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Abstract: Arboviruses transmitted by Aedes aegypti and Aedes albopictus have been introduced to
Florida on many occasions. Infrequently, these introductions lead to sporadic local transmission
and, more rarely, sustained local transmission. Both mosquito species are present in Florida, with
spatio-temporal variation in population composition. We developed a two-vector compartmental,
deterministic model to investigate factors influencing Chikungunya virus (CHIKV) establishment.
The model includes a nonlinear, temperature-dependent mosquito mortality function based on
minimum mortality in a central temperature region. Latin Hypercube sampling was used to generate
parameter sets used to simulate transmission dynamics, following the introduction of one infected
human. The analysis was repeated for three values of the mortality function central temperature.
Mean annual temperature was consistently important in the likelihood of epidemics, and epidemics
increased as the central temperature increased. Ae. albopictus recruitment was influential at the lowest
central temperature while Ae. aegypti recruitment was influential at higher central temperatures. Our
results indicate that the likelihood of CHIKV establishment may vary, but overall Florida is permissive
for introductions. Model outcomes were sensitive to the specifics of mosquito mortality. Mosquito
biology parameters are variable, and improved understanding of this variation will improve our
ability to predict the outcome of introductions.

Keywords: Chikungunya virus; invasion; transmission dynamics; Aedes aegypti; Aedes albopictus;
mathematical model

1. Introduction

Chikungunya virus (CHIKV) is an Alphavirus in the family Togiviridae, native to Africa, which
causes human disease and is transmitted by Aedes mosquitoes, primarily invasive Stegomyia. Zoonotic
cycles between sylvatic Aedes species and non-human primates occur in Africa [1], with spillover to
the human population, but elsewhere the transmission cycle is primarily between Ae. aegypti or Ae.
albopictus (in its invasive range) and humans. Aedes aegypti is considered the most common vector,
but outbreaks have occurred where Aedes albopictus is the dominant vector, such as in La Reúnion
in 2005–2006, India (2006), and Italy (2007) [1,2]. Three major lineages are recognized (East, Central,
and South African (ECSA), Asian, and West African (WA)), with an additional sublineage of ECSA
(Indian Ocean lineage, IOL). The genotypes of these lineages have diverged, and virulence in humans
varies among lineages [3]. In addition, a mutation in the envelope protein (E1-A226V) that enhances
transmission and reduces the extrinsic incubation period (EIP) in Ae. albopictus was found in the ECSA
lineage [4], but the lineage is heterogeneous for the presence of the mutation. Globally, CHIKV
transmission is ongoing [5] but can increase to outbreak levels and invade new areas. In 2014, there
were high levels of CHIKV transmission in the Americas and the Caribbean, leading to concern about
introduction of the virus to new areas. The risk of introductions and outbreaks continues, as illustrated
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by the ongoing outbreak in northeastern Brazil [6], with over 37,000 cases to date. This outbreak
consists of ECSA lineage CHIKV, without the mutation enhancing transmission in Ae. albopictus [7].

The risk of arbovirus introduction in Florida is high due to a permissive environment, the presence
of known vectors, and high movement of hosts, especially travelers, into the state from endemic or
outbreak regions. In 2010, a local outbreak of dengue virus (DENV) occurred in Key West, FL, USA [8],
increasing concern about local transmission of exotic arboviruses, especially those transmitted by
Ae. aegypti and Ae. albopictus, which are the only mosquitoes in the subgenus Stegomyia currently
present in Florida. Subsequently, many imported cases of dengue have been reported [9]. There have
also been sporadic cases with no travel history and of different serotypes, suggested repeated local
transmission, although without sustained transmission leading to outbreaks [10,11]. Concurrent with
high levels of CHIKV transmission elsewhere, in 2014 there were multiple introduced cases of CHIKV
in Florida [12], showing the invasion potential. During this time, low levels of local transmission
occurred, with one cluster in southeast FL [13]. Further illustrating the potential for arbovirus invasion
of Florida, in 2015–2016 there was widespread transmission of Zika virus (ZIKV) in South and Central
America and the Caribbean [14]. The introduction pressure was high, with >300 introduced cases
in FL [15]. Subsequently, autochthonous transmission occurred in multiple locations in Florida [15].
Currently, the factors leading to successful invasion and autochthonous transmission of arboviruses
are not well known.

Modeling has been used extensively to study the transmission dynamics of mosquito borne
arboviruses, across many systems and utilizing varied methodology (e.g., [16–20] also see reviews
in [21–24]). Temperature has been shown to be a key element, influencing many aspects of mosquito
and virus dynamics, but with a relatively wide range permitting transmission [25]. Previous models
of mosquito transmitted arboviruses have included varying levels of detail in mosquito population
dynamics and biology, genotype differences within viruses, host dynamics, and other complexities.
Manore et al. [20] modeled DENV and CHIKV in Ae. albopictus and Ae. aegypti, concluding that
reductions in the biting rate and vector to host ratio would have the most impact on initial epidemics
and endemic equilibria for all combinations considered. They compared the Asian lineage of
CHIKV in Ae. aegypti (their notation CHIKV-A) with the ECSA lineage in Ae. albopictus, including
the transmission-enhancing mutation (their notation CHIKV-R). Most parameters varied between
the two combinations, with CHIKV-R having wider ranges or higher transmission rates, a shorter EIP,
and lower turnover of the mosquito population. Under their assumptions and parameter estimates,
the CHIKV-R combination had higher prevalence and faster epidemics than did the CHIKV-A
combination. Their analysis suggests that the CHIKV-R combination would require integrated, larger
scale mitigation strategies than the CHIKV-A combination to achieve a similar reduction in epidemic
peaks. They did not consider the situation with a mixed mosquito population (both vectors present
simultaneously) nor the potential variation in transmission efficiency with different combinations of
CHIKV genetics and mosquito species. Both of these situations could occur with introductions of
CHIKV into Florida, and may affect the likelihood of a successful invasion (establishment and local
transmission).

Many arboviral epidemiological models have used simplified mosquito mortality functions, such
as a fixed rate (e.g., [20]) or increasing with temperature (e.g., [17–19]). Adult mosquito mortality in
the field is complex, and is likely influenced by many factors including climate, age, predators, and
the larval environment. Some of these factors have been investigated in some detail (e.g., age [26];
temperature [27]) but an improved understanding of how complexity in mosquito mortality affects
arboviral epidemiology is needed. In particular, increasing mortality with temperature may be
appropriate in some situations, but mortality may also increase with cooler temperatures. One
example is the complex polynomial fit by Yang et al. [27] to laboratory mortality data for Ae. aegypti.
However, it is unknown whether this function is applicable to other populations or species or in
the field, and the parameters are difficult to interpret biologically. As mosquito mortality directly
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impacts the probability of survival through the extrinsic incubation period, considering other complex,
biologically relevant relationships is important in addressing the risk of invasion in diverse locations.

The distribution of Ae. aegypti and Ae. albopictus across Florida is highly variable in both space and
time [28–32]. The two species share many characteristics, including larval development in a variety
of small water-holding containers such as discarded tires or plant pots. However, they also differ in
aspects important to arbovirus transmission, such as host preference [33–35]. The domesticated form
of Ae. aegypti prefers to feed on humans (e.g., [33,34]) while Ae. albopictus is more opportunistic, but
will readily feed on humans (e.g., [35–37]). Both are competent vectors for DENV, Zika virus (ZIKV),
and CHIKV, although there are population and strain differences in virus–mosquito interactions. With
this background, the risk of establishment and local transmission in Florida is expected to be highly
variable, and a better understanding of the factors affecting this risk is critically needed. Process-based
epidemiological modeling is an effective way to consider many combinations of factors to assess their
contribution to outcomes such as local transmission and number of infected people. A two-vector WNV
model for Florida demonstrated that the presence of two vector species can influence West Nile virus
dynamics [19]. However, that study focused on species with different seasonal patterns but similar
biology and transmission, while Aedes-transmitted arboviruses in Florida are likely to be more similar
in seasonal patterns but have differences in biology and transmission. Given the variation in the major
CHIKV vectors in Florida, understanding potential invasions requires inclusion of both vectors and
varying relative abundance in models to assess how these factors influence arboviral dynamics.

To address questions about the likelihood of successful establishment of CHIKV into Florida against
a background of fluctuating populations of two mosquito species, we adapted a previous two-vector
arbovirus model [19]. This model allows different population sizes, both absolute and relative, of Ae.
aegypti and Ae. albopictus, CHIKV strain variation, and includes a nonlinear relationship between adult
mosquito mortality and temperature. We used the model to investigate factors influencing risk of
invasion of CHIKV into different locations in Florida, and to consider the impact of fixed parameters
on model outcomes.

2. Materials and Methods

2.1. Model Structure

The basic model structure follows an earlier deterministic two-vector, multiple host arbovirus
model [19], which was developed from one-vector, two-host arbovirus models [17,18]. Two vectors
were retained but the host structure was simplified to consider only one host type, as there are no known
alternate hosts for CHIKV in Florida (Figure 1). The model is SIR (Susceptible–Infectious–Recovered)
for hosts (humans) and SEI (Susceptible–Exposed or latent–Infectious) for vectors. Virus genotype
differences are included by altering relevant parameters. Below, we detail the changes made to
the structure, equations, and parameters of the model to consider CHIKV introductions into Florida.
Other model structure and equations can be found in the references above. The model has a time step
of 1 day and is run for 730 days following virus introduction. A combination of stratified random
sampling and systematic variation was used for sensitivity analysis, detailed below. Model parameters
and ranges used in the sensitivity analysis are given in Table 1.
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Figure 1. Flow chart of model. Temperature dependent functions shown in green text, seasonal 
mosquito recruitment in red, and strain-specific transmission parameters (infection) in light blue 
(humans) and dark blue (mosquitoes). Species A is Aedes aegpti and Species B is Aedes albopictus. 

Table 1. State variables, parameters, and parameter distributions used in the model and LHC 
analysis. 

Descriptions Symbol Distribution a Range Center 
State variables 

Susceptible humans Hs    

Infectious humans Hin    

Recovered humans Hr    

Susceptible mosquitoes, species j Sj    

Latent mosquitoes, species j Lj    

Infectious mosquitoes, species j Yj    

Parameters 
Mean of temperature curve Tmean Uni 18–27  

Day virus is introduced tcrit Uni 5–360  

Human recovery rate rH Fixed  0.125 
Total (initial) number of humans Htot Fixed  50,000 

Both mosquito species 
Interval between pulses (both species) iv Uni 10–50  

Mean day peak one (from January 1) q1 Fixed  165 
Spread peak one σ1 Fixed  7 

Mean day peak two (from January 1) q2 Fixed  245 
Spread peak two σ2 Fixed  15 

Width of optimal survival range W Fixed  2 
Central point of optimal survival temperature range Tempc Set values [10,16,22]  

Aedes albopictus 
Transmission mosquito to human host  balb Tri 0.1–0.7 0.4 
Transmission human host to mosquito βalb Tri 0.1–0.7 0.4 

Days between blood feeding on humans  αalb Tri 2–20 5 
Proportion of population in peak one pδ1,alb Fixed  0.2 

Proportion of population in pulses all year pbase,alb Fixed  0.15 
Temperature—mortality slope µsl,alb Uni 0.05–0.15  

Virus development at 22.5 °C  γ22,alb Fixed  0.25 
Temperature—virus development slope  γsl,alb Tri 0.004–0.02 0.015 

Maximum recruitment ρmax,alb Tri 100–20,000 5000 
Total recruitment through year Rtot,alb Calculated   

Figure 1. Flow chart of model. Temperature dependent functions shown in green text, seasonal
mosquito recruitment in red, and strain-specific transmission parameters (infection) in light blue
(humans) and dark blue (mosquitoes). Species A is Aedes aegpti and Species B is Aedes albopictus.

Table 1. State variables, parameters, and parameter distributions used in the model and LHC analysis.

Descriptions Symbol Distribution a Range Center

State variables

Susceptible humans Hs
Infectious humans Hin
Recovered humans Hr

Susceptible mosquitoes, species j Sj
Latent mosquitoes, species j Lj

Infectious mosquitoes, species j Yj

Parameters

Mean of temperature curve Tmean Uni 18–27
Day virus is introduced tcrit Uni 5–360
Human recovery rate rH Fixed 0.125

Total (initial) number of humans Htot Fixed 50,000

Both mosquito species

Interval between pulses (both species) iv Uni 10–50
Mean day peak one (from January 1) q1 Fixed 165

Spread peak one σ1 Fixed 7
Mean day peak two (from January 1) q2 Fixed 245

Spread peak two σ2 Fixed 15
Width of optimal survival range W Fixed 2
Central point of optimal survival

temperature range Tempc Set values [10,16,
22]

Aedes albopictus

Transmission mosquito to human host balb Tri 0.1–0.7 0.4
Transmission human host to mosquito βalb Tri 0.1–0.7 0.4

Days between blood feeding on humans αalb Tri 2–20 5
Proportion of population in peak one pδ1,alb Fixed 0.2

Proportion of population in pulses all year pbase,alb Fixed 0.15
Temperature—mortality slope µsl,alb Uni 0.05–0.15
Virus development at 22.5 ◦C γ22,alb Fixed 0.25

Temperature—virus development slope γsl,alb Tri 0.004–0.02 0.015
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Table 1. Cont.

Descriptions Symbol Distribution a Range Center

Maximum recruitment ρmax,alb Tri 100–20,000 5000
Total recruitment through year Rtot,alb Calculated

Aedes aegypti

Transmission mosquito to human host baeg Tri 0.1–0.7 0.4
Transmission human host to mosquito βaeg Tri 0.1–0.7 0.4

Days between blood feeding on humans αaeg Tri 1–5 3
Proportion of population in peak one pδ1,aeg Fixed 0.25

Proportion of population in pulses all year pbase,aeg Fixed 0.13
Minimum mortality (at Tempc ±W) µmin,aeg Fixed 0.1
Slope of temperature—mortality line µsl,aeg Uni 0.05–0.15

Virus development at 22.5 ◦C γ22,aeg Fixed 0.25
Temperature—virus development slope γsl,aeg Tri 0.004–0.02 0.015

Maximum recruitment ρmax,aeg Tri 100–20,000 5000
Total recruitment through year Rtot,aeg Calculated

LHC—Latin hypercube sampling; a Distributions: Tri, triangular, Uni, uniform.

2.1.1. Temperature Cycle

The previous models considered only one location, while the intent of this model was to consider
risk of invasion across Florida. Temperature is modeled with an annual cycle of daily mean temperatures.
We analyzed historical yearly means and amplitudes and determined that, for this set of weather
station data in Florida, means and ranges are correlated (Figure S1, r = −0.96). Therefore, we used
the annual mean temperature (Tmean) as a parameter (Table 1) in sensitivity analyses, then calculated
Trange using a linear equation fit to the data,

T range = 42.05− 1.3 ∗ Tmean (1)

daily temperature was then calculated as

Tday =

(
Trange

2

)
∗

(
−cos

[ 2π
365

(t− 26.5)
])
+ Tmean. (2)

Day 0 of the simulation is 1 January; the offset in the cosine function (26.5) aligns the temperature
function maximum with historical annual peak temperatures. Tmean was varied to reflect spatial and
temporal variation in Florida (Table 1).

2.1.2. Human Population

To focus attention on the dynamics of the mosquito–virus interaction, the human population
was simplified. Human populations are relatively stable over short time periods, so the human
population size was fixed at the initial value (Htot) and there were no births, immigration, mortality,
or emigration. Although neuroinfection and deaths have been reported [38], CHIKV frequently has
a low fatality rate [39] so disease-induced mortality was not included. Human population size does
vary in communities across Florida, and the size of the human population interacting with a mosquito
population is often unknown and dynamic. To focus attention on the differences in the mosquito
populations, human population size was fixed at 50,000 in this analysis. The mosquito population
size (see below) is described as mosquitoes per human host per year. No latent period in humans
was included, as this was thought to be relatively short [39] and, with no human mortality, would act
only to slightly slow or delay the dynamics. The duration of infectiousness in humans may extend
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beyond the symptomatic period (approximately 1 week [40]), and more recently has been suggested
to last longer than in other arboviruses [41]). In addition, recent work suggests variability between
people and PCR detection of virus for 4–16 days [42]). To focus attention on the mosquito elements of
the model, for this analysis duration of infectiousness was set at 8 days.

2.1.3. Mosquito Population Dynamics and Seasonality

Mosquito dynamics are highly variable, with both environmental and biotic influences. To
focus on the mosquito–virus interactions, we simplified mosquito dynamics. We assumed that water
availability would be the primary driver of recruitment to the adult population, and that both species
would respond similarly. This model forces seasonal recruitment using repeated year-round pulses (iv
days apart) and two large peaks (~N(qi, σi); i = [1,2] for spring, summer peaks) in adult recruitment
([19], Figure S2). Abundance is specified as ρmax,j, the number of adult female mosquitoes of species j
per human host over the entire year. The total number of mosquitoes of species j is then given by Rtot,j
= Htot*ρmax,j where Htot is the number of humans, and is partitioned between the pulses and peaks by
the proportion in the baseline pulses (pbase,j) and in the first peak (pδ1,j); the proportion in the second
peak is thus

pδ2, j = 1− pbase, j − pδ1, j. (3)

Recruitment to the adult population was thus (for each mosquito species j, j = [aegypti, albopictus]):

ρ j(t) = ρb, j + pδ1Rtot, jδ1 + [1− (pbase + pδ2)]Rtot, jδ2 (4)

where

δi(t) =
1

2πσi
exp

−(qi − t)2

2σi2

 (5)

ρb, j(t) =
pbaseRtot, j

iv
. (6)

2.1.4. Mosquito Mortality

The previous models used a simple linear increase in mortality with temperature over a relatively
narrow temperature range. To include a wider temperature range, increases in mortality at colder
temperatures needed to be considered. One study showed relatively little change in mortality over
a wide temperature range for Ae. aegypti [27], increasing outside the optimal range. Laboratory
studies may underestimate mortality, and this study did not extend to temperatures likely to be
immediately lethal [27]. The authors fit higher order polynomials to their data, with the best fit with
a 4th order polynomial. However, the parameters of this polynomial equation are not easily interpreted
biologically. We modeled temperature dependent mortality for both species with a piecewise linear
function, resulting in low mortality in an optimal survival temperature range and linear increases
on each side. The minimum mortality (µmin, j) and slope with respect to temperature (µsl,j) varied
separately for each species (j = [1, 2]) but the center of the optimum survival temperature range (Tempc)
did not. The optimum survival range was narrow (Tempc ±W; W = 2 ◦C) to allow more variation in
the slope while still reaching high levels of mortality (Figure 2). The mortality rate was bounded (µmin,
1) although the maximum of 1 may not be reached under all parameter combinations. Thus,

µ j(t) =


µmin, j − µsl, j(Temp− Tempc + 2) Temp < Tempc − 2

µmin, j Tempc − 2 < Temp < Tempc + 2
µmin, j + µsl, j(Temp− Tempc − 2) Temp > Tempc + 2

 (7)
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Figure 2. Mortality functions. (A) µsl = 0.05; (B) µsl = 0.15.

2.1.5. Virus Development in Mosquitoes and Vector Competence

The mutations in CHIKV that allow increased vector competence in Ae. albopictus affect the EIP
(rate of viral development) and the proportion of insects that can acquire and transmit the virus [4].
Virus development in mosquitoes, or the duration of the EIP, is well known to be temperature
dependent (e.g., DENV, [16,43,44]; West Nile virus, [45]; CHIKV, [46,47]), and there was evidence that
virus development is faster for CHIKV than for some other Aedes-transmitted arboviruses [46,48]. We
retained the previous structure of a linear increase with temperature and added a lower bound of 10 ◦C,
below which no development occurs. Parameters for this equation vary between mosquito species and
are given by γ22,j and γsl,j, virus development at 22 ◦C, and the slope of the line, respectively. The EIP
is then 1/γj and thus is temperature dependent and can vary between mosquito species. The ability of
the mosquitoes to acquire (bj) and transmit the virus (βj) is species-specific and varied independently.
In this analysis, the vector competence parameters were not correlated, to assess their independent
effects on dynamics.

2.1.6. Model Equations

The model structure consists of nine differential equations following changes in susceptible,
infected, and recovered humans and susceptible, exposed (latently infected) and infectious mosquitoes
of each species (j):

As detailed above, mosquito recruitment, mortality and virus development are temperature and
thus time dependent but not formally noted in Equation (8) as such for clarity.

In a deterministic model, a virus can persist at extremely low levels where, in a stochastic situation,
it would have a high probability of going extinct. To address this, if the combined virus prevalence
went below 0.5 (i.e., Hin +

∑
j(L j + Y j) < 0.5) the virus was assumed to die out and all state variables

including infection reset to 0.

dHs
dt = −Hs

 2∑
j=1

a jb j
Htot
∗Y j


dHin

dt = Hs

 2∑
j=1

a jb j
Htot
∗Y j

− rHHin

dHr
dt = rHHin

dS j
dt = ρ j − µ jS j − a jβ j(

Hin
Htot

)S j
dL j
dt = a jβ j(

Hin
Htot

)S j − γ jL j − µ jL j
dY j
dt = γ jL j − µ jY j

Htot = Hs + Hin + Hr

(8)
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2.2. Parameter Values and Sensitivity Analysis

Latin hypercube sampling (LHC), a stratified random sampling method (e.g., [17,18,49]) was used
for sensitivity analysis. Briefly, for each parameter of interest a probability density function (pdf) is
chosen. The probability axis is divided into Z equi-probable intervals and one value chosen from
each interval. These probabilities are then back-transformed into parameter values. Values for each
parameter are randomly resorted into Z parameter sets used to run the model; here Z = 250. We used
uniform pdfs where little information was available or the intent was to extend over biologically or
environmentally feasible ranges, defining the maximum and minimum values. Triangular distributions
were used when data were available to identify a most probable value (peak of the distribution)
along with maximums and minimums. A preliminary LHC analysis was conducted and showed
very high virus activity; parameters were adjusted to reduce outbreak activity to allow analysis and
reflect observations of infrequent establishment (few observed local transmission events relative to
observed travel-associated imported cases). Distributions and parameter values are given in Table 1
and discussed below, along with fixed values for parameters not varied in this analysis. In addition to
this analysis, Tempc (center of optimal survival range) was varied systematically, (10, 16, 22) repeating
the same LHC parameter sets with each Tempc value (for a total of 750 simulation runs). For each
LHC set (each value of Tempc), epidemic presence or absence was analyzed using multiple logistic
regression and the size of the epidemic (MaxHi) analyzed using multiple regression. Parameters were
ranked by the p-value of the coefficients and the top five parameters identified as factors of interest
and compared between Tempc values.

LHC and other variations on randomized sampling are unlikely to include sets of parameter
values of interest, for example comparing outcomes when a virus strain adapted to one mosquito
species is introduced into a mosquito population dominated by that species or another. To consider
these events, eight sets of parameter values (see Figure 6 for parameter values) were developed to
compare introductions of specific virus strains into defined mosquito populations. For this analysis,
human population size was reduced to 5000. Adaptation between viral strain and mosquito species was
defined as higher vector competence (bj and βj). To limit the parameters considered, EIP was not varied
in this comparison. Mosquito populations with varied proportions of the two species and selected
mosquito biology parameters, either identical or species-specific (aj, µmin,j, µsl,j), were modeled and
the outcome of introductions assessed. The size of the epidemic was compared between parameter sets.
Baseline model runs had mosquito biology parameters set identically between the species. The baseline
outcomes were compared to outcomes with species-specific population sizes and vector competence.

2.2.1. Mosquito Population Dynamics and Seasonality

We assume the two species respond similarly to water (rainfall, human generated water) and
temperature for hatching and larval development and thus the seasonality of recruitment to the adult
population will be similar. However, population abundance of both species varies across space and
time in Florida (e.g., [29,31]) and one goal was to consider how this spatio-temporal variation in
relative population sizes affects the likelihood of local transmission. Therefore, parameters describing
seasonality (iv, qi, σi (i = [1, 2]) were set equal for the two species, while parameters affecting relative
abundance were allowed to vary between species. Diapause was not considered, although diapause
in Ae. albopictus varies with latitude [50]. The two seasonal peaks occurred on days 165 and 245 (q1,
q2, respectively) with σi = [7, 15]. To consider variation in wetting events in the dry season, iv was
included in the LHS analysis and ranged from 10 to 50 days. Reflecting the rainy season in Florida
(approximately June through October) but also considering human generated water in containers
(e.g., irrigation, watering plants) and differential response of the two species to desiccation [51],
the proportion of mosquito recruitment in the year-round baseline pulses was fixed at pbase,j = [0.13,
0.15] [j = aegypti, albopictus] and in the spring peak at pδ1,j = [0.25, 0.2]. Recruitment to each population,
ρmax,j was sampled independently with a triangular distribution, over a wide range (100–20,000
mosquitoes/species/host/year). This resulted in both the total number of mosquitoes and the relative
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population size of the two species varying between runs in the sensitivity analysis. Note that although
seasonality in recruitment was the same for the two species, temperature-dependent adult mortality
was not (see above, [52]). Therefore, adult populations could show differences between species in
seasonal abundance. For these and other mosquito biology parameters, the goal was to consider effects
of variation expected across different environments and seasons and how differences in the two species
may affect transmission.

For the virus strain analysis, recruitment to each population was varied to produce populations
that were 0.998:0.002, 0.002:0.998, or 0.5:0.5 aegypti:albopictus. The parameter values to generate
these ratios were: total ρmax = 5000/host/year; equal recruitment: ρmax = 2500/species; asymmetric
recruitment: larger population ρmax = 4990, smaller population ρmax = 10.

2.2.2. Mosquito Mortality

Although there are numerous studies of mortality rates in both species (reviewed in [52]),
the relationship between laboratory measurements and field mortality is poorly understood. We
assume field mortality rates will be higher, and therefore extend the range of observed mortality
rates to include higher values. Temperature dependence is well documented in the lab, although less
so in the field. For both species, the minimum mortality was fixed (µmin,j = [0.1, 0.06]) with higher
mortality rates in Ae. aegypti. The slope of mortality with respect to temperature (µsl„j) was included
in the sensitivity analysis, with the same range (0.05–0.15) used for both species but values chosen
separately, so in each of the LHS runs the species would differ in their sensitivity to temperature. We
then systematically varied the central point of the temperature range with minimum mortality (constant
between species) over three temperatures (Tempc = 10, 16, 22), repeating the LHC parameter sets.

For the virus strain analysis, Tempc = 10 and 22 only. Minimum mortality was set higher in Ae.
aegypti than in Ae. albopictus to reflect shorter expected life span, but temperature sensitivity was lower
in Ae. aegypti as it is expected to be less sensitive to high temperatures (µmin,j = [0.08,0.06] and µsl,j =

[0.006, 0.08]).

2.2.3. Biting Rate

The biting rate, aj, (bites on humans per day) is the inverse of days between blood meals on
humans, αj. Non-human hosts are not explicitly modeled but included by adjusting aj. Aedes aegypti
can feed more frequently (e.g., [53,54]) and is more likely to feed on humans (e.g., [33,34]), while Aedes
albopictus can be more opportunistic (e.g., [35]) and so may feed on humans less frequently. However,
high variability between populations, particularly for Ae. albopictus, has been observed. Thus, αj is
higher and has a wider distribution for Ae. albopictus than for Ae. aegypti, with triangular pdfs used
for both to concentrate sampling near the most probable value (Ae. aegypti range 1–5, center 3; Ae.
albopictus range 2–10, center 5). The model was constructed to facilitate later inclusion of explicit host
preference [17,18] or seasonal shifts in host feeding behavior, but was constrained to aj = 1/αj for this
analysis. LHC sampling was done on αj then back-transformed for simulation.

In the virus strain analysis, the shorter interval between blood meals for Ae. aegypti was retained,
with α = 3d and for Ae. albopictus α = 4d. The difference between the species was decreased from
the most probable values (above) to focus attention on the virus transmission parameters (below).

2.2.4. Vector Competence and Virus Development in Mosquitoes

Studies of the vector competence and virus development of these two species and CHIKV strains
show variable results and a range of competency (10–80% transmitting virus; e.g., [4,46,55]). Some
CHIKV strains have acquired mutations that increase the competence of Ae. albopictus (although Ae.
aegypti may still be the more competent vector). The ability of the mosquitoes to acquire and transmit
the virus (bj) is therefore species-specific. There is less information available on the rate of human
infection following infectious bites (βj), so the range and most likely values for βj were set the same as bj
but varied independently in the LHC sensitivity analysis. Preliminary analysis with ranges including
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higher transmission rates reported in the literature generated high levels of outbreaks, restricting
analysis and not reflective of the low rate of local transmission following introductions. Accordingly,
rates were adjusted down for this analysis (Table 1), while retaining wide ranges to explore the effect on
transmission dynamics. Later work supports the wide range of transmission values, with geographic,
species, and virus strain variation (e.g., [56]). Notable for CHIKV is the short extrinsic incubation
period relative to other arboviruses (e.g., [4,46,48,55]). Virus development in mosquitoes is temperature
dependent in other systems (e.g., DENV, [16,43]; West Nile virus, [45]). Limited information available
during parameter estimation suggested CHIKV development would also be temperature dependent
(e.g., [46]). Therefore, we assumed the CHIKV development rate was a linear function of temperature.
Parameters for the linear function are γ22 (virus development at 22 ◦C, fixed at 0.25 for both species)
and γsl (slope with respect to temperature, ranging from 0.004 to 0.02 with a most probable value of
0.015 for each species, chosen independently).

In the strain analysis, our goal was to explore the potential effects of virus-mosquito adaptations
leading to higher transmission. Therefore, b, β parameters were varied to reflect different CHIKV strains
(high competence [b, β] = [0.65, 0.9], low competence = [0.5, 0.75]). Virus development parameters γ22
and γsl were not varied in this analysis and were fixed at 0.25 and 0.015, respectively, for both species.

The virus was introduced by one infectious human, on the day specified by tcrjt, as this is considered
a common route of introduction for CHIKV [57]. The day of introduction spanned most of the year
with a uniform distribution, to consider the outcome of introduction at any point in the temperature
cycle. This is plausible for introductions, as outbreaks elsewhere and travel occur throughout the year.
Day of introduction was not varied in the strain analysis and was fixed at day 200.

The model was programmed in Matlab (The Mathworks, Natick, MA, USA) using the differential
equation solver function ode45. Model analysis was conducted in Matlab using multiple
regression functions to generate output needed. Matlab code for the ODE model is provided in
the Supplemental Materials.

2.2.5. Outcome Variables

The peak number of human cases (MaxHi) was determined for each simulation run and those
runs where MaxHi > 2 were scored as epidemic (epi = 1) or not (epi = 0). Further outcome variables
were analyzed for epidemic runs only. The time of the peak in humans (tMaxHi) and the maximum
number of humans infected (MaxHi) were determined for each simulation. The lag between virus
introduction and the time of peak virus activity was calculated as lag = (tMaxHi – tcrit).

2.2.6. Analysis

Logistic regression was used to determine the effect of input parameters on the presence/absence
of epidemics in the LHC parameter sets, separately for each value of Tempc. Only main effects were
considered, with the full regression model. Parameters were ranked using p-values and the five most
influential parameters compared between Tempc values. Given the deterministic model format, all
parameters will influence outcomes and so conventional statistical significance is not appropriate;
p-values are a convenient way to rank the input parameters in importance. Multiple regression was
used to assess input parameter effects on peak case numbers (MaxHi) and lag for epidemic runs only,
with the most influential parameters identified as for epi.

3. Results

3.1. Epidemic Behavior

Most simulation runs demonstrated one of three behaviors: no outbreak and no local transmission
occurred, a single outbreak occurred that infected all susceptibles in a relatively short time period
(Figure 3A), or two outbreaks occurred (usually relatively close together in time) that also ultimately
infected all hosts (Figure 3B). Timing of the outbreaks varied within these behaviors (Table 2). A few
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parameter sets showed intermediate or alternate behaviors. Changes in Tempc alone could change
this behavior. For example, in one parameter set the outcome was a single epidemic fairly soon after
introduction with Tempc = 22 ◦C (Figure 3A). Decreasing Tempc to 16 shifted the outcome behavior
to two outbreaks (Figure 4A), while decreasing Tempc further to 10 recovered a single epidemic peak
but with a delay in the time of the epidemic (Figure 4B). The number of parameter sets exhibiting
outbreaks increased with Tempc, from 75 (30%) to 178 (72%) (Table 2).
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Figure 3. Model behavior. Two simulation runs with different parameters showing (A) single and (B)
bimodal outbreaks. Top panels, number of humans in each class, lower panels, number of adult female
mosquitoes of each species in each class. (A) Run 67, (B) run 249. Parameters given in Table S6. Tempc

= 22 ◦C. Blue lines, susceptible; red lines, infectious humans or mosquitoes; and green lines, recovered
humans. Mosquito panels set to the same Y-axis scaling for comparison; infectious mosquitoes not
always visible at this scale.

Table 2. Outcome variables for sensitivity analysis at three values of Tempc.

Central Temperature, Tempc (◦C)

Outcome Variable 10 16 22

# Epidemics (out of 250 parameter sets) 75 135 178
Average MaxHi (for epidemic runs) 13,579 17,174 26,443

MaxHi range 2.02–34,916 2.02–38,804 3.71–41,621
Average (range) lag (time from

introduction to MaxHi, epidemic runs) 63.9 (9.7–286.8) 68 (9.1–373) 37.7 (8.85–139.2)

Logistic regression on epidemics,
adjusted R2 0.1 0.14 0.12

Regression model for MaxHi (epidemic
runs only), adjusted R2 0.5 0.34 0.1

Regression model for lag (epidemic runs
only), adjusted R2 0.2 0.3 0.2

Ranges, means, and regression R2 for outcome variables. Details of regression analyses in Tables 3–5.
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Figure 4. Change in behavior with Tempc. Other parameter values as for Figure 3A. (A) Tempc = 16
◦C. (B) Tempc = 10 ◦C; compare to Figure 2A. Decreasing Tempc changes model behavior from rapid
single outbreak to bimodal outbreak, then delayed single outbreak. Blue lines, susceptible; red lines,
infectious humans or mosquitoes; and green lines, recovered humans.

Logistic regression with main effects only had low predictive ability for the likelihood of epidemics
(Table 2), suggesting that interactions are important in predicting model outcome. The parameters
most influencing the likelihood of epidemics changed based on the value of the central temperature
for the mortality function (Tempc) (Table 3). The annual mean temperature was a key parameter in
the likelihood of epidemics at all Tempc values, but the sign of the coefficient changed (Table 3 and
Table S1; Figure 5). When Tempc was lower (=10 or 16), decreasing annual mean temperature increased
the likelihood of epidemics. Conversely, when Tempc = 22, decreasing annual mean temperature
decreased the likelihood of epidemics. Increasing Ae. albopictus population size increased the likelihood
of epidemics at the lowest Tempc but decreased it at the highest Tempc, while population size in Ae.
aegypti increased the likelihood at middle and high levels. Overall, Ae. aegypti parameters were more
important than Ae. albopictus parameters at all Tempc levels. Only Ae. aegypti transmission rates
were in the top five, and only for low and middle Tempc levels. Similar effects were observed for
biting frequency, but with a negative relationship indicating that lower biting frequency of Ae. aegypti
increased the likelihood of epidemics at lower Tempc levels. The slope of the mortality rate–temperature
relationship for Ae. aegypti was in the top five parameters for the middle and high Tempc levels, with
increasing slopes decreasing the likelihood of epidemics.
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Table 3. Top five parameters influencing likelihood of epidemics with different values of the central
temperature in the mortality function, Tempc. Parameters identified using full, main effects logistic
regression model and ranked by p-value. Negative regression coefficients indicated by (-).

Central Temperature, Tempc (◦C)

10 16 22

Annual mean temperature
(Tmean) (−)

Annual mean temperature
(Tmean) (−)

Annual mean temperature
(Tmean)

Day of introduction (tcrit)
Ae. albopictus recruitment per

host (ρmax,alb)
Ae. albopictus recruitment per

host (ρmax,alb) (−)
Ae. aegypti recruitment per host

(ρmax,aeg)
Ae. aegypti recruitment per

host (ρmax,aeg)
Transmission: humans to Ae.

aegypti (βaeg)
Transmission: humans to Ae.

aegypti (βaeg)
Transmission: Ae. aegypti to

humans (baeg)
Ae. aegypti biting frequency

(αaeg) (−)
Ae. aegypti biting frequency

(αaeg) (−)
Ae. aegypti mortality–temperature

slope
(µsl,aeg) (−)

Ae. aegypti
mortality–temperature slope

(µsl,aeg) (−)
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average MaxHi increased with Tempc, but the range was large in all three sets (Table 2, Figure S3). 
Adjusted R2 values again were low, indicating that interactions are likely to be important (Table 2). 
Parameters most influencing MaxHi varied between Tempc LHS sets (Tables 4 and S2). At the warmest 
Tempc, increased mean annual temperature and later day of introduction both decreased MaxHi, but 
this was not observed in the other sets. Aedes albopictus traits were important at the coldest Tempc, but 
became less important as Tempc increased. Aedes aegypti traits were important at all Tempc values. 
Unlike the likelihood of epidemics, mosquito mortality parameters did not strongly affect MaxHi. 
Peak activity occurred faster (lower lag between tcrit and tMaxHi) at the highest Tempc, but again 

Figure 5. Relationship between epidemic occurrence and mean annual temperature (Tmean). All three
values of Tempc shown (22 ◦C, red; 16 ◦C, green; 10 ◦C, blue). Top set, epidemic occurred; bottom, no
epidemic. Each point is one simulation plotted for the Tmean from that run set. Other parameters varied
in the LHC sampling scheme. Epidemics were more likely at Tempc = 22 ◦C and with higher values of
Tmean.

3.2. Size and Lag Time of Epidemics

One measure of epidemic activity is the number of human cases at the peak of the epidemic
(MaxHi). This is influenced by the model behavior and duration of virus activity, as some simulations
showed single, short outbreaks (Figure 3) while others had prolonged, lower viral activity. The average
MaxHi increased with Tempc, but the range was large in all three sets (Table 2, Figure S3). Adjusted R2

values again were low, indicating that interactions are likely to be important (Table 2). Parameters
most influencing MaxHi varied between Tempc LHS sets (Table 4 and Table S2). At the warmest Tempc,
increased mean annual temperature and later day of introduction both decreased MaxHi, but this was
not observed in the other sets. Aedes albopictus traits were important at the coldest Tempc, but became
less important as Tempc increased. Aedes aegypti traits were important at all Tempc values. Unlike
the likelihood of epidemics, mosquito mortality parameters did not strongly affect MaxHi. Peak activity
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occurred faster (lower lag between tcrit and tMaxHi) at the highest Tempc, but again variation was high
(Table 2). The most influential parameters varied between Tempc LHC sets, but again the main effects
regression models had low predictive power (Tables 2 and 5). The effect of mean annual temperature
varied, decreasing lag at low Tempc but increasing lag at higher Tempc. At the higher Tempc values,
the population size of both species was important and had a negative effect on lag, while at the coldest
temperatures, transmission parameters had more effect (Table 5 and Table S3).

Table 4. Top five parameters influencing MaxHi. Includes only epidemic simulations, main effects only.

Central Temperature, Tempc (◦C)

10 16 22

Annual mean temperature
(Tmean) (-)

Day of introduction (tcrit) (-)
Transmission: humans to Ae.

albopictus (βalb)
Ae. albopictus biting frequency

(αalb) (-)
Ae. albopictus biting frequency

(αalb) (-)
Ae. aegypti recruitment per host

(ρmax,aeg)
Ae. aegypti recruitment per host

(ρmax,aeg)
Transmission: humans to Ae.

aegypti (βaeg)
Transmission: humans to Ae.

aegypti (βaeg)
Transmission: humans to Ae.

aegypti (βaeg)
Transmission: Ae. aegypti to

humans (baeg)
Transmission: Ae. aegypti to

humans (baeg)
Ae. aegypti biting frequency

(αaeg) (-)
Ae. aegypti biting frequency

(αaeg) (-)
Ae. aegypti biting frequency

(αaeg) (-)

Table 5. Top five parameters influencing lag. Includes only epidemic simulations, main effects only.

Central Temperature, Tempc (◦C)

10 16 22

Annual mean temperature
(Tmean) (-)

Annual mean temperature
(Tmean)

Transmission: Ae. albopictus to
humans (balb) (-)

Transmission: humans to Ae.
albopictus (βalb)

Ae. albopictus biting frequency
(αalb)

Ae. albopictus mortality—
temperature slope (µsl,alb) (-)

Ae. albopictus
temperature—virus

development slope (γsl,alb)
Ae. albopictus recruitment per

host (ρmax,alb)(-)
Ae. albopictus recruitment per

host (ρmax,alb)(-)
Ae. aegypti recruitment per host

(ρmax,alb)(-)
Ae. aegypti recruitment per host

(ρmax,aeg)(-)
Transmission: humans to Ae.

aegypti (βaeg)
Transmission: humans to Ae.

aegypti (βaeg)(-)
Ae. aegypti biting frequency

(αaeg)
Ae. aegypti biting frequency

(αaeg)

3.3. Comparisons of Parameter Sets Across Tempc

Comparing individual parameter sets across Tempc values, the general pattern was increasing
likelihood of epidemics as Tempc increases (Table S4). In 60% of parameter sets the outcome was not
epidemic at Tempc = 10, then was epidemic only at Tempc = 16 (12%), only at Tempc = 22 (32%), or both
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(16.4%). We did not observe any parameter sets epidemic at the coldest and warmest temperatures but
not epidemic with the middle Tempc temperature. Decreasing likelihood of epidemics with increasing
Tempc occurred rarely, with 4.4% of parameter sets epidemic only at Tempc = 10 and 2.8% epidemic at
Tempc = 10 and 16 but not 22.

The peak size of the outbreak also typically increased with Tempc. Of 57 parameter sets epidemic
at all three values, the size increased as Tempc increased in 84% (Table S5). With parameter sets showing
epidemics at only two values of Tempc, the peak was higher at the warmer Tempc in 77% of the sets.

3.4. Comparison of Strain-Species Combinations

Baseline model runs with species characteristics set identically (functionally one large population)
showed identical outbreak sizes regardless of the vector competence assigned to each population and
the relative population sizes (Figure 6). When species-specific parameters are used, an aegypti-adapted
strain shows the same outbreak sizes with only Ae. aegypti populations and with Ae. aegypti-dominated
populations. Equal population sizes of both vectors reduces outbreak size slightly. However,
with an albopictus-adapted strain (in transmission parameters only), a different pattern is observed.
Highest outbreak sizes are lower than those observed with identical species characteristics or with
aegypti-adapted virus strains, and increasing the proportion of Ae. albopictus in the population further
decreases outbreak size.
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Figure 6. Number of human cases at the peak with species and strain specific parameters. Total
mosquito recruitment: ρmax = 5000/host/year. Equal recruitment (aeg = alb): ρmax = 2500/species.
Asymmetric recruitment (aeg > alb or alb > aeg): high ρmax = 4990, low ρmax = 10. b, β parameters
varied to reflect different Chikungunya virus strains ([b, β] = [0.65, 0.9] for species with greater vector
competence; [0.5, 0.75] for lower). Species characteristics (“specific”) varied were days between human
bloodmeals and mortality rates (Ae. aegypti: α = 3d, µ22 = 0.08, µsl = 0.006; Ae. albopictus: α = 4d, µ22 =

0.06, µsl = 0.08). Ae. aegypti parameter values were used for identical species characteristics. All runs:
γ22 = 0.25, γsl = 0.015, Tmean= 22 ◦C, tcrit = 200, Tempc = 22 ◦C.

4. Discussion

Sensitivity analysis of model outcomes can include systematic variation of individual parameters
or randomized methods such as the LHC method. Here, we show that systematic variation of one
individual parameter could change the relative ranking of other parameters in an LHC analysis, in
addition to changing model behavior. Although it is generally not possible to vary all parameters in
a model analysis, this highlights the need to consider the impact of fixed parameters and to identify
the values used in any analysis. Even if chosen by fitting to a particular data set, fixed parameters may
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vary in a broader context so model results should be interpreted with caution outside the conditions
set for a specific analysis.

Here, we showed changes in the relative importance of other parameters with variation in one
parameter, the center of the temperature range for minimal mosquito mortality. Notably, when this
parameter was higher, the slope of the temperature–mortality relationship for Ae. aegypti was identified
as an important factor in likelihood of epidemics. Interestingly, the same parameter for Ae. albopictus
did not have a similar effect, and it did not have strong effects on the size of an outbreak for either
species. We used a broad range for Tempc, likely extending beyond biological realism for Ae. aegypti.
Aedes aegypti is a more tropical mosquito and mortality is likely to be high at lower temperatures.
Extending the upper range of this parameter would be of interest, given the increase in the likelihood
of invasion at the higher value and the relationship with the mean annual temperature. Future work
will consider more specific mortality relationships and broader ranges.

Adult mosquito mortality has been identified as an important parameter in other arbovirus models,
even with constant mortality rates or simple relationships with temperature. Complex relationships
between mortality and temperature have been observed for Ae. aegypti, but less is known about Ae.
albopictus. Clearly a better understanding of the factors influencing mortality, and improving inclusion
of these complexities in arbovirus transmission models, is needed.

Our results support the general consensus that Ae. aegypti is more important as a vector in CHIKV
dynamics in many environments, but Ae. albopictus can support transmission and outbreaks either
alone or in mixed populations with low Ae. aegypti abundance. Interestingly, even with a viral strain
adapted to Ae. albopictus, Ae. aegypti supported higher transmission (Figure 6). However, this analysis
did not include changes to the EIP known to occur with some mutations, and this should be considered
further. In our analysis, transmission rates (b and β) were consistently identified as key factors, while
virus development rates (γ) had limited impacts on outcome variables, suggesting that mutations
affecting transmission rates may be more important. The virus may acquire adaptive mutations during
an outbreak, and including variation in key parameters over time may be important in understanding
how this would affect virus dynamics. In this model, the higher transmission with Ae. aegypti
likely depended on the species-specific host preferences (higher biting rates on humans). The more
opportunistic feeding patterns of Ae. albopictus have been reported from multiple locations, but there
may also be situations where human blood meals are more frequent. In the field, host preference
may be dynamic and realized feeding dependent on host availability, host preference [37,58–60],
and the degree to which both species exhibit gonotrophic discordance (e.g., [53,61]). Additional
exploration of the model including variation in human biting rates over time would be of interest to
better understand the potential role of Ae. albopictus in CHIKV local transmission.

Other models of CHIKV have shown similar results in some aspects, while diverging in others.
Manore et al. [20] developed a model to compare CHIKV and DENV transmission with either Ae.
aegypti or Ae. albopictus vectors, but did not include mixed mosquito populations, seasonal mosquito
dynamics, or temperature dynamics. Some of the same parameters were identified as having the most
influence on the outcome, including mosquito mortality, biting rate, and transmission rates. Overall
their model showed much slower dynamics for CHIKV epidemic development after introduction than
did ours. This is likely due to the temperature dependence in our model, leading to seasonally changing
mosquito mortality rates and duration of the latency stage. Our central transmission rates were lower
than the baseline transmission rates of [20] as well, likely slowing the dynamics. Adjusting parameters
in our model to approximate those in the Manore et al. model led to similarly slow dynamics (not
shown).

Our results support temperature effects on the likelihood, size, and structure of epidemics.
However, successful invasions occurred over the full range of mean annual temperatures for Florida,
and at all three values of Tempc (Figure 4). While the interaction between the annual mean temperature
and the central temperature for minimum mosquito mortality was complex, the range of conditions
with successful invasions implies that all of Florida is at risk of invasion by CHIKV. Other areas
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that have similar climates and extend over temperate–subtropical zones, such as Brazil, may have
similar effects of mean annual temperatures and temperature-dependent parameters. Outbreaks in
other temperate areas (e.g., Italy) further illustrate the complex interactions between temperature
and transmission dynamics. Extensions of the sensitivity analysis to higher and lower Tmean values
would be of interest to explore the risk in other areas. This would, however, require assessment of
the relationship between mean and amplitude of the temperature curve, as the relationship used here
will not always be appropriate (Salami et al. unpublished). Several input parameters influenced
the likelihood of epidemics, but over the ranges considered none showed threshold effects, suggesting
that there is a wide range of parameter space that allows outbreaks.

The parameters identified as important in this analysis are also likely to influence other
Aedes-transmitted viruses such as ZIKV and DENV, suggesting areas for research to predict
the outcomes of introductions of these viruses. However, virus-specific parameter estimates, along
with location-specific temperature curves, are needed to assess the likelihood of invasion and identify
factors that most influence epidemic dynamics.

Adult recruitment patterns were based on rainfall and modeled similarly for both vector species.
However, in reality egg diapause in Ae. albopictus reduces hatching probabilities of this species in
the late fall and early winter periods in Florida [50]. By contrast, egg diapause does not occur in Ae.
aegypti, which does not experience seasonal hatching interruptions. These recruitment differences
could also contribute to the relative involvement of the two species in transmission dynamics. Different
seasonal patterns of recruitment affected simulated dynamics of WNV [19] and should be considered
in more detail for CHIKV.

With repeated introductions of arboviruses into Florida and elsewhere, we need to improve our
understanding of what influences whether an introduction leads to establishment and outbreaks.
Mosquito mortality has consistently been identified as important, is expected to vary considerably in
the field, and is a target for novel control efforts to mitigate pathogen transmission (e.g., life-shortening
microbes, Wolbachia, [62], Beauveria bassiana, [63]; gene drive systems, [64]). Further exploration of this is
needed, including temperature dependency, species and individual variation, and other environmental
influences. Stochastic factors in mortality and human–mosquito contact will also play a role in virus
establishment, and individual based models allowing this structure would be valuable. Expanded
consideration of virus lineages, genotypes, and mutations and interactions with mosquito species
will be valuable to better understand the potential for virus invasion and outbreaks. Interactions
between parameters are clearly important in model analysis, but it is unclear how this relates to field
conditions. Additionally, spatial variation in human-related factors may influence model parameters
(e.g., socioeconomic factors [65]). Incorporating interactions and increased variation into modeling
studies will improve our ability to understand arbovirus dynamics and target empirical studies on
critical factors.
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