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Abstract

Incidence and mortality due to tuberculosis (TB) have been decreasing worldwide. Given that TB is a cosmopolitan disease,
proper surveillance and evaluation are critical for controlling dissemination. Herein, mathematical modeling was performed
in order to: 1) demonstrate a correlation between the incidence of TB in HIV-free patients in the US and Germany, and their
corresponding mortality rates; 2) show the utility of the newly developed D-R algorithm for analyzing and predicting the
incidence of TB in both countries; and 3) inform us on population death rates due to TB in HIV-negative patients. Using data
published by the World Health Organization between 1990 and 2009, the relationship between incidence and mortality that
could not be ascribed to HIV infection was evaluated. Using linear, quadratic and cubic curves, we found that a cubic
function provided the best fit with the data in both the US (Y = 2.3588+2.2459X+61.1639X2260.104X3) and Germany
(Y = 1.9271+9.4967X+18.3824X2210.350X3) where the correlation coefficient (R) between incidence and mortality was 0.995
and 0.993, respectively. Second, we demonstrated that fitted curves using the D-R model were equal to or better than those
generated using the GM(1,1) algorithm as exemplified in the relative values for Sum of Squares of Error, Relative Standard
Error, Mean Absolute Deviation, Average Relative Error, and Mean Absolute Percentage Error. Finally, future trends using both
the D-R and the classic GM(1,1) models predicted a continued decline in infection and mortality rates of TB in HIV-negative
patients rates extending to 2015 assuming no changes to diagnosis or treatment regimens are enacted.
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Introduction

Tuberculosis (TB) is highly contagious and in particular, when

one’s immune system has been previously compromised. Co-

infection with TB bacilli and HIV can be lethal. An HIV-positive

individual infected with TB bacilli is more likely to become sick

than one who is TB-positive and HIV-negative (http://www.who.

int/mediacentre/factsheets/fs104/en/). It has been reported that

5–10% of this subset of individuals (TB-positive HIV-negative)

become sick or infectious at some point in their lifetimes. (http://

www.who.int/mediacentre/factsheets/fs104/en/).

Given that TB is a cosmopolitan disease, proper surveillance

and evaluation are critical for controlling its spread [1,2]. Control

and treatment of TB have been studied in recent years by

numerous labs [3,4]. Research has been performed on the

relationship between genome sequencing and epidemiology [5],

associations between mutation and infectivity [6], surveillance on

sub-populations such as children and immigrants a [7,8], and

surveillance and treatment predicated upon computer assisted

detection [9] among others. The TB control program DOTS,

launched by the World Health Organization (WHO) in 1995, has

led to efficient treatment for 41 million patients. In 2006, a new

and more aggressive WHO sponsored program was implemented

according to The Global Plan to Stop TB, 2011–2015 (http://

www.stoptb.org/global/plan/). Understanding and being able to

predict the future progression of this disease is important for

evaluating current control measures if the overall goal of

eradication is to be met. Herein, we were able to show a strong

correlation between TB infection and mortality that was

independent of HIV-infection suggesting that HIV is not the only

contributing factor to mortality in TB- patients. Furthermore, we

demonstrated the utility of the D-R algorithm for analyzing the

incidence and mortality in TB-infected, HIV-negative patients in

the US and in Germany as a proof of principle. We then used this

modeling process to extrapolate future trends in both rates

through 2015 assuming no changes in treatment or prevention.

We propose that these data provide a baseline to which we can

reference changes in TB infection and mortality that may result

from enacting and implementing the new WHO ‘‘Stop TB

Strategy’’.
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Materials and Methods

Data collection and analysis
Data on the incidence (I-U) and mortality (D-U) of TB in the

US, and incidence (I-G) and mortality (D-G) of TB in Germany

among HIV-negative people between 1990 and 2009 were

collected from the official website of the WHO [10]. Correlation

coefficients and curve fitting were used to investigate the

interrelationship between the incidence and death due to TB in

HIV-negative patients in the both countries. The data was

evaluated using linear, quadratic and cubic functions to obtain the

method which would provide the best fit with the data. The

statistical analyses were performed by trend x2 test using

SPSS13.0 software.

Secondly, the incidence of TB, and the numbers of deaths in

TB-infected HIV-negative patients in both countries were

independently simulated using D-R and GM(1,1) models [11–

13]. To calculate this, the first order differential of the mortality

data at each point was analyzed using the D-R model. The

weighting of the differences in first order values were considered to

be the short term trends. Then the mean values of the difference in

first order values were used to generate the long-term trends.

Predicted values were then generated from both the short-term

and long-term trends as well as the weighting of short-term data

used to initiate the analysis. Generally the weighting of short-term

trend was higher. The above-mentioned cycle was repeated

continuously to get the predicated mortality values.

Comparisons between the actual values and values derived from

each algorithm were analyzed using the Sum of squares of error

(SSE), Relative standard error (RSE), Mean absolute deviation

(MAD), Average relative error (ARE), and the Mean absolute

percentage error (MAPE) [11,12,14] to test the accuracy of each

simulation beginning with year 1994 and extending through 2009

(note: years 1990–1993 were required to develop the equations for

simulation and therefore not included in data analysis). Finally,

once the most predictive equations were developed, the incidence

and death rates of TB in HIV-negative patients were extrapolated

for the years 2010 through 2015 in both countries.

Results

Statistical analyses
Data on I-U, D-U, I-G and D-G between 1990 and 2009 are

summarized in Table 1. Four groups of data evaluated by x2 test

((trendx2 test)) had a p,0.01 indicating that the data was significant

and that the incidence and death rates have decreased annually.

Table 1. Actual (At) and simulated (D-R & GM(1,1)) values for the incidence (I) and death (D) caused by tuberculosis in the US (U)
and Germany (G).

Year I-U I-G D-U D-G

At D-R GM At D-R GM At D-R GM At D-R GM

1990 13.00 23.00 0.60 1.30

1991 13.00 21.00 0.59 1.10

1992 12.00 21.00 0.59 1.20

1993 11.00 21.00 0.50 1.10

1994 11.00 10.21 10.13 19.00 20.96 24.00 0.47 0.43 0.48 0.94 1.03 1.50

1995 9.70 10.92 10.07 17.00 17.53 19.07 0.42 0.44 0.44 0.86 0.82 0.95

1996 8.90 8.73 9.23 17.00 15.41 17.05 0.39 0.38 0.39 0.85 0.79 0.84

1997 8.20 8.24 8.45 16.00 16.84 16.21 0.36 0.36 0.36 0.80 0.83 0.79

1998 7.50 7.61 7.76 15.00 15.23 15.33 0.32 0.34 0.33 0.73 0.76 0.74

1999 7.10 6.93 7.11 14.00 14.21 14.44 0.31 0.29 0.30 0.72 0.68 0.69

2000 6.50 6.75 6.59 13.00 13.19 13.56 0.28 0.30 0.28 0.67 0.71 0.65

2001 6.30 6.02 6.08 9.70 12.19 12.69 0.28 0.26 0.25 0.43 0.63 0.62

2002 5.90 6.11 5.68 9.70 7.20 11.26 0.25 0.28 0.24 0.50 0.25 0.53

2003 5.70 5.58 5.31 9.10 9.48 10.25 0.24 0.23 0.22 0.46 0.54 0.49

2004 5.60 5.53 5.00 8.40 8.59 9.38 0.23 0.23 0.21 0.42 0.43 0.45

2005 5.30 5.51 4.74 7.70 7.85 8.60 0.23 0.22 0.19 0.39 0.39 0.41

2006 5.20 5.07 4.50 7.00 7.13 7.89 0.22 0.23 0.18 0.35 0.36 0.38

2007 5.00 5.11 4.29 6.40 6.43 7.24 0.22 0.21 0.17 0.34 0.32 0.35

2008 4.80 4.84 4.10 5.10 5.90 6.64 0.21 0.22 0.17 0.23 0.33 0.32

2009 4.10 4.64 3.92 4.90 4.10 6.02 0.16 0.20 0.16 0.23 0.15 0.29

2010 3.57 3.69 4.66 5.48 0.12 0.15 0.22 0.26

2011 3.14 3.46 4.45 5.07 0.09 0.14 0.22 0.24

2012 2.77 3.24 4.28 4.70 0.07 0.13 0.21 0.22

2013 2.47 3.04 4.14 4.36 0.05 0.12 0.21 0.20

2014 2.22 2.85 4.02 4.04 0.03 0.11 0.20 0.19

2015 2.01 2.67 3.92 3.74 0.01 0.10 0.20 0.17

doi:10.1371/journal.pone.0042055.t001
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Relationship between the incidence and death of HIV-
negative TB patients

Using SPSS13.0, the coefficient (R) relating incidence (I-U) and

death (D-U) in the United States was 0.997 (p,0.01) indicating a

close link between the two sets of data. In like manner, the

association between the incidence (I-G) and death (D-G) in

Germany were equally high (R = 0.993,p,0.01). Based on these

results, linear, quadratic and cubic parametric functions were used

to evaluate the relationships between incidence and mortality in

the US and Germany to determine the best fit. Resulting curves

showed that a cubic function was most consistent with the existing

data. In this regard, the following equations for the US and

Germany, respectively, were generated;

Y = 2.3588+2.2459X+61.1639X2260.104X3 and

Y = 1.9271+9.4967X+18.3824X2210.350X3. Using these equa-

tions, the calculated R values were 0.995 and 0.993, respectively

(Table 2). In addition, the variance (F) was the smallest (p,0 .01)

when using a cubic equation relative to linear and quadratic

equations (Table 2). In developing these equations the dependent

variables were defined by I-U and I-G.

Relationship between actual and calculated values for
the incidence and death of HIV-negative, TB patients

The incidence and death of HIV-negative TB patients in the

US and Germany were calculated using the D-R and GM(1,1)

models. As shown in Table 1, the values predicated on the D-R

algorithm were equal to or better than those generated by the

GM(1,1) model when compared to actual values.

Comparisons between I-U calculations derived from both

models are shown in Figure 1. As one can see, in the earlier

years (1996–2001) the actual data and the fitted curves derived

from both algorithms are superimposed; however, beginning in

year 2002, the curve derived from the GM (1,1) model diverged

from the actual data while that derived from the D-R algorithm

continued aligning with the actual dataset.

In Figure 2, comparisons among actual and calculated values

for I-G showed good alignment except for the years 1994–1996

and an anomaly that surfaced in 2001 and 2002. In both cases, the

D-R and GM(1,1) models deviated from the actual dataset;

however, the D-R algorithm was better able to account for the

deviation in linearity that occurred in 2001 and 2002 than the

GM(1,1) model.

Comparisons among mortality rates were also evaluated using

both models. As shown in Figure 3, both models superimposed

over the actual data between 1995 and 2000. In 2001–2002 the

curve predicted using the GM(1,1) model began to deviate from

the actual dataset which continued throughout the rest of the

analysis except for 2009. In like manner, a deviation from the

actual data occurred in 2001 and 2002 using the D-R model;

however, as with the I-G data, the model was able to self-correct

and resulted in good alignment with the actual data through 2008.

A deviation from the actual data occurred again in 2009. Analysis

of D-G is shown in Figure 4. In most aspects, the profiles mirror

those generated for mortality rates in the US with deviations

between actual and predicted values occurring in the early years

and again in years 2001 and 2002.

Predictive values of the D-R and GM(1,1) algorithms
From the 2011 WHO report on TB, the actual values for I-U, I-

G, D-U and D-G were 4.1, 4.8, 0.18, and 0.25, respectively. The

values predicted using the D-R model were 3.6, 4.7, 0.12 and 0.22,

respectively. Calculations for the indexes SSE, RSE, MAD, ARE

and MAPE derived from the D-R and GM(1,1) algorithms are

summarized in Table 3. In general, the values for the D-R model

are equal to or less than those generated using the GM(1,1) model

suggesting that the D-R algorithm was equal to or better than the

GM(1,1) model for predicting trends in TB infection and

mortality. These results held true for data derived from both the

US and for Germany.

Table 2. The correlation (R) and variance (F) between
incidence (I) and death (D) in TB patients in the US (U) and
Germany (G) using linear, quadratic, and cubic parametric
equations.

I-U and D-U I-G and D-G

R F R F

Linear 0.990 1849.79 0.986 1262.96

Quadratic 0.992 1115.52 0.993 1137.90

Cubic 0.994 863.39 0.995 1040.75

For F, p,0.01.
doi:10.1371/journal.pone.0042055.t002

Figure 1. Incidence of tuberculosis in the US; a comparison between actual (I-U) and calculated datasets using the D-R and GM(1,1)
models.
doi:10.1371/journal.pone.0042055.g001
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Discussion

Related coefficient analyses (R) indicated that the incidence of

TB and deaths due to TB of HIV-negative patients were closely

related in the both countries i.e. U = 0.997, p,0.01 and

G = 0.993, p,0.01. Comparisons among different simulation

approaches showed that cubic parametric functions generated

the best fit between the incidence and mortality in TB-infected,

HIV-negative patients.

Actual data clearly showed that the incidence and mortality of

TB in HIV-negative patients in the US and Germany decreased

during the period 1990–2009. In predicting this trend using

existing datasets, the curves generated using the D-R model were

equal to or better than those generated by the GM(1,1) model with

respect to coinciding with actual datasets except for the last

available dataset i.e. 2010. It is possible that this difference lies in

the fact that the 2010 dataset included HIV-positive patients in the

reporting of incidence. As such it was not included in our

consideration of incidence for 2010. In addition, in those instances

where rapid points of inflection appeared in the actual data, the

self-adaptation component of the D-R model was able to correct

within one data point and in stark contrast to the curves generated

with the GM(1,1) algorithm. The D-R model consists of weighting

first order differential of the original data, weighting the short-and

long-term trends, and then summing these with the original data

to arrive at a predicted value. The advantage of this approach is

that regardless of how the original data may change, the model

can adapt to this change resulting in little deviation between the

simulated and actual values.

In contrast, the GM(1,1) model mainly relies on summing or

totting-up the original data. In other words, rather than summing

the arithmetic series i.e., 1+2+3+4 etc., the GM(1,1) model uses

accumulated data or a progressive total such as in the series 1,(1+2)

3,(1+2+3) 6, (1+2+3+4), 10,(1+2+3+4+5) 15 etc. to arrive at the

predicted values. As the series increases, the totting-up values also

increase which in turn reduces the flexibility of the GM(1,1)

model. The D-R model has no such drawbacks. In general, we

attribute the variability observed in the earlier years (1994–1996)

to insufficient data (1990–1993) for simulating that part of the

curve. These inconsistencies were accounted for as the numbers of

years incorporated in the analysis increased.

As we bring out in this study and confirmed in previous analyses

(11), the D-R model can self-adapt. This allows the model to have

a high level of flexibility and generate reliable future trends with

limited i.e., incomplete, data. We hope to further improve this

model by incorporating and weighting a delay operator (a dataset

encompassing the differences between the fitted values and the

actual values to increase the fitting accuracy of the model) and by

adding a limit algorithm to increase the model’s predictive

character.

Herein we stringently compared our model to the GM(1,1)

model because of the wide use of the GM(1,1) model in these types

of analyses; however, other models are also commonly used for

time series data such as, ARMA and ARIMA. These time series

algorithms are more suited for data with high periodicity. For this

specific purpose, they may be better than the D-R model.

However, when predicting trends involving general increases and/

or decreases in the absence of recurring changes such as what

occurs with TB and drug-resistance, these models are inferior to

the D-R model.

By comparing predicted and actual values, we can conclude that

the predictive values of the D-R model were accurate and feasible.

In like manner, the predicative values of GM(1,1) model were also

accurate and can be used as a reference. Both the actual values

and the values predicted by D-R and GM(1,1) models indicated

that under the current policies and prevention methods, I-U, I-G,

D-U and D-G decreased over the period of the analysis where the

trend in D-G was the most significant.

Comparing our method and that used by the WHO i.e., log-

linear model, we have concluded that the D-R model is better

Figure 2. Incidence of tuberculosis in Germany; a comparison
between actual (I-G) and calculated datasets using the D-R and
GM(1,1) models.
doi:10.1371/journal.pone.0042055.g002

Figure 3. Mortality of HIV-negative TB patients in the US; a comparison between actual (D-U) and calculated datasets using the D-R
and GM(1,1) models.
doi:10.1371/journal.pone.0042055.g003
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suited for simulating this data. First, the log-linear model is

commonly used for examining ‘‘interactions’’ or the influence

between two data sets or parameters, rather than for simulating

and predicting future trends derived from one data set. In this

manuscript, we first calculated the correlation coefficient, and then

performed linear fitting, then curve fitting and additional curve

fitting. Finally, we compared the various fitted curves to obtain the

best equation that describes the occurrence and death rates of TB

and their relationship to one another in US and in Germany. We

feel the log-linear model would have been more appropriate had

we been interested in comparing the data from Germany and the

US with respect to the effects of intervention strategies, for

example, rather than predicting future trends. As such, we feel the

D-R model is more suitable than the log-linear model for

analyzing future trends. Other advantages of using either the D-

R or GM models over the log-linear model are the ability to

generate exact fitting results and the fact that the D-R or the GM

models which are designed for predicting future trends would be

helpful for policy formulation and disease control.

We refrained from a specific one-on-one comparison of our

model with that used to generate the most recent WHO reports

because there was no way to guarantee that our datasets would be

100% congruent. As example, we culled TB patients that

harbored HIV infections. Attempting to re-analyze the data used

in our report using the log-linear model and generating results not

consistent with the WHO report would also bring into question

the data sources. As such, this was not done.

The efficiency of the D-R algorithm to mirror actual data was

further confirmed and supported by accuracy indexes as defined

here by SSE, RSE and MAD which were lower or equal to those

generated by the GM(1,1) model. We also evaluated ARE and

MAPE which derive their comparisons based on percent

differences rather than concrete numbers and as such may be

more representative of the differences between the two algorithms.

In this regard, the values obtained using the D-R model were

consistently lower suggesting a better accuracy than those derived

using the GM(1,1) model. Of particular interest are future

predictions using D-R model which shows that the incidence

and mortality due to TB of HIV-negative patients should continue

to decrease in both countries through 2015 (see Table 1). Using

SPSS software, we tested the four groups of data by the chi-square

trend test. Our results showed that all data sets were statistically-

significant (P,0.001) and generated the following values; I-

U = 19.834, I-G = 18.979, D-U = 20.028, and D-G = 18.141.

The higher value in the D-U data relative to that from D-G

suggests a more pronounced reduction in the US death rate due to

TB. The results imply that the current control measures have been

effective. These data also suggest that D-U will decrease more

significantly if the trends continue. As such, we predict that by

2015, the mortality could drop to 1%(0.01)in the US.

Clearly, the ability of our model to ‘‘self-correct’’ needs to be

more exhaustively tested and for this reason we evaluated the data

related TB in the US and Germany. Certainly, no one model can

predict far into the future given that population interactions and

environments are continuously changing and can never fully be

accounted for. However, if small inflection points can be identified

early on and a flexible model is available that can alter its

predictive character for the near term as well as the intermediate

future, such an algorithm could be a tremendous asset to policy

makers, governments and the research and medical communities

who have control over short term intervention strategies. We

believe the D-R model in one such algorithm with this potential.

In conclusion, we used a cubic parametric equation for the first

time to show a relationship between incidence and mortality

among HIV-negative TB-infected patients in America and

Germany with the hope of using this as a benchmark for

predicting future changes. Furthermore, such data allows us to link

the incidence of TB to mortality and from this propose that

prevention needs to receive more attention as a key approach to

reducing mortality rates. In addition, we showed that the D-R

model closely mirrored the trend line of TB through 2009 and

from this, predicted changes to the infection and mortality rates

through 2015.

Figure 4. Mortality of HIV-negative TB patients in Germany; a
comparison between actual (D-G) and calculated datasets
using the D-R and GM(1,1) models.
doi:10.1371/journal.pone.0042055.g004

Table 3. Calculation of key accuracy indexes spanning 1994–2009 evaluating the predictive quality of the D-R and GM(1,1) models.

I-U I-G D-U D-G

D-R GM(1,1) D-R GM(1,1) D-R GM(1,1) D-R GM(1,1)

SSE 2.76 3.58 21.43 49.54 0.01 0.01 0.04 0.38

RSE 0.43 0.49 1.20 1.82 0.02 0.03 0.05 0.16

MAD 0.28 0.40 0.81 1.29 0.02 0.02 0.04 0.08

ARE 21.26% 4.65% 21.50% 213.22% 21.70% 6.39% 20.18% 212.97%

MAPE 3.99% 6.59% 7.93% 13.22% 6.46% 7.65% 7.86% 14.17%

Note: I-U, I-G, D-U and D-G represent the incidence (I) and deaths (D) of tuberculosis in the US (U) and Germany (G), among HIV-negative TB patients in the. D-R and
GM(1,1) define the algorithms from which these values were derived.
doi:10.1371/journal.pone.0042055.t003
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