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Abstract

Motivation: A common experimental output in biomedical science is a list of genes implicated in a given biological
process or disease. The gene lists resulting from a group of studies answering the same, or similar, questions can
be combined by ranking aggregation methods to find a consensus or a more reliable answer. Evaluating a ranking
aggregation method on a specific type of data before using it is required to support the reliability since the property
of a dataset can influence the performance of an algorithm. Such evaluation on gene lists is usually based on a simu-
lated database because of the lack of a known truth for real data. However, simulated datasets tend to be too small
compared to experimental data and neglect key features, including heterogeneity of quality, relevance and the inclu-
sion of unranked lists.

Results: In this study, a group of existing methods and their variations that are suitable for meta-analysis of gene
lists are compared using simulated and real data. Simulated data were used to explore the performance of the ag-
gregation methods as a function of emulating the common scenarios of real genomic data, with various heterogen-
eity of quality, noise level and a mix of unranked and ranked data using 20 000 possible entities. In addition to the
evaluation with simulated data, a comparison using real genomic data on the SARS-CoV-2 virus, cancer (non-small
cell lung cancer) and bacteria (macrophage apoptosis) was performed. We summarize the results of our evaluation
in a simple flowchart to select a ranking aggregation method, and in an automated implementation using the meta-
analysis by information content algorithm to infer heterogeneity of data quality across input datasets.

Availability and implementation: The code for simulated data generation and running edited version of algorithms:
https://github.com/baillielab/comparison_of_RA_methods. Code to perform an optimal selection of methods based
on the results of this review, using the MAIC algorithm to infer the characteristics of an input dataset, can be down-
loaded here: https://github.com/baillielab/maic. An online service for running MAIC: https://baillielab.net/maic.

Contact: bowang.rex@gmail.com or michael.gutmann@ed.ac.uk or j.k.baillie@ed.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In biology, there are usually many results from different sources
for the same or a similar problem. Many results take the form of a
list of genes or proteins, especially for screens of genes, transcripts
and proteins related to a specific biological process. In almost all
cases, these gene lists overlap with results from other experiments.
Meta-analysis aims to combine the individual gene lists resulting
from individual studies to obtain a more reliable answer.

Meta-analysis of this kind of data can often be seen as a ranking
aggregation and there are many methods for carrying it out (Li
et al., 2019).

There are various existing methods for ranking aggregation. This
study focuses on the unsupervised and rank-based methods since for
transcriptomic and genomic level data there are usually no high-
quality training datasets with reliable target labels or universally
accepted methods for quantification across different data sources (Li
et al., 2019; Liu et al., 2007).
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Unranked lists are common in biology. Examples include anno-
tated pathways [e.g. KEGG (Kanehisa et al., 2019), Reactome
(Jassal et al., 2020), Wikipathways (Slenter et al., 2018)], co-
expression clusters [e.g. FANTOM5 (Andersson et al., 2014) and
STRING database (Szklarczyk et al., 2016)] and reports providing a
group of entities as the positive result of a study without ranking
them. However, unranked lists are not explicitly accommodated by
many aggregation methods and are often either excluded from meta-
analyses or incorporated in an ad hoc manner.

All methods investigated in this study can deal with ranked lists
as input (reported genes with order information), irrespective of
whether each list includes all possible entities or not. However, only
a few methods among them can accept unranked lists as input. Some
approaches like meta-analysis by information content (MAIC) (Li
et al., 2020) and VoteCounting (Li et al., 2020) explicitly claim that
they can deal with unranked data. Some methods which are
designed only for ranked lists can also tackle this type of input with
a slight change to the algorithm, such as Borda’s methods (Brancotte
et al., 2015). An unranked source can be a special case of ranking
with ties (entities with the same ranking) (Brancotte et al., 2015) so
that methods that can deal with ranking with ties can also accept un-
ranked sources. An example can be RepeatChoice (Ailon, 2010),
which breaks ties starting from an input ranking using order infor-
mation of other sources. A study (Brancotte et al., 2015) on ranking
with ties modified some methods to adapt them to ties, like Borda’s
methods. Borda’s methods have variations using statistics like mean
value (MEAN, GEO) or median (MED) (de Borda, 1781; Lin, 2010)
and can accept an unranked list by assigning the same ranking to
entities within the list, which is intuitively reasonable for unranked
sources. In contrast, unranked sources are not explicitly accommo-
dated by some relatively complicated methods although ideas about
dealing with absent ranking information especially for ranked top-d
partial lists are sometimes proposed. Examples can be Bayesian
methods like BiG (Li et al., 2018) and BARD (Deng et al., 2014),
with a solid Bayesian theoretical framework and an estimated distri-
bution instead of only a ranking as the result for each algorithm.

The dataset and the problem at hand can influence the applic-
ability of an algorithm a lot. For example, the inclusion of unranked
sources can make methods that only accept ranked sources un-
usable. Noise level and heterogeneity of the noise are also important
properties of the data sources and not every method can perform
well on very noisy partial ranked data (Kolde et al., 2012).
Optimizing a metric that treats all sources equally in the calculation,
such as the MEAN method of Borda’s methods, is not suitable when
significant noise is included (Kolde et al., 2012). Moreover, a large
number of elements (e.g. around 20 000 genes for humans) also
makes methods like cross-entropy Monte Carlo (Lin and Ding,
2009) unsuitable because of the computational cost (Li et al., 2019).
Considering the features of the genomic datasets, a specific evalu-
ation of ranking aggregation methods is thus required to establish
their performance.

Ranking aggregation methods usually use simulated datasets for
evaluation (Deng et al., 2014; Kolde et al., 2012; Li et al., 2019; Yi
et al., 2016) as there is a lack of large genomic real datasets with de-
finitive answers. In contrast, simulated data provide ground truth
values and can also be used to investigate the effect that specific
properties of the real data, like the amount of noise or heterogeneity
in the source quality, have on the different algorithms.

In many existing studies, including RRA (Kolde et al., 2012),
BARC (Yi et al., 2016), BiG (Li et al., 2018), BIRRA (Badgeley
et al., 2015) and MAIC (Li et al., 2020), simulated data were used.
Existing research explored datasets with some features of genomic
data, including various partial cases to cut lists, noise levels, hetero-
geneity of source quality (Li et al., 2019, 2020) and the way of set-
ting the top 5% as truth (Badgeley et al., 2015; Kolde et al., 2012).
But some important features for genomic data, including the differ-
ence between the top-ranked genes in the truth set and a large num-
ber of entities (like over 20 000 genes for humans), have not been
systematically explored. To evaluate MAIC (Li et al., 2020), 500
entities were used in the simulated data, and the evaluations in Li
et al. (2019) and Badgeley et al. (2015) used 1000 entities for the

simulated data. Assigning a score for each entity subject to noise
from some pre-defined distributions is a common way to generate
simulated data. The expected mean score of each entity is an arbi-
trarily defined constant to show the difference in the significance of
genes for the simulation. These scores rank genes from top-ranked
genes to bottom or classify genes into truth group and noise group
(Kolde et al., 2012; Li et al., 2018; Yi et al., 2016).

In previous research about the MAIC algorithm (Li et al., 2020),
the dataset used in the evaluation is generated by ranking Z scores
sampled from independent normal distributions given a list specified
precision (inverse covariance). This data generation model can con-
trol the heterogeneity of list quality and average noise level but was
in previous research only used to generate small datasets and short
lists (500 potential entities) in order to compare the RRA, MAIC
and vote counting (VC) method. It has a high potential to generate
well-simulated data and forms the basis of the new data simulation
method proposed in this study.

As summarized in Figure 1a, we first generated realistic synthetic
datasets to simulate real features of biological experimental results.
We then used these synthetic data, together with real data from
selected fields of biology, to systematically evaluate aggregation
methods in a range of conditions expected to be encountered in real-
world conditions (mixed versus ranked data, large dataset sizes, het-
erogeneity and noise).
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Fig. 1. (a) An overview of the methods for this study. (b) Investigated ranking aggre-

gation methods in this study and some key features of them. Distribution based: the

method is based on the distribution of latent model or calculated statistics (Li et al.,

2019). Stochastic: the method includes a stochastic process like random sampling.

Weighting lists: the method assigns weightings to lists explicitly to show their differ-

ence, like quantifying the quality. Simple statistics: use simple statistics, like fre-

quency or average ranking. Bayesian methods are labeled using underline. Whether

the methods are designed to only take ranked lists as the input or be able to accept

unranked lists are also marked

4928 B.Wang et al.



1.1 Contribution

• Viral infection (SARS-CoV-2), cancer [non-small cell lung cancer

(NSCLC)] and bacterial infection (modulation of macrophage

apoptosis) datasets were collected. Each set used in the assess-

ment is extracted from sources either more highly related to the

research question of the corresponding meta-analysis or pub-

lished in a closer time and is considered to be highly reliable.
• A new simulated data generation method is proposed by analyz-

ing three real datasets in terms of list number, length, order infor-

mation, quality of sources, heterogeneity of quality, absent genes

and also the relationship between each significant gene.
• Implementation of investigated ranking aggregation methods

and variations of them that are suitable for dealing with genomic

data was carried out based on existing source code, enabling

them to use the data with the same format easily and providing

the ability of using unranked lists as input for some algorithms.

They are evaluated systematically on both the real and the simu-

lated datasets.
• The overall evaluation results are condensed in a practical flow-

chart to select appropriate ranking aggregation methods depend-

ing on the ranking information, the number of included sources

and the heterogeneity in the quality of the data sources.

2 Materials and methods

2.1 Real data collection
Three real datasets are collected, corresponding to virus (SARS-
CoV-2), bacteria (macrophages apoptosis) and cancer (NSCLC), as
shown in Table 1. A detailed description of it is in Supplementary
File S1—Section S1.

2.2 Simulated data and experiment design
In order to better explore the properties of real data, which usually
includes a large number of entities, a new stochastic generative
model that emulates real data are proposed. It includes 20 000 po-
tential entities (human genome scale) in total and incorporates het-
erogeneity in the lengths of lists. The top-1000 (5%) entities will be
considered as signal/significant entities, which correspond to the
number of top-ranked genes being focused on in real research.

For list Li, entity Ek (k¼1. . .20 000), mean noise scale M, mean
cutting point mc, heterogeneity of noise D, heterogeneity of cutting
point Dc, range for each list length ½L;U�, entity significance lk for
entity Ek, the score Zki for entity Ek in list Li is

Zki � Nðlk; r
2
i Þ

lnðriÞ � N ðlnðMÞ;DÞ

where Nða;b2Þ denotes a Gaussian distribution with mean a and
variance b2. The number of entities which will be finally included in
list Li is denoted by Ni 2 ½L;U� and generated as follows:

Ni ¼ minðbCic þ L;UÞ
lnðCiÞ � NðlnðmcÞ;D2

c Þ

bCic þ L is the cutting point for list Li to only keep the top Ni enti-
ties in the list and Ni 2 ½L;U�. lnðCiÞ is used instead of Ci to make
the perturbation on a larger scale easier than a smaller scale, because
the difference on a larger scale of length is considered to be less sig-
nificant. For example, the difference between length 2 and 102 are
more significant than the difference between length 19 000 and
19 100. After the generation, all the potential entities within list Li

are ranked by score Zki. Then, X entities will be removed randomly
from list Li as controlled by a ratio c,

X ¼ bc � ð20000�NiÞc;

followed by removing the bottomed ranked entities until there are
only Ni entities left. Then list Li is labeled as ‘RANKED’ or
‘UNRANKED’ to indicate whether the order information for these
Ni entities are provided or not. The settings of the hyperparameters
of the model, i.e. L, U, mc, Dc, M, D, lk, c, the number of the lists
and whether each list is ranked or unranked, are discussed in
Supplementary File S1—Section S2.

In a real study, the length of the reported list is usually a result of
two factors. The first one is that bottom-ranked genes are removed
and not reported, whereas the second one is that some genes are not
included in the study in the first place when the study is not genome-
wide. These two situations were both explored by Li et al. (2019)
and the new proposed model outlined above. The first case is emu-
lated by removing bottom entities for simulated lists whereas the se-
cond case is emulated by removing entities (uniformly) at random.

The details about the exploration and parameter settings are
included in Supplementary File S1—Section S2. List number, order
information, list length, frequency decay of top-ranked entities, list
quality and absent genes of three collected real datasets were
assessed and the model parameters were set such that the simulated
data can well emulate the real scenarios. Depending on the number
of sources in a dataset (Large or Small) and whether unranked lists
are included (Mix or Rank), four groups of datasets were generated.
For each of the four types of data, various values for M, D, and c are
used to generate different datasets that cover different scenarios of
noise levels, heterogeneity and absent gene rates. A ‘Mix’ dataset
has exactly the same ranked lists as the corresponding ‘Rank’ data-
set and the only difference between them is the inclusion of addition-
al unranked lists. It enables the comparison of results between
datasets with and without unranked lists to explore the effects of
including unranked lists for methods that can accept unranked input
sources.

2.3 Selection and implementation of existing methods
As shown in Figure 1b, 18 methods and their typical variations are
selected to include various properties of ranking aggregation

Table 1 Sources of the collected real data

Dataset Extracted lists Source

SARS-CoV-2 11 ranked þ 21 unranked lists Extracted lists till July 9, 2020 in Parkinson et al. (2020)

Truth to assess the performance Lists from July 9, 2020 to November 25, 2020 in Parkinson et al. (2020)

NSCLC 5 ranked lists Borczuk et al. (2003), Kerkentzes et al. (2014), Li et al. (2015), Zhou et al. (2017)

and Kim et al. (2013)

Truth to assess the performance Truth used in Li et al. (2018), provided in Li et al. (2019) and Chen et al. (2013)

Macrophage apoptosis 4 ranked lists 2 from SHIELD AMR Research Consortium (https://shieldamrresearch.org/)

(Preston et al., 2019) The other 2 from Huang et al. (2020) and Kumar et al. (2010)

2 unranked lists MacHugh et al. (2012) and Yeung et al. (2019)

Truth to assess the performance Abebe et al. (2010), Losick and Isberg (2006), Maertzdorf et al. (2011)

and Lai et al. (2020)
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methods and are suitable to deal with genomic data. They were
implemented based on existing code if accessible. The implementa-
tion language for MAIC (Li et al., 2020), VC and RepeatChoice is
Python, whereas it is R for all other investigated methods except for
BARD (Deng et al., 2014), which has available code implemented in
Cþþ. RepeatChoice and VC are implemented based on the algo-
rithms introduced in Ailon (2010) and Li et al. (2020), respectively,
whereas other investigated methods are all implemented based on
the available code. Similar to the research by Li et al. (2019),
Borda’s methods (de Borda, 1781; Lin, 2010) are labeled with ’r’
and ’t’ to show different implementations from the
RobustRankAggreg package and TopKList package. BiGbottom
(treating absent genes as bottom-ranked) and BiGNA (treating the
order information of absent genes as unknown) are two different
versions of BiG (Li et al., 2018). For Borda’s methods and Stuart al-
gorithm (Stuart et al., 2003) from R package—RobustRankAggreg,
each of them can easily be edited to enable the input of unranked
lists. They are edited by setting genes in unranked lists to have the
same ranking, which is half of the list length. The new names for
them are rMixMED, rMixMEAN, rMixGEO and MixStuart. For
algorithms that are not able to deal with unranked lists, they only
take ranked lists as the input for the evaluation in this study. In
terms of an evaluation of a mix of ranked and unranked sources, the
unranked lists are not used when they are available for these algo-
rithms, which emulate the real usage case of these algorithms.

The details of methods selection and implementation are shown in
Supplementary File S1—Section S3.

3 Results

This section includes the results of experiments on real and simu-
lated data. Only the best-performing methods and some methods

with interesting methodology or performance are shown in Figure 2
for important experiments to avoid clutter in the figure. Full details

of the results are provided in Supplementary File S1 and Supporting
data with all investigated methods included.

3.1 Performance measurements
The measurement used to show the accuracy of methods in gene
data should be able to weight top-ranked genes more than bottom
ones since they are usually more important in biological research.

But, how important each position is compared with others is not
known. Weighting each position can be used when comparing two

lists, like average overlap (AO) (Webber et al., 2010; Wu and
Crestani, 2003) which provides a score with built-in importance of
each position. But the result can be largely influenced by the way a

measurement weights each position. To cover the various scenarios
in biological research and provide easily understandable results,

a b

d

e

c

Dataset type: MixLarge

Dataset type: RankLarge Dataset type: RankSmall

Dataset type: MixSmall

Fig. 2. Results for simulated datasets and real datasets. All subplots use the same color and line styles to show investigated methods. Detailed results can be seen in

Supplementary File S1 and Supporting data. (a–d) Results for simulated data with various mean noise levels and quality heterogeneity. The mean of accuracy using top-1000

cutoff (except for the right figure of d which uses top-100 cutoff) and 95% confidence interval are plotted for 100 repeated experiments using lines and shading separately. The

default setting of absent gene rate c¼ 0 is used. The simulated dataset type shows properties for datasets. The first part shows whether a dataset includes a mix of ranked and

unranked sources (Mix) or only includes ranked sources (Rank). The second part shows the number of included sources (large or small). (e) Real data: results for the collected

SARS-CoV-2, macrophages apoptosis and NSCLC datasets. The recall with cutoffs from top-1 to top-1000 is shown
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coverage rates for various cutoffs are selected as the measurements,
similar to the measurements used in Li et al. (2018, 2019).
Specifically, it is the accuracy value for experiments on simulated
data since the ranking for truth is known. Recall value is used to
measure the coverage rate in real data experiments since only un-
ranked truth sets are available. All simulated datasets are generated
with 100 repeats for each combination of parameters and 95% con-
fidence intervals are plotted using shading in Figure 2. The result
with top-1000 cutoff is mainly explored, together with a compari-
son with other smaller cutoffs in Supplementary File S1—Section S4
and Supporting data.

3.2 Result for datasets with a mix of ranked and

unranked sources
It can be seen from Figure 2a that MAIC gives the best performance
on a large dataset with both ranked and unranked lists like dataset
type MixLarge which emulates SARS-CoV-2 dataset, especially
when there is a relatively large heterogeneity of list quality (shown
as D in simulation). It also gives the best performance for nearly all
the cutoffs from top-1 to top-1000 in the evaluation of SARS-CoV-2
datasets as shown in Figure 2e. Another one of the best-performing
methods for the SARS-CoV-2 dataset is rMixGEO, which reaches
the best level to have similar performance as MAIC when heterogen-
eity is small in the simulated data, like D¼0.1. As a method using
simple statistics, rMixGEO wins against the most complicated meth-
ods in this scenario, but it is not as robust as MAIC when heterogen-
eity is high.

In terms of a relatively small dataset with a mix of ranked and
unranked sources (MixSmall in the simulation as shown in Fig. 2b),
MAIC and rMixGEO follow the same performance pattern as for
large datasets. MAIC still reaches the highest performance level
whereas rMixGEO experiences a decreasing performance ranking
among the investigated methods as the heterogeneity increases. One
interesting point is that the performance ranking of BIRRA is influ-
enced a lot by both mean noise and heterogeneity, becoming top
ranked when heterogeneity is high and mean noise is low for small
datasets (see Supplementary File S1—Fig. S9).

For each NSCLC and macrophage apoptosis data, both input
lists and the gold standard truth are extracted from less than 10
sources. So the results of NSCLC and macrophage apoptosis data
are likely to be quite noisy and less informative than SARS-CoV-2
results. But as the macrophage apoptosis result shows in Figure 2e,
the results of these real data still identify that some methods roughly
outperform others. rMixGEO and MAIC still show a relatively
good performance whereas BIRRA does not perform as well as
them.

BIRRA and BiGbottom further produce top-ranked results when
heterogeneity is high and mean noise is low for small simulated
datasets, but they are not as robust to a large mean noise level as
MAIC (see Supplementary File S1—Fig. S9). Plotted in Figure 2b
and Supplementary File S1—Figure S9, top-performed methods
including MAIC and rMixGEO are all robust to a change of noise
levels under the heterogeneity where they outperform others (all
investigated heterogeneity for MAIC and low heterogeneity for
rMixGEO) and especially perform well for classic cases (M is 3,
which is the classic case that emulates real datasets best, see
Supplementary File S1—Section S2). They are also robust to various
cutoffs and absent gene rates for sources in their corresponding top
performed heterogeneity scenarios (all heterogeneity for MAIC and
low heterogeneity for rMixGEO), shown in Supplementary File
S1—Figure S6, and also the comparison between the result with top-
1000 cutoff and top-100 cutoff plotted in Supplementary File S1—
Section S4.

3.3 Result for datasets with only ranked sources
The results for large datasets with only ranked sources are shown in
Figure 2c. To avoid duplicates, the rMixGEO is not shown since it is
the ‘Mix’ version of rGEO and performs exactly the same as rGEO
for ranked lists. In this figure, the ranking of BIRRA shows the best
performance among investigated methods for large datasets with

only ranked sources (RankLarge) when heterogeneity D reaches 1.
The ranking of it tends to be robust to the mean noise level in this
scenario. For smaller heterogeneity, rGEO, BiGbottom, MAIC,
rMEAN (see the results of rMEAN in Supplementary File S1 and
Supporting data) and MC3 are top ranked with similar perform-
ance, whereas BiGbottom and MAIC are more robust for high
heterogeneity.

Small datasets with only ranked sources (RankSmall) prefer
MAIC, BIRRA and BiGbottom for the high heterogeneity case like
D is 3, showing the similar best performance for them among inves-
tigated methods for top-1000 accuracy, as shown in Figure 2d (left).
Among them, the accuracy of BiGbottom is also one of the highest
when heterogeneity is small (D equals 0.1), with a similar perform-
ance as rGEO and MC3 in this scenario. BiGbottom also shows bet-
ter robustness in terms of a change of cutoffs than MAIC and
BIRRA. Compared with the result with top-1000 cutoff where these
three methods show similar performance in the high heterogeneity
case, BiGbottom obviously outperforms other investigated methods
for top-100 cutoff result, shown in Figure 2d (right). Whereas
MAIC and BIRRA are outperformed by rGEO.

Similar to macrophage apoptosis data, NSCLC result also tends
to be relatively less informative since the lack of sources for the in-
put dataset and truth set. However, MAIC, BIRRA, rGEO, MC3
and BiGbottom all perform relatively well shown in the correspond-
ing plot in Figure 2e.

4 Discussion

The difference between the performance of investigated ranking ag-
gregation methods on the proposed simulated datasets and three
real datasets was compared. The results show that whether to in-
clude unranked lists for input data and the heterogeneity of quality
for sources can largely influence the performance of the investigated
ranking aggregation methods.

The evaluation result in this study can provide some insights on
the data selection and method selection for ranking aggregation of
genomic problems.

Data selection: Using a mix of ranked and unranked data instead
of giving up unranked sources can lead to a better result, as shown
in the comparison between the results for sources with unranked
sources (Fig. 2a and b) and the results for only ranked sources
(Fig. 2c and d). Compared to the ‘Rank’ datasets which only use
ranked sources, the ‘Mix’ datasets include unranked sources as add-
itional input data for those methods which can use unranked lists.
The ranked lists included in the corresponding ‘Mix’ and ‘Rank’
datasets are the same so that the comparison between these datasets
can show the effect of using additional unranked sources for meth-
ods that can accept them. When unranked lists are included, the ac-
curacy can grow impressively especially for those top-performing
methods, which is shown by the result of MAIC and rMixGEO
(rMixGEO is a variation of rGEO which can accept unranked lists
as input) that accept a mix of ranked and unranked data as input.
Their performance improved substantially when unranked lists are
included (left figures of Fig. 2a and b) compared to using only
ranked sources (left figures of Fig. 2c and d), reaching the best per-
formance among investigated methods with appropriate heterogen-
eity. It shows that unranked data has useful information to improve
the meta-analysis.

Method selection: Considering all the evaluation results, a flow-
chart for selecting methods depending on the fundamental proper-
ties of the available data is shown in Figure 3. In order to construct
the flowchart, the accuracy with a top-1000 cutoff for the result of
simulated datasets is firstly considered to select methods in each
scenario, followed with a robust checking for various mean noise
levels, cutoffs used for the measurement and absent gene rates to
only select methods with relatively good robustness for these
properties.

MAIC and rMixGEO show the best performance among all the
methods investigated when using a mix of ranked and unranked
data, while MAIC is more robust for the relatively high heterogen-
eity case. The method rMixGEO, which is based on simple statistics,
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is more intuitive and easier to implement and can be selected when
the heterogeneity of quality is known to be low, such as a dataset
with many sources from the same repeated experiments.

If a dataset only includes ranked data, rGEO, BiGbottom,
MAIC, rMEAN, MC3 and BIRRA are preferred for a large dataset
with many sources (like dataset type RankLarge). Except for
rMEAN, they also show a top-ranked performance for relatively
small datasets with only a few sources (like dataset type
RankSmall). Among them, the ranking of BiGbottom is more robust
for heterogeneity whereas BIRRA performs better for high hetero-
geneity scenarios than low heterogeneity scenarios among investi-
gated methods.

In terms of the relatively higher robustness to a change in quality
heterogeneity for the result of BiGbottom and MAIC, the most likely
reason is that they explicitly model and estimate the list quality.
Usually, the quality and heterogeneity of quality for input datasets
are hard to know, whereas the list type (ranked or unranked) and
the number of sources are relatively obvious. So, among top-
performing methods in the evaluation of this study, methods like
BiGbottom and MAIC that parameterize list quality and tend to be
robust for various quality heterogeneity are preferred if the hetero-
geneity is unknown.

General noise level is another property that is usually hard to
know in real data. The selected best-performing methods for each
dataset type and heterogeneity level shown in Figure 3 are robust to
various noise levels under the corresponding scenarios where they
give the best performance. Similarly, these selected best-performing
methods are also robust to the change of the absent gene rate (c) for
sources and the cutoffs for the results (the number of top-ranked
genes in the result list used to calculate the accuracy) when calculat-
ing the accuracy, shown in Supplementary File S1—Figure S6, with
slight fluctuations of their rankings under their best-performed data-
set types and heterogeneity. Comparison between top-100 accuracy,
which is also plotted in Supplementary File S1—Section S4, and top-
1000 accuracy can also suggest the robustness on cutoffs of the

results used to evaluate the performance for each method. It can be
noticed that the performance ranking of MAIC and BIRRA shows a
significant decreasing trend when the cutoff length falls for datasets
with only ranked lists and high heterogeneity, especially for small
datasets, whereas BiGbottom is more robust for small cutoffs
(shown in Fig. 3d). So although they appear together with
BiGbottom as the top-ranked methods for ranked only data with
high heterogeneity depending on the results of top-1000 cutoff,
BiGbottom is preferred if a study focuses on a small group of top-
ranked entities within the result. Considering the robustness of cut-
offs, only BiGbottom is selected as the final best-performing method
in Figure 3 where the input data only include a few ranked lists with
high heterogeneity of quality. But MAIC and BIRRA can also be
expected to show the best level of performance when a study focuses
on more genes in the result, like top-1000 genes.

In addition to the important features of genomic data explored
in previous research published by Li et al. (2019) which also com-
pared ranking aggregation methods on genes, this study proposed a
simulated data generator after analysing three collected real datasets
to systematically include key features neglected by previous
researches which can influence the result significantly, including the
inclusion of unranked lists, various heterogeneity of quality, the
large numbers of genes in real cases (20 000), the distribution of list
length, various size of lists and relationship between each gene in the
setting of ground truth. Among these features, dataset size, the inclu-
sion of unranked lists and heterogeneity which vary from datasets
can usually be available for the user of ranking aggregation algo-
rithms to some extent and can influence the performance of the
algorithms significantly, as shown in the evaluation results of this
study. The result of this study is summarized as a flowchart to guide
the choice of ranking aggregation methods depending on these fea-
tures. Advanced methods recently proposed (MAIC and BiG) which
are not included by Li et al. (2019) are included in this study and
they show top-ranked performance in many scenarios.

Yes

Yes

Unknown

No

No

No

Yes

Unknown

No

Unknown

Yes

Yes

No

Unknown

RANKING
Unranked sources are included?

HETEROGENEITY
Sources have high

heterogeneity of quality?

MAIC

rMixGEO, MAIC

SIZE
Only a few sources is included?

HETEROGENEITY
Sources have high

heterogeneity of quality?

BIRRA

BiGbottom,MAIC

rGEO, BiGbottom, MAIC,rMEAN,MC3

BiGbottom

HETEROGENEITY
Sources have high

heterogeneity of quality? BiGbottom, rGEO, MC3

Fig. 3. A flowchart for selecting methods depending on the ranking information, the number of sources included and the heterogeneity of quality for the investigated sources,

generated following the evaluation result of this study. Multiple methods within the same block means they perform similarly with the best performance under the correspond-

ing scenario
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In this study, datasets with only order information of some enti-
ties are evaluated, including the ranked or unranked list of genes.
But methods like MAIC and BiG can also take the classification of
sources as additional input information. Classification labels can
be manually assigned to each source by classifying sources using
self-defined criteria like experiment methods or cell types used. So it
could be additional information that can be relatively easy to
provide. In the future, the influence of classification on ranking
aggregation methods and methods for classifying sources will
be explored.
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