requires energy, and different
types of locomotion have their own energy requirements. Mitochondria are the energy factories
of living things, which provide a lot of energy for various physiological activities of organisms.
Therefore, mitochondrial genomes could be tools to explore whether the limb loss of skinks are
selected by adaptive evolution. Isopachys gyldenstolpei is a typical limbless skink. Here, we report the
complete mitochondrial genomes of I. gyldenstolpei, Sphenomorphus indicus, and Tropidophorus hainanus.
The latter two species were included as limbed comparator species to the limbless I. gyldenstolpei.
The results showed that the full lengths of the mitochondrial genomes of I. gyldenstolpei, S. indicus,
and T. hainanus were 17,210, 16,944, and 17,001 bp, respectively. Three mitochondrial genomes have
typical circular double-stranded structures similar to other reptiles, including 13 protein-coding
genes, 22 transfer RNAs, 2 ribosomal RNAs, and the control region. Three mitochondrial genomes
obtained in this study were combined with fifteen mitochondrially complete genomes of Scincidae
in the NCBI database; the phylogenetic relationship between limbless I. gyldenstolpei and limbed
skinks (S. indicus and T. hainanus) is discussed. Through BI and ML trees, Sphenomorphinae and
Mabuyinae were monophyletic, while the paraphyly of Scincinae was also recovered. The limbless
skink I. gyldenstolpei is closer to the species of Tropidophorus, which has formed a sister group with (T.
hainanus + T. hangman). In the mitochondrial genome adaptations between limbless I. gyldenstolpei
and limbed skinks, one positively selected site was found in the branch-site model analysis, which
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was located in ND2 (at position 28, BEB value = 0.907). Through analyzing the protein structure and
function of the selected site, we found it was distributed in mitochondrial protein complex I. Positive
selection of some mitochondrial genes in limbless skinks may be related to the requirement of energy
to fit in their locomotion. Further research is still needed to confirm this conclusion though.

Keywords: positive selection; mitochondrial genomes; Isopachys gyldenstolpei; limbless skinks

1. Introduction

Scincidae, as the most species-rich family in Squamata, has 1744 species currently
recorded on the Reptile Database (http://www.reptile-database.org/, accessed on 22 March
2022) [1]. All live in tropical and temperate regions and can be found on all continents,
except for Antarctica and most oceanic islands [2]. With such a wide distribution, it is
not surprising that skinks exhibit diverse morphological characteristics to adapt to their
various distribution environments [3,4]. Skinks range from fully pentadactyl forms to
completely limbless body forms found in Scincidae [1]. Compared with the wide habitat
range of limbed skinks, most limbless skinks are cryptozoic, mainly choosing to inhabit
underground burrows or under rocks, with little exposure above ground [5,6]. At the
same time, different movement abilities between limbed and limbless skinks have arisen
in adapting to their habitats. Limbed body forms are often associated with high dispersal
ability in Scincidae, whereas limbless body forms show reduced patterns of dispersal. The
secretive living environments of the skink species and the scarcity of available samples have
led to a poor understanding of the diversity, geographical distribution, genetic relationships,
and phylogeny of these groups [7].

Isopachys gyldenstolpei belongs to the subfamily Sphenomorphinae and is mainly dis-
tributed in Thailand and Burma [8]. As an elongated, fossorial, and limbless lizard, I.
gyldenstolpei burrows in dry soil covered with dead leaves and sticks [8,9]. Due to a scarcity
of samples, no complete mitochondrial genome of I. gyldenstolpei has been reported to date.
Compared with limbless skinks, the limbed skinks are not only more widely distributed,
but also have diverse lifestyles. Thus, there is much interest in the typical morphological
characteristics of limb loss and axial elongation in Scincidae. For example, the species-rich
genus, Sphenomorphus, shows diverse lifestyles in a wide array of habitats, ranging from
upland cloud forests to small, arid, virtually barren islands, to lowland and hill forests
dominated by Dipterocarpus [10–12]. In contrast, lizards of the genus Tropidophorus are
semi-aquatic and mainly dwell in lowlands near mainland forest streams [13–15]. The
present study sequenced the mitochondrial genome of one limbless skink, I. gyldenstolpei,
followed by the mitochondrial genomes of two limbed skinks Sphenomorphus indicus and
Tropidophorus hainanus. Differences in the mitochondrial genome were compared to the
morphological disparity between limbed and limbless skinks. At present, the monophyly
of Scincidae has been widely recognized, and the taxonomic controversy is mainly fo-
cused on the monophyly of the subfamily Scincinae [16–19]. As an ideal molecular marker,
mitochondrial genes have been widely used to solve the phylogeny of Scincidae [20]. Mito-
chondrial genomes were used to discuss the phylogenetic status of limbless I. gyldenstolpei
and mitogenomes could similarly provide useful clues for the remaining disputes in the
phylogenetic relationships of Scincinae.

Moving is an energy-expensive process, and different models of movement require
different levels of energy consumption. Losing legs or damage to appendages associated
with movement may impose additional energetic costs [21]. As the energy-producing center
of organisms, up to 95% of the ATP used by eukaryotic cells is provided by mitochondria
through oxidative phosphorylation (OXPHOS) [22–25]. The mitochondrial genomes of
lizards have the same double-circular structures as those of other vertebrates, with typical
lengths of 16–19 kb and conserved genetic compositions, including 13 protein-coding genes,
22 tRNAs, 2 rRNAs, and a major non-coding control region [22,26]. Due to its function in
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energy metabolism, mitochondrial DNA has attracted much attention for its selective role in
adaptive evolution, and some studies have shown that the differences in locomotive ability
are reflected in the different selection mechanisms of mitochondrial genomes [24,25,27–30].
For example, compared with flightless grasshoppers, flying grasshoppers have been pos-
itively selected for their mitochondrial genes in response to the energy requirements of
flight [31]. Among fish, it has been found that the amount of swimming and energy
consumption are different between migratory fishes and nonmigratory fishes, and genes
related to the energy regulation in mitochondria have shown evidence for a direct response
to selective pressure [24]. In birds, the mitochondrial genes of fast-flying birds have differ-
ent effective energy metabolic requirements than those of weak-flying or flightless species,
suggesting that evolution constrains the mitochondrial DNA of birds with different motor
abilities, as has also been found in mammals [25]. Similarly, the mitochondrial genes of
plateau birds were positively selected after adaptation to the plateau environment [32].
Research on the origins of flight in bats has shown that mitochondrial genes involved in
energy metabolism were naturally selected to adapt to the huge changes in energy require-
ments during the origins of flight (as compared to other mammals) [28]. Selection pressures
on mitochondrial genes have also been found in limb-reduced Dibamus bourreti and other
limbless squamates, suggesting that selection pressures on mitochondrial genomes may
play important roles in the energetic differences in locomotion between limbed and limbless
squamates [33]. Therefore, considering that I. gyldenstolpei has morphological characteristics
related to a complete loss of limbs, we speculate that the mitochondrial genes of limbless
skinks may undergo positive selections compared to limbed skinks.

2. Material and Methods
2.1. Specimen Collection

The soak specimen of I. gyldenstolpei was housed in the Animal Herbarium of Zhejiang
Normal University, which was collected from Myanmar in 2000. Specimens of S. indicus
and T. hainanus were collected in Cixi, Zhejiang and Jinxiu, Guangxi, China, respectively.
Our experimental procedures complied with current regulations on animal welfare and
research in China. The Animal Research Ethics Committee of Zhejiang Normal University
approved the experimental design (ZSDW2021057).

2.2. DNA Extraction, PCR Amplification, and Sequencing

Total genomic DNA of the three skinks was extracted from tail muscles using an
Ezup Column Animal Genomic DNA Purification Kit (Sangon Biotech Company, Shanghai,
China). Common primers [34] for lizards were used to amplify several partial segments,
and species-specific primers were designed to complete the remaining gaps using Primer
Premier 5.0 [35] based on previously obtained sequences (Table S1). The methods described
in Zhang et al. [36] were used to amplify both PCR (product length < 3000 bp) and long-
range-PCR (product length > 3000 bp). All PCR products were sequenced using the
bi-directional primer-walking method by Sangon Biotech Company (Shanghai, China).

2.3. Mitochondrial Genome Annotation and Sequence Analyses

Sequences were checked and assembled using DNASTAR Package V.7.1 [37]. The
tRNA genes of the sequences were annotated using the MITOS web server (http://mitos.
bioinf.uni-leipzig.de/index.py, accessed on 15 December 2021) [38], and their secondary
structures were predicted by the tRNAscan-SE online search server [39]. We identified the
two rRNA genes (12S and 16S rRNA) and 13 protein-coding genes (PCGs) by comparing
them with the complete mitochondrial genomes of other Scincidae in the Clustal W program
of Mega 7.0 [40]. The CG View online server V 1.0 [41] was used to draw the maps
of complete mitochondrial genomes (https://cgview.ca/, accessed on 15 January 2022).
According to the formula: AT skew = (A − T) ÷ (A + T), GC skew = (G − C) ÷ (G + C), we
calculated the CG and AT skews in PhyloSuite 1.2.2 [42]. Similarly, PhyloSuite 1.2.2 was
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also used to calculate the AT content, codon usage, and relative synonymous codon usage
(RSCU) of protein-coding genes, and graphically drawn by Adobe Illustrator CS4 [43].

2.4. Phylogenetic Analyses

To explore the phylogenetic relationship of Scincidae, we prepared a dataset comprised
of the complete mitochondrial genomes of the three skink species in this study and 15 skink
mitochondrial genomes available in NCBI, including from Sphenomorphinae (9), Scincinae
(5), and Mabuyinae (1) of Scincidae [44–56], as well as the two outgroups species belonging
to Xantusiidae (1) and Cordyloidea (1) [57,58] (Table 1).

Table 1. Information about the samples used in this study and the NCBI GenBank accession numbers.

Family Subfamily Species Length Accession No. Reference

Scincidae

Mabuyinae Eutropis multifasciata 17,062 bp MN938934 [44]

Scincinae

Ateuchosaurus chinensis 16,840 bp MW327509 [45]
Plestiodon chinensis 17,175 bp KT279358 [46]
Plestiodon elegans 17,304 bp KJ643142 [47]

Plestiodon liui 17,643 bp MT662111 [48]
Plestiodon tunganus 17,263 bp MK370739 [49]

Sphenomorphinae

Ablepharus himalayanus 17,304 bp MN885892 [59]
Isopachys gyldenstolpei 17,210 bp MH020638 This study
Scincella huanrenensis 17,212 bp KU507306 [50]

Scincella modesta 17,466 bp MN702771 [51]
Scincella modesta 17,511 bp MN786972 [52]
Scincella reevesii 15,424 bp MN832615 [53]

Scincella vandenburghi 17,103 bp KU646826 [50]
Sphenomorphus indicus 16,944 bp OM117611 This study
Sphenomorphus indicus 17,027 bp MK450438 [55]

Sphenomorphus incognitus 17,417 bp MH329292 [54]
Tropidophorus hainanus 17,001 bp OM117612 This study
Tropidophorus hangnam 16,777 bp MN977920 [56]

Cordyloidea Cordylidae Smaug warreni 17,184 bp NC005962 [57]

Xantusiidae Xantusiinae Lepidophyma
flavimaculatum 16,158 bp NC008775 [58]

Based on a dataset of the nucleotide sequences of 13 (PCGs), we constructed the
Bayesian inference (BI) and maximum likelihood (ML) phylogenetic trees of Scincidae.
MAFFT V. 7.475 [60] was used for the alignment of the nucleotide sequences of the 13 PCGs.
Then the conservative region was detected by Gblock 0.91b [61] using the default setting.
Because the third codon was saturated, our phylogenetic trees were constructed with the
1st and 2nd codons; the 1st and 2nd data were extracted and reserved using MEGA7.0 [40].
Based on the Bayesian information criterion (BIC), the program PartitionFinder 2.2.1 [62]
was used to determine the best partitioning scheme and substitution model (Table S2).
Considering that RAxML allows for only a single model of rate heterogeneity in partitioned
analyses, the ML analysis was performed in RAxML 8.2.0 [63] using the GTR + I + G model,
with branches of each node supporting the evaluation under 1000 ultrafast replications.
The BI analysis was performed in MrBayes version 3.2 [64] using the partitioning results
(Table S2) and was set for 10 million generations with sampling every 1000 generations. The
first 25% of generations were discarded as burn-ins. When the phylogenetic tree converged
(i.e., when the value of the average standard deviation of the split frequency was stable
and the balance was less than 0.01), the tree was harvested.

2.5. Detecting Selective Pressure

The selective pressure analysis of genes was mainly obtained by calculating the
replacement ratio of nonsynonymous codons and synonymous codons in the protein-
coding sequence, namely, ω = dN/dS, where ω = 1 represents neutral mutation, ω < 1 means
negative selection, and ω > 1 indicates positive selection [65]. As an interactive visualization
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tool, EasyCodeML can be used to detect the selection pressure of 13 PCGs in the Scincidae
mitochondrial genomes [66]. In order to investigate whether the mitochondrial genes of I.
gyldenstolpei were under positive selection, this limbless skink was chosen as the foreground
branch and other limbed skinks as the background branch. Selection pressure analysis was
conducted using 11,373 nucleotide sites (excluding the initiation and termination codons)
and 3791 amino acid sites after alignment of the 13 PCGs from 18 species of Scincidae.
Four analytical methods were conducted to explore the mitochondrial gene adaptative
evolution of limbless skinks. The branch model mainly defined the heterogeneity of ω
values of different lineages in the phylogenetic tree, and we observed whether the ω values
of foreground branches and background branches were significantly different by comparing
the one-ratio model and two-ratio model. The site model was used to compare the selection
pressure of amino acid sites. The ω values of the branch-site model were different between
the selected sites, and it was also assumed that the ω values of the branches were different,
which was mainly used to detect the influence of positive selection on some sites in the
foreground branch (model A vs. model A null). The clade model was mainly used to
analyze multiple clades, simultaneously [65]. The posterior probability of these models and
selected loci were evaluated using the likelihood ratio test (LRTs) and Bayesian empirical
Bayes (BEB), respectively. The structural and functional information of selected genes
were obtained in UniProt [67], and the three-dimensional structures of the corresponding
proteins were constructed by the SWISS-MODEL workspace [68].

3. Results
3.1. Organization and Characteristics of Three Skink Mitochondrial Genomes

The lengths of the complete mitochondrial genomes were found to be I. gyldenstolpei
17,210 bp, S. indicus 16,944 bp, and T. hainanus 17,001 bp, and their corresponding GenBank
accession numbers are MH020638, OM117611, and OM117612, respectively. With the typical
circular structure, the mitochondrial genome arrangements of the three skink species are
the same as those of other reptiles and include 13 PCGs (ND1-6, ND4L, COI-III, Cyt b,
ATP6, and ATP8), 22 tRNAs, and two rRNA genes (12S rRNA and 16S rRNA), along
with a non-coding region (D-loop) between tRNA-Pro and tRNA-Phe (Figure 1). Among
the 37 genes, ND6 and 8 tRNAs (including tRNA-Gln, tRNA-Ala, tRNA-Asn, tRNA-Cys,
tRNA-Tyr, tRNA-Ser, tRNA-Glu, and tRNA-Pro) are coded on the minor strand (N strand)
and the remaining 28 genes are coded on the major strand (J strand). A + T bias of the
whole mitochondrial genome was found in all three skinks, being 56% in I. gyldenstolpei,
57.9% in S. indicus, and 54.2% in T. hainanus. Positive AT skews and negative GC skews
were found in all three mitochondrial genomes (Table 2).

Table 2. Base composition of the mitochondrial genomes of the three skinks.

Region

I. gyldenstolpei S. indicus T. hainanus

Length
(bp)

A + T
(%)

AT
Skew

GC
Skew

Length
(bp)

A + T
(%)

AT
Skew

GC
Skew

Length
(bp)

A + T
(%)

AT
Skew

GC
Skew

mito 17,210 56 0.121 −0.358 16,944 57.9 0.11 −0.308 17,001 54.2 0.118 −0.33

PCGs
J 11,382 55.52

0.058 −0.392 11,382 57.28
0.056 −0.35 11,379 53.06

0.063 −0.363
N −0.651 0.602 −0.51 0.508 −0.595 0.462

rRNAs 2507 54.2 0.313 −0.207 2470 57.4 0.29 −0.147 2485 53.7 0.296 −0.191
A + T-rich

region 1774 61.5 0.086 −0.46 1566 61.1 0.9 −0.359 1615 60.4 0.07 −0.404
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in all three skinks. 

Among the three complete mitochondrial genomes, the total lengths of the 13 PCGs 
were 11,382 bp in I. gyldenstolpei and S. indicus, and 11,379 bp in T. hainanus. After com-
paring the three sequences, two start codons (ATG and GTG) were used in the 13 PCGs. 
As the most common start codon, ATG was used in most protein-coding genes (11 genes 
in I. gyldenstolpei and T. hainanus, 12 genes in S. indicus), whereas GTG was used only in 
COI (I. gyldenstolpei, S. indicus, and T. hainanus), ND1 (T. hainanus), and ND3 (I. 
gyldenstolpei). TAN (TAA/TAG) was often found in the three sequences as the stop codon 

Figure 1. Circular visualization maps of the complete mitochondrial genomes of I. gyldenstolpei, T.
hainanus, and S. indicus (since the mitochondrial genomes of the three skinks are similar in structure, a
map was used to represent the three skinks). The three circles from the outside to the inside show the
gene map (PCGs, rRNAs, tRNAs, and the AT-rich region), the GC content, and GC skew, respectively.
Among them, the genes outside the map are coded on the majority strand (J-strand), whereas the
genes inside the map are coded on the minority strand (N-strand).

Gene spacers and overlaps were found between adjacent genes in all three mitochon-
drial genomes. Nine gene-spacing regions were found in I. gyldenstolpei and S. indicus,
and eight were found in T. hainanus, all with lengths from 1 to 14 bp. The longest length
of the gene-spacing regions (14 bp) was between tRNA-Asn and tRNA-Cys in all three
mitochondrial genomes. Eight, nine, and eleven base pair overlaps were found in the
mitochondrial genomes of I. gyldenstolpei, S. indicus, and T. hainanus, respectively, with the
lengths ranging from 1 to 10 bp. The longest overlap (10 bp) was between ATP6 and ATP8
in all three skinks.

Among the three complete mitochondrial genomes, the total lengths of the 13 PCGs
were 11,382 bp in I. gyldenstolpei and S. indicus, and 11,379 bp in T. hainanus. After comparing
the three sequences, two start codons (ATG and GTG) were used in the 13 PCGs. As the
most common start codon, ATG was used in most protein-coding genes (11 genes in I.
gyldenstolpei and T. hainanus, 12 genes in S. indicus), whereas GTG was used only in COI (I.
gyldenstolpei, S. indicus, and T. hainanus), ND1 (T. hainanus), and ND3 (I. gyldenstolpei). TAN
(TAA/TAG) was often found in the three sequences as the stop codon (eight protein-coding
genes). In addition, AGG/AGA was used as the stop codon in some protein-coding genes:
COI and ND6 in all three mitochondrial genomes, and COII only in I. gyldenstolpei. An
incomplete stop codon T was found in three protein-coding genes: COIII and ND4 in all
three mitochondrial genomes, and COII of S. indicus and T. hainanus (Tables S3–S5).

Figure 2 and Supplementary Table S6 show the relative synonymous codon usage
(RSCU) and amino acid composition of the three mitochondrial genomes. Throughout the
data, A and C nucleotides were the most abundant in the base composition of the three
skinks and especially appeared more frequently at the third codon position of all three
skinks. The utilization rate of the CUA (Leu1) codon was the highest in the three skinks,
which was used 213 times in I. gyldenstolpei, 231 times in S. indicus, and 249 times in T.
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hainanus. In addition, the use ratio of AUC (Ile), AUA (Met), ACC (Thr), ACA (Thr), and
GCC (Ala) was relatively high in all three skinks. At the same time, the utilization rates of
some amino acids for the synonymous codon in these three skinks were different, such as
UCA (Ser2) in S. indicus 2.45 > T. hainanus 2.04 > I. gyldenstolpei 1.95. Furthermore, A + T
bias also existed in 13 PCGs of the three mitochondrial genomes (Table 2).
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Figure 2. The relative synonymous codon usage (RSCU) of the mitochondrial genomes of I. gylden-
stolpei (A), S. indicus (B), and T. hainanus (C). Acronyms stand for different amino acids. The x-axis
represents all codons used and different combinations of synonymous codons, and the RSCU values
are listed on the y-axis.
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The two ribosomal RNAs (12S rRNA and 16S rRNA) were separated by tRNA-Val
and were found on the H-strand. The full sizes of 12S rRNA were 949 bp (I. gyldenstolpei),
942 bp (S. indicus), and 958 bp (T. hainanus), respectively. Similarly, the total lengths of
16S rRNA for the three skinks were 1558 bp (I. gyldenstolpei), 1528 bp (S. indicus), and
1527 bp (T. hainanus). The sizes of all tRNA genes in the three skinks ranged from 64 to
76 bp. Compared with other tRNAs of the three sequences that showed typical cloverleaf
structures, tRNA-Ser1 missed the dihydrouridine (DHU) arm (Figures S1–S3). The total
lengths of tRNA in I. gyldenstolpei, S. indicus, and T. hainanus were between 1523 and
1542 bp.

With lengths of 1774 bp (I. gyldenstolpei), 1566 bp (S. indicus), and 1615 bp (T. hainanus),
respectively, all control regions of the three skinks could be found between tRNA-Pro and
tRNA-Phe. The A + T content of all three skink mitogenomes was more abundant, all
greater than 60%. Positive AT skews and negative CG skews were also found in the control
regions of the three skinks (Table 2).

3.2. Phylogenetic Relationships

Both BI and ML analyses recovered a consistent topology (Figure 3). In general, except
for the outgroups, skinks in this study clustered mainly in three subfamilies: Sphenomor-
phinae, Scincinae, and Mabuyinae. Sphenomorphinae and Mabuyinae were recovered
as monophyletic groups in both BI and ML trees. A sister-group relationship between
Mabuyinae and the clade of (Sphenomorphinae + Scincinae) was supported in the present
study. In ML and BI trees, the subfamily Scincinae is paraphyletic because Ateuchosaurus of
Scincinae is nested into Sphenomorphinae. In the subfamily Sphenomorphinae, the limb-
less I. gyldenstolpei was a sister clade of (T. hainanus + T. hangnam) and then clustered in a
clade with (Sp. indicus + Sp. incognitus) + (Sc. reevesii + (Sc. huanrenensis + (Sc. vandenburghi
+ Sc. Modesta)))). In ML and BI trees, Ab. himalayanus is considered the sister group to all
other Sphenomorphinae species.
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Figure 3. Phylogenetic relationships among 18 species of Scincidae based on the nucleotide dataset of
the 13 mitochondrial protein-coding genes. Smaug warreni and Lepidophyma flavimaculatum were used
as the outgroups. The numbers above the branches specify bootstrap percentages from ML (left) and
posterior probabilities as determined from BI (right). The GenBank accession numbers of all species
are shown in the figure. Different colors represent different subfamilies.
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3.3. Positive Selection Analysis of 13 Protein-Coding Genes

The BI tree was used to analyze the selection pressure of 13 protein-coding genes. The
results showed that LRT p-values were 0.859 and 0.704 in the branch and clade models,
respectively. Thus, there were no significant selected sites found in the two models.

The analysis results of the branch-site model and the site model are shown in Table S7.
Model A vs. model A null was significant (p < 0.05) in the branch-site model, where there
was an amino acid selected site and the BEB value was 0.907 (amino acid residue 2017).
Amino acid residue 2017 corresponds to amino acid position 28 of ND2 (Figure S4 and
Table S8). At position 2017, amino acids were mutated from Leu (L) of the background
branch to Thr (T) of the foreground branch. The positive selection site was found in
mitochondrial complex I. Position 28 of the ND2 gene was found to be located in the domain
of the proton-conducting membrane transporter through protein functional analysis. Two
amino acid sites were positively selected (BEB > 0.90, positions 2416 and 3742) in the site
model, with the LRT of M7-M8 showing high significance (p < 0.01). Amino acid residue
2416 corresponded to amino acid position 83 of the ND3 gene, whereas position 3742
corresponded to amino acid position 124 of the ND6 gene (Table S8). Positive selection sites
of mitochondrial genes were found in the site model, which may suggest that some amino
acid sites in some skinks have undergone adaptive selection.

4. Discussion
4.1. Phylogenetic Analyses

The monophyly of Scincidae was successfully recovered by both BI and ML trees,
which is similar to previous studies [16,17,44,69,70]. The clade ((Sphenomorphinae + Scinci-
nae) + Mabuyinae) of Scincidae was supported in both BI and ML trees, which is consistent
with the results of Chen et al. (2021). However, this slightly contradicts the results from
other studies that support the clade ((Mabuyinae + Scincinae) + Sphenomorphinae) [44,71].
Multiple studies suggest that Scincinae should be paraphyletic because Ateuchosaurus is
nested into Lygosominae [16,18,70]. However, in the present study, although the paraphyly
of Scincinae was recovered, the species of Ateuchosaurus was nested into Sphenomorphinae.
This controversy may be related to the fact that Lygosominae was not included in our study.
On the contrary, Scincinae was monophyletic and Ateuchosaurus was the sister to Lygosom-
inae in a study using nuclear and mitochondrial genes by Pyron et al. [17]. When the genus
Ateuchosaurus was not included in the phylogenetic tree, the monophyly of Scincinae was
also restored [19,44,69]. In the future, samples of Ateuchosaurus and other skinks should be
added to further explore the monophyly of Scincinae. In Mabuyinae, the phylogenetic trees
constructed in this study and the results of Chen et al. (2021) based on 13 PCGs, all support
that Mabuyinae was the sister of the clade (Scincinae + Sphenomorphinae). However,
combined with morphological and molecular data, Mabuyinae and Sphenomorphinae
showed the closest relationship [72]. Hence, the status of the Mabuyinae subfamily remains
unclear due to the lack of mitochondrial genome data [44].

The species Isopachys clustered into a clade with the Tropidophorus genus and not with
the Sphenomorphus genus, a result that is different from some previous conclusions [12,44,69,73].
Using 12S and 16S RNAs, the clades ((Isopachys + (Sphenomorphus + (Lipinia + Scincella))) +
Tropidophorus) were supported in BI, ML, and maximum parsimony (MP) trees constructed
by Honda et al. [73]. Although the same genes were used (12S and 16S RNA) in the
phylogenetic analysis of Peninsular Malaysia skinks, Rizal et al. found that the clade of
(((Tropidophorus + Sphenomorphus) + Lipinia) + Isopachys) was supported in both ML and BI
trees [12]. These differences in topological structures may be related to the amount of data
used to construct the phylogenetic tree. Sampling differences affecting the phylogenetic
tree structure have also been found in other research [16,74,75]. The clade ((Sphenomorphus +
Scincella) + Isopachys) was supported by using only the 13 PCGs in Chen et al. [69], whereas
the tree that was constructed from 13 PCGs and 2 rRNAs (12S rRNA and 16S rRNA)
showed ((Isopachys + Sphenomorphus) + Scincella) in Chen et al. [44]. At the same time,
Tropidophorus was not included in the two references, and different genes used to construct
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the phylogenetic tree may also lead to inconsistent topological structure [16,44,69]. Thus,
different samples and analytical methods will affect the results of the phylogenetic analysis.
Hence, the relationship between Isopachys, Sphenomorphus, and Tropidophorus needs to be
further verified.

4.2. Positive Selection Analyses

In general, positive selection acts on only a few amino acid sites over a short evolution-
ary period, so a signal of positive selection is usually swamped by subsequent successive
negative selection at most sites in a gene sequence [76]. Similarly, after a short period of
positive selection, there is usually a long purifying selection period, which neutralizes the
results of the positive selection [28]. Therefore, positive selection in mitochondrial DNA is
difficult to detect [28], especially in branch and clade models where ω varies only among
branches and clades. On the contrary, the branch-site model and the site model are often
used to distinguish the positive selection from the relaxed purification selection because
they allow variations in selective pressure to occur at amino acid sites [28,76].

Consequently, analyses based on the branch-site model, suggesting a selective process
that leads to the loss of limbs in I. gyldenstolpei was also recognizable in the ND2 gene of
the mitochondrial complex I (NADH: ubiquinone oxidoreductase), which may indicate an
adaptation of mitochondrial genes to the energy requirements of a limbless skink after limb
loss occurs. Complex I is the first large protein complex in the respiratory chain, providing
protonic power for ATP synthesis during the transfer of electrons to ubiquitin by NADH
via transmembrane proton pumps. Indeed, the ND complex can drive over one-third
of total energy (ATP) production in mitochondria, making it crucial in biological energy
metabolism [77–79]. The smallest subsection of complex I is composed of the ND1-ND6
subunits that mainly form the transmembrane region core of the complex [80]. The main
candidate genes for the proton pump in mitochondrial complex I are the ND2, ND4, and
ND5 genes [81]. Mutations of these subunits may interfere with the efficiency of the proton
pumping process [82]. In general, amino acid changes can cause inefficiencies in the electron
transport chain system, which in turn affects mitochondrial energy production [82]. Certain
research studies show a relationship between locomotion and energy requirements by using
mitochondrial DNA. For example, it has been found that migratory fishes consume different
amounts of energy compared with nonmigratory species due to differences in swimming
that are reflected in the positive selections of ND1, ND3, and ND5 genes in the energy
consumption of migratory fishes [24,83]. In squamates, comparisons can be made between
different movement modes of limbed and limbless species. Locomotion was supported by
the remaining limbs and body swing together in Dibamus bourreti, in which the ATP6 gene
was selected compared with limbed species [33]. Furthermore, one of the major energy
regulation genes in mitochondria of the limbless skink I. gyldenstolpei was selected (ND2
gene) during limb loss as compared with limbed skinks. This may be a relevant adaptation
to the energetic requirements of I. gyldenstolpei. The results suggest that the difference
in energy demand between limbless and limbed skinks may be related to the change of
locomotion that promotes the evolution of mitochondrial DNA in different directions.
However, considering the limited samples, this conclusion needs to be further verified. In
future studies, we will consider adding more lizard samples to further explore whether the
loss of limbs is associated with the adaptive evolution of energy-regulating genes.

5. Conclusions

In this study, the complete mitochondrial genome of a limbless skink, I. gyldenstolpei,
was reported for the first time, representing the first complete mitochondrial genome of
a limbless skink that has been recorded in Scincidae. At the same time, to compare with
the mitochondrial genomes of limbless skinks, the complete mitochondrial genomes of
two limbed skinks, S. indicus and T. hainanus, were also sequenced. Before this study, there
was no complete mitochondrial genome of T. hainanus on NCBI, and only one complete
mitochondrial genome of S. indicus. This study provides the complete mitochondrial
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genomes of S. indicus and T. hainanus to enrich the gene database of skinks. The mito-
chondrial genome structures of the three skinks were similar to the typical mitogenomes
of reptiles. The clade of ((Sphenomorphinae + Scincinae) + Mabuyinae) in Scincidae was
supported by both BI and ML analyses. The subfamily Scincinae was paraphyletic with
respect to Sphenomorphinae and Mabuyinae. Our results support the conclusion that
limbless Isopachys were more closely related to Tropidophorus, which as a result formed the
clade (((Isopachys + Tropidophorus) + (Sphenomorphus + Scincella)) + Ablepharus). Compared
with limbed skinks, one selective site was found in the mitochondrial genes of limbless I.
gyldenstolpei. The selected site was located in the ND2 gene (position 2017, BEB = 0.907),
and site 28 of the ND2 gene was located in the domain of the proton-conducting membrane
transporter by the functional analysis.
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