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Most of the obesity-related complications are due to ectopic fat accumulation. Recently, the activation of the cell-surface receptor
for advanced glycation end products (RAGE) has been associated with lipid accumulation in different organs. Nevertheless, the role
of RAGE and sRAGE, the soluble form that prevents ligands to activate RAGE, in intramyocardial lipid accumulation is presently
unknown. To this aim, we analyzed whether, in obesity, intramyocardial lipid accumulation and lipid metabolism-related
transcriptome are related to RAGE and sRAGE. Heart and serum samples were collected from 10 lean (L) and 10 obese (OB)
Zucker rats. Oil red staining was used to detect lipids on frozen heart sections. The lipid metabolism-related transcriptome
(84 genes) was analyzed by a specific PCR array. Heart RAGE expression was explored by real-time RT-PCR and Western
blot analyses. Serum levels of sRAGE (total and endogenous secretory form (esRAGE)) were quantified by ELISA. Genes
promoting fatty acid transport, activation, and oxidation in mitochondria/peroxisomes were upregulated in OB hearts.
Intramyocardial lipid content did not differ between OB and L rats, as well as RAGE expression. A slight increase in epicardial
adipose tissue was observed in OB hearts. Total sRAGE and esRAGE concentrations were significantly higher in OB rats.
sRAGE may protect against obesity-induced intramyocardial lipid accumulation by preventing RAGE hyperexpression,
therefore allowing lipids to be metabolized. EAT also played a protective role by working as a buffering system that protects the
myocardium against exposure to excessively high levels of fatty acids. These observations reinforce the potential role of RAGE
pathway as an interesting therapeutic target for obesity-related complications, at least at the cardiovascular level.

1. Introduction

Obesity is one of the leading risk factors for cardiovascular
diseases [1]. Most of the obesity-related complications may
deal with fat accumulation in tissues different from the
adipose one, among which are the liver, muscle, and pancreas
[2–5]. This can take place also in the heart where lipid
deposition may promote organ damage and dysfunction by

inducing abnormalities in cardiac cell metabolism as well as
structural adaptation of the cardiovascular system [6]. Intra-
myocardial lipid accumulation has been observed in different
animal models of obesity [7, 8]. Human studies also demon-
strated an existing association between myocardial fat
content and adiposity [9–12]. Although preclinical studies
described some potential cellular and molecular mechanisms
linking obesity to heart steatosis [13–16], the identification of
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additional pathways and potential targets that could be useful
to prevent and/or reverse the detrimental effects of obesity at
the cardiovascular level is a compelling need.

Recent insights, also from our group, demonstrated the
involvement of the cell membrane receptor for advanced gly-
cation end products (receptor for AGEs (RAGE)), a known
trigger of inflammation and oxidative stress [17–19], in
inducing adipocyte hypertrophy, adipose tissue expansion,
and also ectopic lipid accumulation in different organs, such
as the liver [20–24]. Contrarily, its corresponding soluble
form, sRAGE, seems to work as a decoy receptor. By binding
RAGE ligands in the circulation, sRAGE can prevent
membrane RAGE activation and related detrimental effects.
Among the different forms that compose the circulating
sRAGE pool, namely, cRAGE and esRAGE, the former is
the most abundant, but the real decoy receptor seems to be
the latter. The circulating levels of total sRAGE and the
different forms have also been suggested as biomarkers of
different cardiometabolic complications [25–28].

Nevertheless, the role of RAGE and sRAGE in heart
steatosis is presently unknown. In this study, we aimed to
analyze whether, in obesity, intramyocardial lipid accumula-
tion and lipid metabolism-related transcriptome are related
to RAGE and sRAGE forms by using Zucker rats as a model
of obesity.

2. Materials and Methods

2.1. Animal Model and Tissue Collection. Ten obese nondia-
betic male Zucker rats (OB) (fa/fa, 10 weeks of age) and
10 lean littermates (L) (Fa/?) were purchased from Charles
River Laboratories (Calco, Lecco, Italy). The rats were housed
at constant room temperature (22 ± 2°C) and humidity
(60 ± 5%) with a light-dark cycle of 12 hours each and fed a
standard rodent chow (10% fat) and water ad libitum. At
the age of 25 weeks, the rats were anesthetized with zoletil
(20mg/kg) and sacrificed by cervical dislocation. Ten hearts
(five L and five OB) were stored in Allprotect Tissue Reagent
(QIAGEN, Hilden, Germany) at -20°C until RNA and pro-
tein extraction. The remaining hearts were fresh frozen in
OCT for cryosectioning. Blood was obtained by cardiac
puncture, and after cloating, serum was isolated by centrifu-
gation at 1500 g for 15min. The Italian Ministry of Health
approved the procedures of animal care, anesthesia, euthana-
sia, and tissue collections for this study (Ministerial Authori-
zation 325/2015PR of 2015/04/05).

2.2. Heart Lipid Staining. Staining of lipids was performed
with Oil Red O (ORO) dye (Sigma-Aldrich, Milan, Italy).
Briefly, 10μm cryostat sections were air dried, formalin fixed
(5 minutes in 10% ice-cold formalin), and washed with
running tap water. After rinsing with 60% isopropanol, the
sections were stained with freshly prepared ORO working
solution, obtained by diluting ORO with deionized water
in a ratio of 3 : 2, for 15 minutes. A second wash with
60% isopropanol and a counterstaining with hematoxylin
were performed. A coverslip was applied by using an
aqueous medium. The lipid resulted in a red stain, while
the nuclei in blue. Slides were visualized with a Nikon

Eclipse 80i microscope, and images were captured with the
attached digital camera and image acquisition software.

2.3. RNA Extraction and Reverse Transcription. Total RNA
was isolated from rat hearts using the RNeasy Lipid Tissue
Mini Kit (QIAGEN), according to the manufacturer’s
instructions. Elution was performed with 30μL of RNase-
free water, and the RNA concentration was quantified with
NanoDrop (Thermo Fisher Scientific, Waltham, MA). RNA
samples (1μg) were first treated with a genomic DNA elimi-
nation step (42°C for 5min) and then reversely transcribed
in 20μL using the RT2 First Strand Kit according to the
manufacturer’s instructions (QIAGEN).

2.4. Real-Time PCR Assay. The lipid metabolism-related
transcriptome was evaluated by real-time PCR using the
ready-to-use rat Fatty Acid Metabolism RT2 Profiler PCR
Array (PARN-007Z, QIAGEN) which profiles the expression
of 84 key gene transcripts involved in lipid metabolism. Each
cDNA sample was diluted with nuclease-free water and
mixed with the RT2 SYBR green Mastermix (QIAGEN).
Twenty-fiveμL of the experimental mixture was added to
each well of the rat Fatty Acid Metabolism array (one array
for each cDNA). Real-time PCR was performed on the
CFX96 thermocycler (Bio-Rad, Milan, Italy) using the
following cycling conditions: (1) 95°C/10min and (2) 40
cycles: 95°C/15 sec followed by 60°C/1min. Dissociation
curves were then performed to verify PCR specificity using
the default melting curve program of the instrument. Data
were analyzed using the QIAGEN RT2 Profiler PCR Array
Data Analysis Web Portal. RAGE gene expression was
carried out according to the manufacturer’s instructions
using specific rat primers (PPR44508A, QIAGEN) and the
same mastermix, thermocycler, and conditions previously
indicated. Each sample was run in triplicate, and the fold dif-
ference between groups was evaluated by the ΔΔCt method.

2.5. Analysis of Real-Time PCR Array. Each array contained
5 housekeeping genes for normalization, 1 genomic DNA
control, 3 reverse transcription controls, and 3 positive PCR
controls. Following real-time PCR, data from all the arrays
were analyzed using the same threshold. Cycle threshold
(Ct) values > 35 were considered a negative call. Ct for geno-
mic DNA controls > 35 and Ct of 20 ± 2 for the positive PCR
controls confirmed the lack of DNA contamination and
efficient PCR amplification, respectively. According to the
manufacturer’s protocol, normalization of the expression
data of the analyzed samples can be performed using one of
the housekeeping genes or any other of the 84 genes, pro-
vided that the Ct values of the gene used for normalization
does not differ more than 1.5 cycles in all samples (plates).
Among the housekeeping and tested genes, SLC27A4 was
identified as the most stable gene between our groups and
therefore selected as the housekeeping gene for our study.
Normalization was performed by calculating the ΔCt for
each gene in the plate. The RT2 Profiler PCR Array Data
Analysis Web Portal was used to calculate the fold change
based on the ΔΔCt method. For fold-change values greater
than 1, the results were reported as fold upregulation. For
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fold-change values less than 1, the negative inverse of the
results are reported as fold downregulation. The p values
were calculated using the QIAGEN RT2 Profiler PCR Array
Data Analysis Web Portal and were based on Student’s t-test
(two-tail distribution and equal variances between the two
samples) on the replicate 2-ΔCt values for each gene in
each treatment group compared to the control group and
considered significant for values < 0 05.

2.6. Western Blot Analysis. Samples of heart tissues were
homogenized with TissueLyser II (QIAGEN) in ice-cold
RIPA lysis buffer (50mM Tris-HCl, pH7.5, 150mM NaCl,
1mM EDTA, 1mM EGTA, 1% Triton X-100, 0.1% SDS,
0.5% Na-deoxycholate, and 50mM sodium fluoride) con-
taining 1% protease inhibitor cocktail (Sigma-Aldrich,
Milan, Italy). The homogenate was kept on ice for 30min,
centrifuged at 500 rpm for 10min at 4°C, and the resulting
supernatant centrifuged at 13,200 rpm for 15min at 4°C.
Protein concentration was determined with the Quantum
Protein Assay Kit, based on the BCA reagent (EuroClone,
Milan, Italy). Equal amounts of protein samples (50μg) were
suspended in Laemmli sample buffer and separated using
4-20% Mini-PROTEAN TGX Stain-Free Gels and Tris/
Glycine/SDS running buffer (Bio-Rad). After SDS-electro-
phoresis, TGX Stain-Free Gels were activated for 1min and
imaged using the ChemiDoc Touch System and the Image
Lab 5.2.1 software (Bio-Rad). The separated proteins were
then transferred from the gel to a nitrocellulose membrane
using the Trans-Blot Turbo Mini Nitrocellulose Transfer
Packs and the Trans-Blot Transfer System (Bio-Rad). The
membranes were blocked with 5% dry milk in Tris-buffered
saline/0.1% Tween 20 for 1 h at room temperature, and the
blots were then incubated overnight at 4°C with a diluted
solution of the primary anti-RAGE antibody (1μg/mL)
(Abcam, Cambridge, UK). The subsequent incubation with
a secondary antibody conjugated with peroxidase was per-
formed at room temperature for 2 h. Immunoreactivity was
detected by a working solution (Clarity Western ECL Sub-
strate, Bio-Rad) and the ChemiDoc Touch System. Analysis
included the determination of total stain-free fluorescence
and signal for RAGE of each sample/lane on the blots using
the Image Lab software. RAGE signals were normalized with
stain-free total lane volumes [29].

2.7. sRAGE and esRAGE Enzyme-Linked Immunosorbent
Assays (ELISA). Circulating levels of sRAGE and esRAGE
were quantified on serum samples according to the manufac-
turer’s directions, with the following assays: rat sRAGE duo
set ELISA (DY1616, R&D System, Minneapolis, MN) and
rat esRAGE ELISA (E-EL-R2497, Elabscience, Houston,
TX). The GloMax®-Multi Microplate Multimode Reader
was used for photometric measurements (Promega, Milan,
Italy).

2.8. Statistical Analysis. Data are expressed as mean ± SD.
The normality of data distribution was assessed with the
Kolmogorov-Smirnoff test. t-test or Mann-Whitney tests
were used for group comparisons. Data were analyzed using
the GraphPad Prism 5.0 biochemical statistical package

(GraphPad Software, San Diego, CA). A p value< 0.05 was
considered significant.

3. Results

3.1. Fat Staining on Heart Tissues. In the myocardium, no
lipid accumulation was found, either in the L (Figure 1(a))
or in the OB rats (Figure 1(b)). In both the L and OB ani-
mals, a small amount of fat (red staining) was visible in
the atrioventricular groove underneath the epicardium
(epicardial adipose tissue (EAT)). Compared to the L animals
(Figure 1(c)), the accumulation was slightly more consistent
in the OB rats (Figure 1(d)).

3.2. Evaluation of Heart RAGE Expression. We compared
OB and L hearts in term of RAGE expression. RAGE
did not differ between the two animal groups at both the
gene (fold change: -1.3, p > 0 05) and the protein level
(Figure 2, p > 0 05).

3.3. Evaluation of LipidMetabolism-Related Transcriptome in
Hearts. The rat Fatty Acid Metabolism RT2 Profiler PCR
Array allowed us to assess the expression of 84 genes
involved in fatty acid metabolism, fatty acid transport, fatty
acid biosynthesis regulation, ketogenesis and ketone body
metabolism, and triacylglycerol metabolism. Among the 84
genes, 16 had a Ct between 30 and 35 in both OB and L rats,
which means low levels of expression, and 68 had a Ct below
30. As shown in Figure 3, 16 genes were upregulated in OB
hearts. Among these, 9 genes are involved in fatty acid
metabolism. In detail, one (Acaa2) is an acetyl-CoA transfer-
ase, 4 (Acad11, Acad9, Acadl, and Acadm) are acetyl-CoA
dehydrogenases, 3 (Acot12, Acot2, and ACot9) are acetyl-
CoA thioesterases, and 1 (Acsbg2) is an acetyl-CoA synthe-
tase. One gene (Bdh2) is involved in ketogenesis and ketone
body metabolism, 1 (Gpd1) is involved in triacylglycerol
metabolism, 1 (Prkag2) participates in the regulation of fatty
acid biosynthesis, and 2 are involved in fatty acid transport
(Crat and Slc27a2). The other two genes (Decr1 and Eci2)
are also involved in metabolic pathways that regulate fatty
acid metabolism. A statistically significant difference was
also observed for two of these genes (Prkag2 and Slc27a2)
(p value< 0.05, OB vs. L).

3.4. Evaluation of sRAGE and esRAGE Plasma Levels. Circu-
lating levels of total sRAGE and esRAGE were quantified
on serum samples. cRAGE was calculated as the difference
between the total and the esRAGE form instead. As shown
in Figure 4, sRAGE levels (Figure 4(a)) were higher in OB
than in L (1869 00 ± 296 90 vs. 1115 00 ± 166 90pg/mL,
respectively, p < 0 05) as well as esRAGE (Figure 4(b))
(115 90 ± 43 85 vs. 37 89 ± 21 67pg/mL, respectively, p <
0 001). Levels of cRAGE (Figure 4(c)) did not differ between
the two groups instead (1403 00 ± 588 30 vs. 1169 00 ±
526 80 pg/mL, respectively, p = 0 373).

4. Discussion

The main finding of this study is the observation that
intramyocardial lipid accumulation does not occur in OB rats
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that display increased circulating levels of sRAGE, namely,
the esRAGE form, and that there is no change in the RAGE
expression in the heart. The reasons for exploring the associ-
ation between RAGE, sRAGE, and heart steatosis in obesity
were many, but there were two immediate ones: a previously
described role of RAGE in promoting lipid accumulation and
the lack of information about RAGE and heart steatosis in
obesity [21, 22, 30–34].

According to previous findings [35, 36], we expected to
observe an increased intramyocardial lipid deposition in
OB rats. Differently, fat did not accumulate ectopically in
the myocardium, while EAT was slightly increased. Fatty
acids are the main fuel for the heart, and intramyocardial
fat accumulation may occur when fatty acid availability and
oxidation are not properly balanced. In obesity, visceral fat
displays an increased level of lipid turnover that, together
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Figure 2: Western blot analysis of RAGE expression in obese and lean hearts. RAGE protein levels were quantified in 5 obese and 4 lean
heart samples by Western blot analysis. The fiftyμg protein extract/lane was analyzed with the anti-RAGE antibody. A representative
blot, the corresponding stain-free gel utilized for protein normalization, and the semiquantitative analysis are shown. Data are expressed
as mean ± SD.
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Figure 1: Fat staining on heart tissues. Ten μm heart cryostat sections were stained with Oil Red O dye. (a) and (c) are representative pictures
of lean heart tissues and (b) and (d) of obese heart tissue. Red staining in (c) and (d) indicates (arrowheads) epicardial adipose tissue. Images
were all captured at 10x magnification.
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with an increased release of proinflammatory molecules from
adipocytes and/or infiltrating macrophages, gives rise to
metabolic complications in different organs [37–39]. The

lack of intramyocardial lipid accumulation in OB rats may
result from an increased lipid utilization by cardiac cells
and storage in EAT. Although the expansion of EAT in
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Figure 3: Lipid metabolism-related transcriptome in obese and lean hearts. Gene expression profile was evaluated using the rat Fatty Acid
Metabolism RT2 Profiler PCR Array. Genes that showed a fold change > 1 5 in obese vs. lean groups are represented and grouped
according to their biological function.
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Figure 4: Serum levels of sRAGE, esRAGE, and cRAGE in obese and lean rats. Serum levels of total sRAGE (a) and esRAGE (b), quantified in
serum samples, were higher in obese than in lean animals. Levels of cRAGE were calculated as the difference between the total and the
esRAGE form and did not differ between the two groups (c). Data are expressed as mean ± SD. ∗p < 0 05 and ∗∗p < 0 001 vs. the lean group.
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obesity led to considering it as a pathological organ, this
depot may also play important protective effects on heart
metabolism. In fact, EAT has been proposed to provide fatty
acids for the myocardium and to function as a buffering
system that protects the heart against exposure to excessively
high levels of fatty acids [40]. In our obesity model, its slight
increase seems thus to play a protective role in terms of heart
lipid metabolism. Moreover, from a molecular point of
view, data obtained from the lipid metabolism-related
transcriptome also suggested the activation of specific meta-
bolic pathways that promote lipid utilization instead of depo-
sition in OB hearts. In particular, the increased expression of
Acaa2 (acetyl-CoA transferase), Acad11, Acad9, Acadl and
Acadm (acetyl-CoA dehydrogenases), Acot12, Acot2 and
ACot9 (acetyl-CoA thioesterases), Crat and Slc27a2 (fatty
acid transporters), Decr1 and Eci2 (accessory enzymes which
participate in betaoxidation), and Acsbg2 (acetyl-CoA syn-
thetase) confirmed the activation of metabolic pathways that,
by promoting fatty acid transport, activation, and oxidation
in mitochondria/peroxisomes, represent a protective mech-
anism against fat accumulation. On the other side, the
upregulation of Gpd1, a key element that connects carbo-
hydrate and lipid metabolism, and Prkag2, the noncatalytic
subunit of AMP-activated protein kinase that in response
to increased intracellular ATP levels activates energy-
producing pathways (i.e., biosynthesis), might contribute
to increase the synthesis of triacylglycerol. However, the
increase in fatty acid oxidation which reduces fatty acids
necessary for glycerol 3-phosphate esterification protects
against fat accumulation [41].

Which is the role of RAGE in promoting fat accumula-
tion? Previous studies demonstrated a link between increased
RAGE expression and activation of pathways that can
promote lipid accumulation in many cell types/tissues and
suggested that therapies preventing RAGE activation are able
to reduce these effects [21, 30, 33, 34, 42]. Results obtained in
this study emphasized the potential association between
RAGE, lipid accumulation, and genes involved in lipid
metabolism in the heart; however, they did not prove a direct
cause-effect relationship. Just the manipulation of RAGE
expression in in vitro studies will be able to confirm the role
of the receptor in affecting specific lipid metabolic pathways
that can finally lead to lipid accumulation. Another interest-
ing question is why RAGE levels, different from what was
expected, did not increase. Obesity is a condition character-
ized by increased levels of many RAGE ligands, such as AGEs
and ALEs (advanced lipoxidation end products). Formation
of these products is a naturally occurring process and is the
result of normal metabolism. However, their production
and accumulation is enhanced under chronic inflammation
and oxidative stress, two conditions accompanying obesity,
and this may occur before obesity-related complications
become manifest. A significant accumulation of RAGE
ligands has been described in murine models of obesity, in
which these products can promote engagement of the RAGE
pathway and RAGE upregulation and detrimentally impact
organ function [32, 43–45]. Any mechanism preventing
RAGE engagement and activation may thus protect against
detrimental effects. sRAGE just plays this protective role,

and its upregulation may be acknowledged as a mechanism
that prevents RAGE activation and RAGE-mediated ectopic
lipid deposition. With regard to sRAGE, it is also important
to point out that this soluble form is a pool composed
by cRAGE, derived by the proteolytic cleavage of the
membrane-bound molecule RAGE, and esRAGE, the endog-
enous secretory form. Among these forms, an increase in the
cRAGE level is considered a surrogate marker of inflamma-
tion. In fact, the activation of RAGE and its proinflammatory
signaling promotes the expression of membrane RAGE and
inflammation-related enzymes, such as the matrix metallo-
proteinase 9, which upregulate RAGE cleavage and release
into the blood [46]. esRAGE, instead, is endogenously
secreted. Since it works as a decoy receptor, keeping its levels
high is a protective mechanism against RAGE activation,
upregulation, and related damaging effects [47–50]. Accord-
ing to our results, the observed increase in esRAGE may be
considered a counterregulatory strategy activated by the
body to reduce the obesity-related damaging effects. In
our animal model, thus, until esRAGE levels are high, no
intramyocardial lipid deposition occurs and EAT plays a
protective role for the heart too. How long esRAGE levels
are kept high and how esRAGE levels potentially protect
against heart steatosis are two questions that can be
answered by just using animal models of different ages
that experience obesity for a longer time and already dis-
play different obesity-related cardiometabolic complica-
tions. Furthermore, reduction of esRAGE levels may also
impact on EAT by promoting a significant enlargement
of this depot, as previously described in our human studies
[28], and its transformation into pathological organs with a
well-documented role in the onset and progression of car-
diovascular diseases.

5. Conclusions

In conclusion, increased levels of sRAGE, namely, esRAGE,
seem to protect against ectopic lipid accumulation in the
myocardium by preventing RAGE hyperexpression, promot-
ing fatty acid storage in EAT and their oxidation. These
observations reinforce the potential role of RAGE pathway
as an interesting therapeutic target for obesity-related
complications, at least at the cardiovascular level.
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