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Abstract: Advanced therapy medicinal products (ATMPs) are medicines for human use based on
genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees
increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset,
timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold
great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application
may substantially improve efficiency, economy and accessibility compared with application in adults.
Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates
and corrections of disease parameters for younger patients, in addition to reduced overall cell and
vector requirements, illustrating that early application may resolve key obstacles to the widespread
application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP
developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison
with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key
framework parameters of clinical prenatal and pediatric ATMP application.

Keywords: gene therapy; somatic cell therapy; tissue-engineered medicinal product; CAR T cell;
CAR NK cell; hematopoietic stem and progenitor cell; mesenchymal stromal cell

1. General Introduction

Advanced therapies are based on innovative uses or the genetic manipulation of cell
and tissue materials, and as treatments for human disease, are often without alternatives or
are superior to treatments with conventional drugs. Be it for advanced or conventional treat-
ments, due to regulatory, ethical and commercial pressures, numbers of medical products
generally lag behind for pediatric compared with adult applications. However, in particular
for advanced therapies, the case can be made that this “age gap” in drug development
offers more harm than protection for patients, and that earlier-in-life application, from
adult to pediatric or even to prenatal, would have tremendous medical, supply and com-
mercial benefits. In this review, we present the corresponding background and arguments
for pediatric and more recently conceived advanced prenatal therapies, by first outlining
the current status and challenges of advanced therapies in general, before presenting the
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conceptual and regulatory framework for early interventions, followed by details for in-
formative preclinical and clinical studies. After discussions of technical and non-technical
elements and developments that might facilitate the further and more widespread success
of early interventions, the article closes with corresponding perspectives and conclusions.

2. Current Status and Challenges of Advanced Therapy Medicinal Products (ATMPs)
and Rationale for Early Interventions
2.1. Defining ATMPs

ATMPs are medicines that have begun to transform our ability to treat injury and
disease. They are defined by the European Medicines Agency (EMA) as comprising gene
therapy medicinal products (GTMPs), somatic cell therapy medicinal products (CTMP),
tissue-engineered products (TEPs) and combined ATMPs as a combination of any of
the three product categories [1]. Specifically for the EU, the EMA provides up-to-date
information and relevant guidelines covering their classification [2] and toward marketing
authorization [3,4], albeit with a functionally limited search interface. Likewise, clinical
trials and new medicines are centrally registered in EMA databases [5,6], but are limited to
products and trials approved through the centralized EU procedure, which can be bypassed
by application to one or several nation states [7]. Differing terminology and definitions
cover ATMPs and their subcategories outside the EU [7,8], which hinders systematic global
assessments, but has not stopped an avalanche of comprehensive recent reviews covering
their global development, application, regulation, risks and prospects [8–19]. For clarity, the
present review will refer to advanced therapies in accordance with the most recent quarterly
recommendations on the classification of ATMPs by the EMA [20]. Despite this European
reference point, and although providing EU-specific references to regulatory procedures
and public resources, we will cover findings and prospects for early interventions with a
global perspective.

2.2. Current Key Areas of ATMP Application

In line with their wide-ranging definition, ATMPs may apply to a multitude of inher-
ited and acquired diseases. However, although preclinical development for ATMPs has
already touched on hundreds of conditions, only few major technologies and applications of
ATMPs have progressed to the clinical trial stage or received marketing approval. Reasons
for this can be found in inappropriate study designs (in terms of numbers, experimental
groups, endpoints and comprehensiveness), limited transparency and comparability across
studies, high cost and the slow political, regulatory and industry adoption of ATMPs [21].
Among a global pipeline of dozens of approved ATMPs and hundreds of ATMPs in de-
velopment [22,23], the most advanced ATMPs with proven potential for early therapeutic
intervention include receptor-engineered and chimeric antigen receptor (CAR) cells, ex vivo
genetically modified hematopoietic stem and progenitor cells (HSPCs) and mesenchymal
stromal cells (MSCs) [14]. Of these, CAR cells were initially conceived and developed
over several generations of increasingly effective and durable CAR T cells [24], but are
now also being developed as CAR natural killer (NK) cells [25] as powerful anti-cancer
immunotherapeutic agents for autologous and allogeneic application, respectively [26].
HSPC-based ATMPs have enabled pioneering clinical autologous applications of gene
therapies for both gene addition [16,27–31] and gene editing [32], whereas MSCs have also
seen widespread use for allogeneic application in different tissues and in the modulation
of immune responses (e.g., for Obnitix® and Alosifel®) [33,34]. Based on their diverse
application and due to their exemplary level of development, as well as for prenatal and
pediatric use, CAR cells, HSPCs and MSCs will thus serve as the main examples for ATMP
progress and applications throughout this review. Importantly, many additional ATMPs
may have great potential for early-in-life applications, but cannot be detailed here. For
instance, the diverse category of TEPs, which are applied as autologous or allogeneic cell-
based engineered tissues for the regeneration of skin, cartilage and bone, has great clinical
significance [35]. However, its successful application in pediatric or prenatal settings is
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thus far limited to single case studies, safety assessments or small grafts; thus, systematic
coverage of TEPs beyond selected landmark examples is outside the scope of this article.

2.3. Exemplary ATMP Successes

Among ATMPs under EU regulation, CAR-, HSPC- and MSC-based therapies may
offer new prospects to improve the treatment of several conditions with unmet medical
needs. For instance, CAR technology has been a trailblazer for processes and regulations
governing personalized ATMPs and employs synthetic receptors to direct autologous im-
mune cells to any cellular target without HLA restriction [36]. Current second-generation
CAR T cells carry engineered receptors that encode the recognition domain for a tumor-
specific epitope, bound via an optional scaffold domain to activation and costimulatory
domains, which together facilitate target recognition, cytotoxicity and T cell expansion.
The showcase application for CAR technology is autologous CAR T cells against the
abundantly expressed and non-essential CD19 B cell marker which, after early success in
clinical application to relapsed/refractory B cell malignancies [37], is the basis of currently
approved CAR-based treatments (Tisagenlecleucel/Kymriah® EMA/FDA, axicabtagene
ciloleucel/Yescarta® EMA/FDA, brexucabtagene autoleucel/Tecartus® EMA/FDA, liso-
cabtagene maraleucel/Breyanzif® EMA authorization pending/FDA) [24]. With ongoing
attempts to target additional markers of malignancies and to even apply CAR technology
to solid tumors, the most prevalent targets in addition to CD19 are the less abundantly
expressed CD22 and CD20 for B cell malignancies [38,39] and the B cell maturation antigen
(BCMA; by idecabtagene vicleucel/Abecma®) for multiple myeloma [40]. As additional
developments for CAR T cells application, receptor components may be swapped in a
modular fashion, site-specific delivery of CARs to the TRAC locus in T cells using clustered
regularly interspaced short palindromic repeats (CRISPR) technology improves their po-
tency and consistency of expression, and antigen escape by tumors may be reduced or the
efficiency of therapy may be enhanced by the application of multiple CARs [41,42] or by
bispecific CAR designs [43–45]. Finally, employing natural killer (NK) cells instead of T
cells confers an improved safety profile by the avoidance of cytokine release syndrome
and action on non-hematopoietic cells, and paves the way toward allogeneic (off-the-shelf)
CAR cell applications because of the HLA-independent action of NK cells [46].

For HSPCs, autologous transplantation after genetic modification has emerged as the
most popular and successful application of gene therapy as a viable option for a variety of
monogenic disorders, possibly because of the long experience with allogeneic hematopoi-
etic stem cell transplantation (HSCT) and the ability to manipulate those cells ex vivo with
great efficiency [47]. For all these disorders, allogeneic HSCT remains the clinical standard
for cure, but is limited by donor availability and associated severe immunologic compli-
cations (graft-versus-host disease (GvHD) and graft rejection) [48]. Genetically modified
autologous HSPC products, mostly applied in the treatment of blood or immune system
disorders, but also of several storage and metabolic disorders, represent an alternative and
potentially safer one-off treatment option [49,50]. Despite continuous improvements in
the manufacturing of modified cells (refined cell collection, isolation and culture protocols,
better vector designs, safer tools based on gene/base editing), and an increasing number
of products entering clinical trials for an expanding list of diseases, 30 years after the first
ever gene therapy trial, only four HSPC-based GTMPs have been granted EU marketing
approval: betibeglogene autotemcel (Zynteglo) for transfusion-dependent beta-thalassemia
(TDBT); Strimvelis for severe combined immunodeficiency due to adenosine deaminase
deficiency (ADA-SCID); atidarsagene autotemcel (Libmeldy) for metachromatic leukodys-
trophy (MLD); and elivaldogene autotemcel (Skysona) for cerebral adrenoleukodystrophy
(CALD) [51–54]. All of the above therapies are based on ex vivo viral-vector-mediated gene
transfer in HSPCs and the autologous transplantation of modified cells into patients. For
in vivo applications of GTMPs, onasemnogene abeparvovec-xioi (Zolgensma) for spinal
muscular atrophy (SMA), resamirigene bilparvovec (AT132) for X-linked myotubular my-
opathy (XLMTM) and voretigene neparvovec (Loxturna) for Leber congenital amaurosis
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(LCA), are EU-approved therapies based on the systemic or direct/topical delivery of viral
vectors encoding functional copies of the respective disease-causing genes [55–57]. The
above commercially available drugs are indicated either in pediatric-only or mixed pedi-
atric/adult populations, because most of them concern early-onset severe or early-lethal
inherited disorders.

Finally, MSCs have become the most clinically studied experimental cell therapy
platform worldwide since their first evaluation in humans in 1995 [58]. Although initial
insights into MSC properties and mechanisms of action were mainly gained from preclin-
ical murine models and in vitro analyses of human MSCs, their application has already
shown enormous potential in the moderation of immune and inflammatory reactions,
bone diseases, cancer, and heart, liver or kidney failure, in part through paracrine and
exosomal signaling. As exemplary fields of MSC application for immune and inflamma-
tory reactions, acute GvHD (aGvHD) may lead to severe inflammatory reactions and the
death of patients after allogeneic HSCT [59], and Crohn’s disease may lead to debilitating
chronic inflammation of the gastrointestinal tract [34]. Likewise, acute or chronic injury,
such as of the lungs, may irreversibly damage tissue by inappropriate immune responses
and/or aberrant repair processes, usually leading to fibrosis and subsequent decline in
organ function. MSC attenuation of inflammation prevents further injury and promotes
repair [60–62], with frequent achievement of full aGvHD remission [63,64], improved bac-
terial clearance, potential differentiation of MSCs to replace damaged cells, and in part
the cytokine-mediated, anti-inflammatory and pro-regenerative action of MSCs [65,66],
all vindicating their therapeutic use. Regarding bone diseases, MSC-based therapies act
by paracrine- and exosome-mediated signaling, in osteogenesis imperfecta in particular
through action of exosomal RNA cargo [67,68], and in bone tissue engineering, scaffolds
combined with osteogenically differentiated MSCs provide a better bone regeneration
microenvironment and better bone growth than engineered cell-free scaffolds [69–71]. For
cancer treatment, MSCs may show microenvironment-dependent pro- or anti-tumorigenic
properties when unmodified, but clearly assume therapeutic properties when used for
the exosomal delivery of cytotoxic agents after drug loading or after genetic manipula-
tion [72,73]. In the treatment of heart, liver or kidney failure, MSCs variably mediate the
stimulation of endothelial cells [74], inhibit apoptosis, inflammation and hepatic stellate cell
activation [75,76], and deliver trophic factors and cell components by paracrine or exosome
signaling and even cell fusion [77], respectively, in order to achieve therapeutic action.

2.4. Challenges of ATMP Application

Despite such prominent successes and progress, there are inherent limitations for the
widespread use of ATMPs. Many factors determining the cost of ATMP development are
those in common with the development of other drugs and treatments, whereas some key
cost factors are unique to ATMPs. As for conventional drugs, observations for ATMPs and
their efficacy under optimized laboratory conditions do not always reflect the complex
and multifactorial reality in the clinic. Moreover, the complex nature of ATMPs and the
direct link of their production with live cells from donors and/or recipients suggests that
ATMP development is characterized by key challenges not encountered, or of different
qualities from those faced, in the development of small-molecule drugs. The great diversity
of ATMPs and their applications means that defining universal challenges is difficult;
however, several key challenges applying to development, ethical and regulatory issues,
supply and manufacturing, and marketing across many different ATMPs are outlined in
Figure 1 and detailed in the current section.
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2.4.1. Scientific and Medical

On the scientific or medical side, donor-specific features, incompleteness of our un-
derstanding of specific mechanisms of interactions with host tissues, and elusiveness of
robust pharmacodynamic and pharmacokinetic models for different clinical applications
represent major challenges that need to be overcome for each individual disorder to achieve
successful clinical translation [49,78]. Especially for in vivo applications, the specificity and
efficiency of target cell manipulation are problematic, whereas for ex vivo application based
on HSCs, treatment-related morbidity related to myeloablation is a concern. For all ATMPs,
addressing prenatal or early-onset diseases in a timely fashion and dealing with immune
rejection of treatment and with pre-existing co-morbidities are common challenges.

2.4.2. Ethics and Regulatory

The translation of ATMPs from R&D to clinical trials and then commercialization
faces unique ethical and regulatory challenges not encountered at all or to the same degree
for small-molecule drugs. Ethically, the inherent complexity of ATMPs and the lack of
precedents for many clinical studies are sources of uncertainty, and thus concern, for the
safety of participants, whereas ethical considerations for trial participants also routinely
prompt trial designs without control groups for what are often invasive procedures. Where
inadvertent germline manipulation may be a concern in several in vivo applications, in
particular of GTMPs, rare but high-profile illegal human germline manipulation has raised
fundamental ethical concerns and have led to a high level of vigilance and stringent reg-
ulatory requirements, particularly for GTMP applications [79,80]. Moreover, regulatory
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requirements for ATMPs are generally high, and are moreover mutable for a nascent
industry. Accordingly, ongoing evolution of regulatory, legal, quality-control and infras-
tructural aspects for ATMPs brings about that framework requirements across different
legislatures differ greatly [8,81–83]; thus, regulatory challenges are seen as a key difficulty
by manufacturers [84].

2.4.3. Supply

In addition to regulatory issues, access to bio- and good manufacturing practice (GMP)
materials are a key impediment for ATMP applications. For cell-based therapies, suitable
cells are not available in sufficient numbers for corresponding treatments, be it for autolo-
gous applications to a single patient or for allogeneic therapies, where the manufacturing of
off-the-shelf ATMPs may aim to serve many patients. For certain disorders, the availability
of suitable adult stem cells for autologous application presents a challenge even for abun-
dant cells, such as HSPCs or MSPs, in particular where the disorders or injuries to be treated
affect the abundance and viability of those stem cells, as is the case, e.g., for HSPCs in
Fanconi’s anemia [16], where this may be addressed by improved mobilization and collec-
tion [85]. For allogeneic therapies, and even where culture protocols can be established that
maintain the desired properties of the cells in question, bottlenecks may be addressed by
advanced and scalable culture methods, although high single-dose requirements, e.g., for
MSCs of up to 109 cells, or the rarity of starting material may continue to pose challenges for
ATMP manufacturing for the foreseeable future [48]. The shortfall thus calls for improved
identification, isolation, expansion and modification protocols for autologous application,
and for scalable expansion technologies for off-the-shelf ATMPs [48], as is being argued
and explored, e.g., for both HSPCs and MSCs in their countless applications [16,49,86,87].
Similarly, the pricing and availability of GMP reagents pose a problem for the clinical
development of ATMPs, in that even well-funded clinical trials are held up by limiting
global production capacities for GMP-grade reagents. The supply of GMP-grade materials
was a limiting factor even before the general pharmaceutical supply chain issues brought
about by the COVID-19 pandemic [88].

For many of the challenges of ATMP application, incremental improvements are being
made; however, some key problems, particularly the limiting supply of GMP-level thera-
peutics at population scale, will require a landmark shift in the underlying technologies
or in the way they are applied. Even a moderate increase in contemporary GMP require-
ments by expanding adult application of ATMPs would hardly be sustainable with current
technologies [89].

2.4.4. Manufacturing

Supply shortages are aggravated by a lack of standardization of manufacturing and
quality control procedures, which still pervades the nascent field of ATMPs, affecting
the cost and predictability of production. More specifically for GTMPs, the large size
and negative charge of nucleic acids and their consequentially poor penetration of cell
membranes calls for the temporary removal of membrane integrity or for dedicated carriers
to allow effective delivery to cells and tissues. The development of non-lethal systems
for cell penetration and of effective vectors for transfer across membranes has been a
long journey from initial attempts at plasmid transfection over advanced non-viral and
viral delivery methods to a great diversity of permanent, transient and highly transient
delivery of transgenes, of genome editing tools, and of RNA, nuclear reprogramming and
epigenome editing reagents today, as we will point out for key developments later.

ATMPs based on autologous cell material are as variable as the patient population, are
inherently personalized products that can only benefit from economies of scale in some
aspects, and the place and time of manufacture have to be adjusted according to the patients.
The corresponding personalized application of ATMPs also contributes to difficulties in trial
design and preclinical evaluation as key scientific challenges. However, even for universal
products and allogeneic application, variability, sensitivity, quality control and subsequent
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shelf life are issues of concern for ATMPs far more than for standard pharmaceuticals.
Finally, the accessibility of therapeutic tools as targets for the patient’s immune system,
and off-target delivery to cells and tissues, where those tools might be unproductive
or even toxic, both represent a health and safety risk to patients, but also elevate GMP
reagent requirements as an important bottleneck for the industry (see below). Altogether,
manufacturing, quality standards and starting materials are therefore seen as key technical
challenges for ATMPs [84].

2.4.5. Market and Pricing

On the financial side, funding and reimbursement are key challenges for ATMPs [84].
Be it the long development time combined with fast technology turnover, or be it the high
inherent cost of manufacturing ATMPs combined with the uncertainty of manufacturing
scale and reimbursement policies, the challenges for commercial ATMP development are
enormous [12,90]. Most conventional drugs rely on the chronic application and correspond-
ingly long-term reimbursement of manufacturers for development cost; however, most
ATMPs are applied and paid as one-off treatments. The novelty of many ATMPs also
means that both physicians and patients often need to be made aware of their existence and
benefits, and that their integration into clinical routine, including post-treatment follow-up,
often still needs to be established. Finally, just as regulatory requirements differ across
legislatures, so do reimbursement models and agreements for ATMPs, which, in turn,
creates uncertainty and causes hesitancy or absence of investment for production and com-
mercialization. Therefore, the step from proof of principle to market is particularly difficult
for ATMPs, and even for safe and efficient products reaching marketing authorization, the
inability of patients or health systems to pay for advanced therapies might ultimately lead
to commercial failure and market withdrawal [91].

2.5. The Rationale for Early Intervention

A multitude of shortcomings thus bring about that ATMPs currently cannot unfold
their full potential while promising a new era of effective cancer treatments, potentially
curative treatments for inherited diseases, and off-the-shelf regenerative medicines, among
others. It turns out, however, that some of the key impediments to wider and effective
ATMP application, including high reagent requirements, ineffective systemic delivery,
poor accessibility of target tissues and pre-existing immunity, can be addressed by early
intervention, i.e., by application at the prenatal stage, in infancy, in early to late childhood
or in adolescence.

Many of the aforementioned challenges are brought about or exacerbated by the
restriction of treatment to adults, which, for pioneering treatments and especially clinical
trials, is a matter of course, unless the disease in question causes death or irreparable
damage in early life stages. The resulting tradeoff for therapy development is that the
underlying bioethical guidelines protect the unborn or young life, while at the same time
often hiding the true potential of ATMPs by application in adults, where early-onset
diseases may already have caused irreparable direct or pleiotropic damage, where affected
tissues or therapeutically relevant cells are hard to access or rare, or where requirements
for cell material (such as TEPs or stem cells) and GMP reagents are orders of magnitude
above what may be required to achieve similar benefits in utero or in pediatric patients. A
further argument for the prenatal or pediatric application of ATMPs is the innate proclivity
for healing in younger patients and the generally superior regenerative performance of
TEPs or stem cells earlier in life. Late treatments are thus limited in their effectiveness
due to pre-existing damage and reduced graft performance, exacerbating the universal
challenges of target-specific in vivo delivery and stem cell retrieval, and inflating the cost
(see Sections 6 and 7), which thus effectively limits the accessibility of ATMPs to those in
need. In utero and pediatric therapies effectively improve all of these critical treatment
parameters and may be instrumental in giving more patients and diseases the benefit of
advanced therapies. Prenatal treatment, as compared with any postnatal treatment, brings
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various advantages, including a less developed and thus more tolerant and even tolerogenic
immune system [92], higher accessibility of target organs, and reduced target tissue size and
cell numbers, with correspondingly lower reagent requirements [93]. However, at a stage
where early and in utero ATMP interventions, in particular, are themselves still in their
infancy, researchers and clinicians are faced with a dilemma: the earlier the intervention,
the greater the potential benefits, but also the greater the potential risks and uncertainties
of ATMP applications (Figure 2).
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3. Conceptual and Regulatory Framework for Early Interventions

Early interventions, although still universally under-researched compared with ther-
apeutic applications in adults, may have an essential role to play in the enhancement of
ATMP accessibility and effectiveness. Both pediatric and in utero treatments come with
distinct drawbacks and benefits in their practical application, which are subject to reso-
lution and enhancement by ongoing research and development efforts in the laboratory
and clinic (see Sections 4 and 5). Early interventions are correspondingly couched within
a conceptual and regulatory framework that, in many aspects, differs quantitatively or
even qualitatively from that applied for adult interventions. To avoid the erosion of ethical
constraints for early intervention and to warrant benefits and prevent potential harm for
patients, establishment, awareness and observance of that framework is essential.

3.1. Pediatric

In their pediatric application, ATMPs encounter the same routes of application and
problems faced during adult application, but benefit from incremental efficacy, accessibil-
ity and cost benefits, and from decremental pre-existing infections and morbidities with
lower age and body size, with additional pros and cons, as shown in Figure 2. On the
regulatory side, pediatric medicines in the EU have assumed a special role since 2007,
when the EU Paediatric Regulation came into force [94], comprising Regulations (EC) No
1901/2006 and its amendment No 1902/2006 [95,96] and aiming to achieve better product
information and more pediatric medicines and pediatric research [6]. As a result, in its
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ten-year report on the implementation of the Paediatric Regulation, the EMA reported an
increase in many therapeutic areas in pediatric medicines, albeit with little development
for exclusively pediatric diseases or for diseases with distinct pediatric presentation [97].
Likewise, there was an only moderate increase in pediatric research in 2017, from 9.3%
pediatric as a proportion of all trials in 2006, to 12.4% in 2016 [97,98]. Both the Paediatric
Regulation and the ten-year report acknowledge the dilemma that protecting children
from clinical trials for ethical reasons, and as a group that requires legal and regulatory
protection, has resulted in a scarcity of specifically pediatric medicines, which has led to the
widespread off-label use of adult medicines for pediatric patients, with inherent risks and
uncertainties concerning optimal dosage, suitable modes of administration and age-specific
side-effects. In recognition of this shortfall of pediatric treatments, the Paediatric Regula-
tion therefore offers incentives for pediatric medicine development to compensate for the
cost disadvantage associated with the requirement to investigate age-stratified action for
inherently smaller patient populations than would be encountered for adult treatments.
These incentives include six-month extensions on the supplementary protection certificate
of medicines, and 12 instead of 10 years of market exclusivity for orphan medicines for
compliant companies, supported by an advantageous pediatric-use marketing authoriza-
tion (PUMA) and a specific pediatric expert committee and free advice to the industry from
the EMA. This is paired with comprehensive measures and resources for the dissemination
of pediatric studies, including an EU network of pediatric investigators, an inventory of
pediatric needs, a public database of pediatric studies and the obligation for companies to
submit any pediatric data for approved medicines to the regulators for analysis. In line
with this and further promoting the dissemination of pediatric trial results, clinical trials
for pediatric interventions in the EU are covered in their entirety from phase I to IV in the
EU Clinical Trials Register, in contrast to adult interventions, for which phase I trials are
excluded [6].

3.2. In Utero

In utero therapy offers the possibility of disease treatment and prevention before birth
and is considered most appropriate after at least 7 weeks of gestation, when the primordial
germ cells are relatively protected from inadvertent germline modifications [99,100]. It
can be achieved either transplacentally, by introducing the medication into the maternal
circulation, or by direct injection into fetal tissues or circulation. Both approaches call
for procedures and reagents that are distinct from those applied in pediatric and adult
patients. For transplacental in utero application, the placenta represents a key challenge,
as both a route and an obstacle to transfer. A short-lived but constantly developing organ,
the placenta separates the maternal and fetal circulations and, at the same time, enables
communication between both entities. During approximately nine months of pregnancy, it
serves many functions to support fetal development, including the transport of nutrients
and gases, immune defense, endocrine signaling for hormone and transmitter homeostasis,
and as barrier to protect the fetus against toxins from the maternal circulation [101]. Impor-
tantly, and while conventional pharmaceuticals of high liposolubility and low molecular
weight traverse the placenta relatively easily, the placenta presents a substantial mechanical
and functional barrier and possibly a toxicity target for therapeutics based on genes, cells,
or tissue engineering. Therefore, alternatives to transplacental routes of administration are
being explored, such as intravenous injection, intra-amniotic administration, or targeted
drug delivery approaches [102]. One of the best-researched means of prenatal ATMP admin-
istration is ultrasound-assisted injection in the fetal umbilical vein, which allows injected
gene constructs or stem cells to bypass the lungs, via the ductus arteriosus and foramen
ovale, and to directly enter the fetal systemic circulation. Such fetal injection even offers
significant advantages over the early postnatal intravenous administration of ATMPs into a
peripheral vein, which often leads to the trapping of cells or gene carriers in the pulmonary
microcirculation [103] and reduced systemic exposure. However, direct injection poses
the challenge of accessibility and visualization of target tissues and of a developmentally
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changing anatomy, and the risk of treatment-related injury to mother and child, so that
special surgical skills and equipment are required for the procedure [104–106]. Together
with the unique safety and ethical considerations inherent to the in utero manipulation of
human life, these technical requirements currently represent a substantial roadblock for the
widespread application of in utero therapies, with additional pros and cons, as shown in
Figure 2. On the regulatory side, EU documents currently refer to ATMPs in connection
with in utero transfer mostly in the context of inadvertent germline transmission [107].
Importantly, however, the recent EC Guidelines on Good Clinical Practice specific to ATMPs
explicitly acknowledge the possible necessity of in utero intervention in severe early-onset
conditions or where only early treatment offers benefit, and in general terms recommend
the adoption of additional safeguards appropriate for the product, disease and develop-
mental stage [108]. Meanwhile in utero treatments are already applied using conventional
drugs, such as for fetal arrhythmias by digoxin or sotalol [109] or for the prevention of fetal
viral infection by antiretrovirals in HIV-positive women [110]. Based on growing experience
for in utero non-ATMP treatments and from preclinical ATMP studies (see Section 4), it can
therefore be hoped that the clinical translation of in utero ATMP applications is not too far
in the future [93].

4. Preclinical Studies of Early Interventions in Animal Models Using ATMPs
4.1. Pediatric

The pharmacological profile of a new medicinal product is generally assessed in
adults prior to testing in the pediatric patient population, and efficacy and safety data are
extrapolated to children [111]. However, substantial differences in the disease pathology
and pharmacological properties of many ATMPs often exist between adults and children,
thus necessitating studies in juvenile animal models prior to pediatric application. Alas,
dedicated pediatric studies in animal models are few and far between, also because the
juvenile time window for mice (the most versatile and most widely used model organism)
is fairly narrow, with mice reaching sexual maturity from as early as 23 days after birth
for females and usually from 6 weeks for males [112]. As highlighted in a Special Issue
assessing pigs as model animals [113], corresponding research therefore greatly benefits
from alternative animal models with an extended juvenile period, such as dogs, pigs, sheep
and non-human primates [105,113–118], which may moreover serve as a large animal
model for in utero applications. Importantly, many murine studies of early-onset diseases,
although stretching into adult application, are representative of early interventions and
therefore also informative in the present context.

Outside our focus on CAR-, HSPC- and MSC-based ATMPs, early treatments in a
cornucopia of rodent and large animal models have already been highly informative for
a range of ATMPs, target tissues, diseases and juvenile stages, as may be exemplified
here, with treatments based on adeno-associated-virus (AAV)-mediated in vivo gene ad-
dition. Recent examples include applications in 2–4-month-old sheep to treat Tay–Sachs
disease [118] and in early postnatal and juvenile mice to treat CLN3 Batten disease [119], as
two exemplary lysosomal storage disorder, as well as in 12-week-old dogs to treat X-linked
retinitis pigmentosa [120], and in early postnatal mice, which mimic the human fetal inner
ear, to treat congenital hearing loss and vestibular dysfunction in over a dozen studies [121].

For CAR cell applications, the predominance of CAR-T cells and their autologous
application largely shifts analyses to toxicity-only assessments in pure animal models,
or to more comprehensive functional assessments in murine xenograft models. For the
latter, the age of human cell donors is usually not disclosed and recipient NSG mice
are usually adult; thus, corresponding publications to date do not allow conclusions
drawn from comparisons of the relative performance of early life and adult interventions.
Importantly, the contemporary predominant application of CAR cells is cancer treatment
by autologous CAR T cells, the performance and developmental age of which are bound
up with the age and state of the affected patient. However, in particular for the nascent
allogenic application of, e.g., CAR-NK cells, comparative analyses for performance of
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adult vs. juvenile cells in xenograft models would be extremely informative, because the
emergence of standardized protocols and impressive efficacy data indicate for the latest
CAR-treatment-based strategies [122]. For instance, the evaluation of second- and third-
generation anti-CAIX CAR-T cells in NSG-SGM3 mice transplanted with CAIX-expressing
clear-cell renal cell carcinoma skrc-59 cells achieved complete remission and tumor-free
survival on day 72 after treatment for the best combination of CD4/CD8 CAR-T cell ratio
and CAR-T receptor [123]. Evaluation of cord-blood-derived fourth-generation anti-CD19
CAR-NK cells engineered for enhanced cytokine signal transduction achieved the virtually
complete suppression of tumor growth in Raji (Burkitt-lymphoma-cell)-transplanted NSG
mice, allowing up to 341 days of tumor-free survival, against the death of all control animals
in under 1 month [124]. Finally, in the first application of Vδ1 γδ CAR-T cells, targeting
GPC-3 as a frequent and abundant marker of solid tumors slowed tumor growth after
transplantation of HepG2 cells into NSG mice, down to below 10% of growth in controls,
for a test period of over 30 days [125]. This was achieved in the absence of GvHD and
toxicity symptoms, because γδ CAR-T, similarly CAR-NK cells, acts HLA-independently
and could thus be used as off-the-shelf ATMP.

For HSPCs, murine xenograft models have been crucial for the development and
clinical translation of autologous and allogeneic HSPC-based therapies, including gene
therapy, since the late 1990s [126]. Immunocompromised mice, humanized mice and
genetically engineered disease mouse models have been used to address key bottlenecks
of ex vivo and in vivo application of HSPC-based ATPMs, including the maintenance of
HSPC multilineage potential, efficient engraftment of cells and safety [127]. Neonatal and
juvenile mouse models, in particular, have been extremely useful in the development of
HSPC-based gene therapy for primary immunodeficiencies, where early intervention is
a sine qua non. For this, the adenosine deaminase deficiency (ADA)-/- neonatal mouse
model was used in preclinical studies to assess efficiency and safety of ADA-carrying
lentiviral vectors by ex vivo transduction and the autologous transplantation of modified
HSPCs, efforts that ultimately led to the EU marketing authorization of Strimvelis in
2016 [128–130]. HSPC-based ATMPs have also been tested in neonatal mouse models of
further disorders, such as Wiskott–Aldrich syndrome, mucopolysaccharidoses and other
storage disorders [131–133]. An exceptional achievement is the humanized transgenic
thalassemia mouse models developed by the Ryan group which, in contrast, to knockout
models, develop transfusion-dependent thalassemia major, and thus are the most faithful
representation of the disease and of therapeutic efficiencies in vivo, from in utero to adult
applications [134–138]. Larger animal models have also been applied in cases where
mouse knockout models have failed to faithfully recapitulate the disease phenotype or
where longer-term follow-up has been essential [139]. Among others, juvenile canine
leukocyte adhesion deficiency and X-linked severe combined immunodeficiency (X-SCID)
dog models, as well as juvenile nonhuman primate X-SCID and human immunodeficiency
virus (HIV) models, have been crucial in advancing HSPC gene therapy based on both
gene-transferring viral vectors and newer gene editing tools [114,117].

For MSCs, many preclinical trials have been completed and many more are currently
ongoing to explore their safety and efficacy in a wide range of acute and chronic disease
models, complemented by studies merely investigating the (non-ATMP) application of
MSC-derived exosomes and extracellular vesicles. A fundamental limitation for purely
murine models (as opposed to xenograft models) in ATMP research is the profound differ-
ences for key aspects of MSC biology in ATMP development between murine and human
MSCs and the correspondingly poor representation of human therapy applications in
studies based on mouse MSCs [140]. These differences concern cell expansion behavior,
properties after immortalization or cryopreservation, and choices of paracrine signaling
molecules [140,141]; moreover, conclusions across multiple studies are exacerbated by
differences between alternative models for the same disease [142]. Therefore, with the
swift elimination of human MSCs in immunocompetent mice, xenograft studies based
on immunodeficient mice or studies in species for which MSCs or the relevant anatomy
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more closely reflect human biology [143,144] appear to be the most informative. Based on
adolescent to young adult (6–8-week-old) mice, the latest findings for immune and inflam-
matory disorders include the identification of therapeutic antioxidant and pro-angiogenic
action of placenta-derived human MSCs in a surgical model for Crohn’s-like enterocuta-
neous fistula [145]. Another recent study demonstrated enhanced colonic homing and
the enhanced induction of macrophage IL-10 release, through transient CXCR2-receptor
and semaphorin-7A expression on human MSCs, respectively, in an immunocompetent
murine chemically induced inflammatory bowel disease model [146]. For recent MSC use
in GvHD, culture-expanded, high-dose human umbilical-cord-blood-derived (UCB) MSCs
were simultaneously transplanted with same-donor UCB HSPCs into NSG mice to effec-
tively suppress GvHD and achieve 60 days of event-free survival [147]. As a particularly
striking endorsement of MSCs as therapeutic agents for injury and inflammation, a recent
systematic review on preclinical studies testing cell-based therapies in experimental neona-
tal lung injury, mainly applied in a hyperoxic rodent model of bronchopulmonary dysplasia
(BPD), identified MSCs from among 15 distinct cell-derived therapies as the most effective
cell-based therapy for key outcomes [148]. BPD in hyperoxia models has been studied for
therapies based on MSCs [149]. When delivered intravenously, intraperitoneally or intratra-
cheally, MSCs attenuated neonatal lung injury by decreasing lung inflammatory mediators,
such as IL-6 and TNF-a, and reducing the expression of angiotensin II, angiotensin II type 1
receptor, and angiotensin-converting enzyme [149]. MSCs also improved alveolar structure
and angiogenesis, inhibited lung fibrosis, and improved exercise capacity in animal models
of BPD [150–153]. Similarly to BPD, acute respiratory distress syndrome (ARDS), which
represents a global medical concern with significant morbidity, might also be ameliorated
by MSC-based therapies [154]. Experimental in vivo models of lung injury, including acute
lung injury (ALI) and ARDS, demonstrated the therapeutic efficacy of MSCs [155,156] or
their exosomes, vindicating the corresponding application of MSCs in clinical trials.

Finally, and across different cell and vector systems, several studies in animal models
have addressed age comparisons for the efficiency of candidate ATMPs [157–162]. For
instance, direct AAV-mediated delivery of the CLN2 gene for treatment of the lysosomal
storage disorder, late infantile neuronal ceroid lipofuscinosis, showed clear efficiency
advantages for pre-symptomatic compared with post-symptomatic application [160], and a
clear survival advantage for younger recipients, with effectively doubled survival time from
2-day- to 3-week- and 7-week-old recipients [157]. For treatment of spinal muscular atrophy,
intravenous injection of an SMN-encoding AAV in neonate (postnatal day 1) diseased mice
rescued neuromuscular phenotype and life span, in contrast to treatment of 10-day-old
mice, followed up by corresponding injection and motoneuron transduction in a neonate
wildtype cynomolgus macaque [159]. For leukodystrophy Canavan disease, intravenous
AAV injection to deliver the AspA gene on postnatal days 0, 6, 13 and 20 retained significant
therapeutic action up to day 20, but for all parameters tested gave increasingly better
restoration of normal performance with decreasing age at treatment [158]. Finally, young
adult vs. aged rats were recently transplanted with bare and allogeneic-MSC-coated
vascular grafts to demonstrate superior performance (e.g., for graft integration, blood flow,
neotissue density, collagen fiber density and orientation) in young vs. aged recipients and
for MSC-coated vs. bare grafts [162], which gives clear implications for MSC inclusion and,
despite absence of juvenile animals in the study, once again for a general positive effect of
application in younger recipients.

4.2. In Utero

Recent years have seen significant progress in the in utero application of different
classes of ATMPs. Transfer of stem cells is rarely used, whereas in utero ATMP application
by the AAV-mediated direct delivery of gene editing components or therapeutic transgenes
is of particular prominence, although direct injection into fetal yolk sac vessels [163,164],
ionizable lipid nanoparticles (LNPs) [165] and even in utero electroporation [166] have
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also been employed to achieve the delivery of cargoes such as mRNA, editors or gene
addition components.

Exemplary studies for direct AAV-mediated delivery include early achievements of
sustained reporter gene expression in the pulmonary epithelium after injection in the am-
niotic sac [167] and tolerance induction by the delivery of human factor IX in hemophilia
B mice [168]. AAV was also used for the delivery of adenine base editors for efficient
correction in the liver and heart and low-level correction in the brain in Idua(W392X) mu-
tant (Hurler syndrome) mice [169] and that of a β-glucosylceramidase transgene by fetal
intracranial injection in Gba knockout (Gaucher disease) mice [170] for lysosomal storage
disorders. Similarly, CRISPR/Cas9- and cytosine base editors were delivered by intra-
venous in utero injection to establish proof of principle for in utero editing to modify
proprotein convertase subtilisin/kexin type 9 (PCSK9) as a target for coronary heart disease
and to correct 4-hydroxyphenylpyruvate dioxygenase (Hbd) as therapy for hereditary ty-
rosinemia type 1 [171]. AAV8-mediated delivery of human factor IX enabled the long-term
correction of hemophilia in cynomolgus macaques [105], as did the AAV5- and AAV8-
mediated delivery of human factors IV and X [172] in both studies, largely due to randomly
integrated provirus in hepatocytes. Finally, AAV2-mediated delivery of MSRB3 by tran-
suterine microinjection into the otic vesicle of MsrB3 knockout embryos has been used
to address hearing loss and vestibular dysfunction, which has also been addressed, e.g.,
by plasmid-based delivery combined with electroporation in connexin 30 knockout em-
bryos [121]. Non-AAV-based direct injection of therapeutic agents has additionally been
applied using an adenoviral vector to deliver CRISPR/Cas components and inactivate a
mutant SftpcI73T gene for partial disease correction in a mouse model of monogenic lung
disease [173]. Direct in vivo vector delivery was also performed by the intrahepatic fetal in-
jection of HBB-encoding GLOBE lentiviral vector to achieve the correction of β-thalassemia
in a humanized mouse model [137], for comparison with the intraperitoneal delivery of
wild-type HSPCs with overall low correction efficiencies [174], and by the intra-amniotic
injection of polymeric nanoparticles loaded with triplex-forming peptide nucleic acids
and single-stranded donor DNA as gene editing components in HBBIVS2−654 thalassemic
mice [175].

Concerning ATMP development based on in utero stem cell transplantation, ex vivo
gene addition of human factor VIII to placenta-derived MSCs allowed the detection of
postnatal transgene expression after in utero transplantation into wild-type mouse embryos,
as proof of principle for a potential corresponding hemophilia A therapy [176]. For HSPCs,
in utero application would be based on long-established in utero hematopoietic stem cell
transplantation [177] which, due to immunological immaturity [92], can even be employed
as conventional fully allogeneic HSCT [177], but in the absence of in utero conditioning
regimens, only achieves the mixed chimerism of donor cells for allogeneic or autologous
application [177,178]. In this context, amniotic-fluid-derived stem cells show superior
performance as a potential substrate for future in utero therapies [179,180]

5. Clinical Studies of Early Interventions
5.1. Pediatric

A large number of pediatric clinical trials are in progress for ATMPs, and in some
cases have already led to approved treatments (Section 2). For TEPs, several studies and
applications of tissue engineering for the treatment of skin and soft tissue damage provide
notable landmarks with great potential for pediatric application [181–183], as was recently
demonstrated in clinical studies, e.g., for epidermal autografts (JACE) [184] and composite
skin allografts (Apligraf) [183,185]. In the context of genetic skin disorders, two pioneering
pediatric studies in seven-year-old boys with junctional epidermolysis bullosa combining
retroviral gene addition in autologous keratinocyte stem cells with tissue engineering
demonstrated the complete functional regeneration of limited epidermal grafts [186] and
permanent clonal reconstitution of the entire epidermis, respectively [187]. These studies at
the University of Modena and Reggio Emilia have provided the first concept and then mech-
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anistic insights for wider clinical evaluations of genetically corrected autologous epidermal
grafts to treat other genetic disorders, such as Netherton syndrome [188] and recessive
dystrophic epidermolysis bullosa [189]. Noteworthy outside our focus on CAR-, HSPC-
and MSC-based therapies are also ATMPs with pediatric application developed under the
EMA Priority Medicines (PRIME) scheme [190]. Corresponding pediatric treatments still
under investigation and pending approval include rebisulfigene etisparvovec (ABO-102),
an AAV9-based gene therapy drug for the in vivo treatment of mucopolysaccharidosis IIA-
Sanfilippo syndrome, and beremagene geperpavec (KB103), an HSV-1 collagen-expressing
vector for the topical treatment of dystrophic epidermolysis bullosa, both of which are
currently in clinical trials (NCT04088734, NCT04360265, NCT02716246 and NCT03536143,
NCT04491604, respectively). A third pediatric ATMP, AT-GTX-501, based on an AAV9
vector containing the human CLN6 gene to slow disease progression in variant late infantile
neuronal ceroid lipofuscinosis 6, has recently been discontinued because it failed to stabilize
disease progression in long-term follow-up (NCT04273243 and NCT02725580) [191].

5.1.1. CAR Cells

For CAR cell application, CAR-T cell-based therapy is exceptionally advanced and
too prolific to cover here in detail for all corresponding clinical trials, with marketing
approval for several ATMPs for pediatric application (see also Section 2). Notable here
is the EMA and FDA ACCELERATE collaboration for pediatric cancer patients [192]
which, among other ATMPs, led to marketing approval as priority medicines under EMA’s
PRIME scheme [190] for the CD19-targeting, CAR-T-based tisagenlecleucel (Kymriah®,
e.g., NCT02529813 and many others) for pediatric patients with relapsed or refractory
B cell acute lymphoblastic leukemia, whereas for other equivalent treatments, such as
axicabtagene ciloleucel (Yescarta®, e.g., NCT02348216 and many others), data are still pend-
ing that would warrant treatment in pediatric patients. Overall, over 60 CAR-T trials for
pediatric application are currently open, recruiting or ongoing (see www.clinicaltrials.gov,
accessed 21 February 2022), with targets such as acute lymphoblastic leukemia (anti-
CD19, anti-CD22, anti-CD19/22, anti-CD20/19), CNS tumors and sarcomas (anti-B7H3,
anti-HER2, anti-EGFR806), Hodgkin lymphoma (anti-CD30), liver cancer (anti-GAP), neu-
roblastoma (anti-GD2), myeloid leukemia (anti-CD33, anti-CD123) and T cell lymphoblastic
leukemia (anti-CD7).

5.1.2. HSPCs

For advanced HSPC-based therapies, promising preclinical data have led to dozens
of products entering clinical trials during the last few years. Specifically, for early-lethal
inherited disorders, clinical trials of related drugs exclusively involve children; otherwise, a
mixed adult/pediatric or, more often, an adult-only cohort is used. The juvenile application
of HSPC-based ATMPs in children, mostly as gene therapy of inherited disorders, comes
with its unique challenges and opportunities [193]. Early application is paramount for
many HSPC-based GTMPs, especially when the corresponding disease poses an immediate
threat to life or causes early irreversible damage, but also because early drug administration
is associated with better outcomes due to better health status, bone marrow (BM) condition
and quality of stem cells [194,195]. This benefit of earlier intervention, highlighted in a
plethora of preclinical studies in animal models (see Section 4), as well as in clinical studies
of allogeneic HSCT [196], has only recently begun to show in gene therapy clinical studies,
strongly advocating for improvements in prenatal screening and early diagnosis [197].
Moreover, early treatment reaches therapeutic effects at a lower price (lower body mass
requiring lower drug dose), abolishes or reduces long-term medication requirements and
prevents disease complications, together making an otherwise expensive and inaccessible
treatment rather cost effective [198–200].

Two out of the three EU-approved HSPC-based GTMPs, Strimvelis for ADA-SCID
and atidarsagene autotemcel (Libmeldy) for MLD, are specifically indicated in young
pediatric patients [201,202], whereas betibeglogene autotemcel (Zynteglo) for TDBT is
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indicated in children >12 years old and adult patients [197]. Lybmeldy in particular was
given authorization for use only in children with late infantile or early juvenile MLD
who are asymptomatic or have initial symptoms but can still walk independently and do
not show mental deterioration, as the drug showed much less benefit in children with a
more advanced disease stage [54,98,202]. As yet another advocate for early intervention, a
recent gene therapy study for β-thalassemia, employing autologous HSPCs after lentiviral
vector-mediated HBB gene addition in patients, including pediatric patients, allowed the
direct comparison of pediatric and adult treatment with HSPCs and showed that a younger
age is associated with better clinical outcomes (NCT02453477). This was attributed to
an impaired BM microenvironment (as the recipient tissue of modified stem cells) and
HSPC repopulating capacity in older patients, due to both aging and an advanced disease
pathology [194,203].

Due to the large number of clinical studies involving HSPCs as GTMPs, Table 1, in
addition to selected studies employing MSC, lists only studies involving products with
pediatric application that are currently under the EMA PRIME scheme.

5.1.3. MSCs

The success of MSCs in preclinical models has, over the past 10 years, prompted
investigation of their regenerative potential for stem-cell-based therapies in the treatment
or prevention of GvHD and in different lung diseases of infants and children, such as BPD,
pneumonia, ALI and ARDS [204].

GvHD. Typical for the pediatric development of new medicines, many products suc-
cessfully applied in adult patients do not or only with delay find application in pediatric
patients. For instance, whereas for Alosifel® (aka Darvadstrocel) no data exist for patient
groups from 0 to 17 years [205], Obnitix® has been employed successfully in pediatric pa-
tients with steroid-refractory acute graft-vs-host disease (aGvHD) [33]. Despite this relative
shortfall of pediatric development, a gratifyingly large selection of clinical studies has nev-
ertheless already shown the benefit of allogeneic MSC treatments for aGvHD correction or
prevention in pediatric patients or for the promotion of engraftment [63,206–211]. Of note,
the source and nature of the MSCs applied affected the outcome, in that the co-infusion of
MSCs effectively prevented aGvHD, but umbilical-cord-blood-derived MSCs additionally
improved engraftment, in contrast to parental-derived MSCs [212,213].

BPD. BPD is a main complication of prematurity, resulting in significant morbidity,
mortality and lifelong consequence of early impairment [214], emphasizing the potentially
critical role of early intervention. An apparent reduction in the BPD of lung-resident
stem/progenitor cells from the endothelial, mesenchymal and epithelial lineages [215,216]
as possible cause for lung growth has suggested a potential therapeutic role of MSCs
in preterm infants. This prompted a pioneering phase I dose-escalation trial based on
treatment with umbilical-cord-blood-derived MSCs in nine preterm infants at high risk of
BPD, which was well tolerated without any serious adverse effect (NCT01297205) [217].
A subsequent two-year follow-up study confirmed the lack of any long-term side ef-
fect in the treated patients [218], which has now been extended up to 5 years of age
(NCT02023788) [219]. A similar phase I dose-escalation trial on the safety and feasibility
of intratracheal MSCs in twelve preterm infants at high risk of BPD yielded comparable
results (NCT02381366) [220] as encouragement for further trials including controls and a
greater sample size.

ARDS. ARDS is a life-threatening condition with acute hypoxemic respiratory fail-
ure and other cardio-pulmonary features [221], with a range of possible environmental
causes and underlying conditions [222] and the contribution of dysregulated inflamma-
tory/immune responses, coagulation, and alveolar membrane permeability in its patho-
genesis [223]. Pediatric mortality is high [154] and supportive care is inadequate, which
renders ARDS an ideal target for evaluations of pediatric MSC treatment. Three adult-only
trials (phases 1, 2A and 2B) have given encouraging results for an intravenous dose of
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106 cells/kg (NCT01775774, NCT02097641 and NCT03818854) [224–226], with the need to
improve MSC viability and to demonstrate safety and efficacy in pediatric patients.

Table 1. Exemplary clinical in utero and pediatric trials of ATMPs.

Cell Type Target Disease Drug 1 Drug Short Description NCT ID IU/P/A n Ref.

CAR-T cell Relapsed/
Refractory HL CD30.CAR-T CD30-directed genetically

modified autologous T cells NCT04268706 P/A 14 (recruiting) [227,228]

HSPC TDBT CTX001
Autologous CRISPR-Cas9

modified ex vivo
CD34+ cells

NCT03655678 P/A 15 [229,230]

HSPC SCD CTX001
Autologous CRISPR-Cas9

modified ex vivo
CD34+ cells

NCT03745287 P/A 7 [229,230]

HSPC TDBT OTL-300

Autologous CD34+ cells
transduced ex vivo with a
lentiviral vector (GLOBE)
encoding the HBB gene.

NCT02453477
NCT03275051

P/A
P/A

9
9

[231]
[194,232]

HSPC LAD-1 RPL-201

Autologous CD34+ cells
transduced ex vivo with a

lentiviral vector (Chim-
CD18-WPRE)encoding the

ITGB2 gene

NCT03812263 P/A 7 [233–235]

HSPC MPS-IH OTL-203

Autologous CD34+ cells
transduced ex vivo with a

lentiviral vector (IDUA LV)
encoding the IDUA gene.

NCT03488394 P 8 [236,237]

HSPC XSCID MB-107

Autologous CD34+ cells
transduced ex vivo with a

lentiviral vector
(CL20-i4-EF1α-hγc-OPT)
encoding the IL2RG gene.

NCT03315078
NCT01512888

P/A
P

5 (recruiting)
8 (recruiting)

[238,239]
[240,241]

HSPC SCD ECT-001-CB UM171-expanded
cord blood NCT04594031 P/A Recruiting [242]

HSPC
High-Risk
Myeloid

Malignancies
ECT-001-CB UM171-expanded

cord blood NCT04990323 P/A Recruiting [243]

HSPC FA RP-L102

Autologous CD34+ cells
transduced ex vivo with a

lentiviral vector
(PGK-FANCA-WPRE)

encoding the FANCA gene.

NCT03814408
NCT04248439
NCT04069533
NCT04437771

P
P/A

P
P/A

25 (recruiting)
5 (recruiting)

9

[244,245]
[246]
[247]
[248]

T cell

Serious viral
infections in

allogeneic HSCT
recipients

Posoleucel
(ALVR-105)

Allogeneic multi-virus
specific T lymphocytes

NCT04693637
NCT04390113

P/A
P/A

12 (recruiting)
Recruiting

[249,250]
[251]

MSC BPD Pneumostem®
Intratracheal delivery of

umbilical cord MSCs,
1–2 × 107 cells/kg BW

NCT01297205
NCT01632475
NCT01828957
NCT01897987
NCT02023788
NCT02381366

P
P
P
P
P
P

9
9

33 (T) + 33 (C)
62
8

12

[217]
[218]

[252,253]
[254]
[219]
[220]

MSC MMC PMSC-ECM Placental delivery of
PMSC-ECM

NCT04652908
(CuRe) IU 35 (T) + 20 (C)

(recruiting) [255]

MSC OI Boost cells

Intravenous injection of
first-trimester-derived

allogeneic expanded fetal
liver MSCs

NCT03706482
(BOOSTB4) IU/P 15 (T) + 15 (C)

(recruiting) [256]

1 Treatments with in utero or pediatric aspects under clinical investigation and currently supported by the
EMA Priority Medicines scheme (access date, 1 February 2022), with the exception of MSC-based studies. A:
adult; BPD: bronchopulmonary dysplasia; BW: body weight; C: control arm; CAR: chimeric antigen receptor;
CRISPR-Cas9: clustered regularly interspaced short palindromic repeats-Cas9; FA: Fanconi anemia; HL: Hodgkin
lymphoma; HSCT: hematopoietic stem cell transplantation; HSPC: hematopoietic stem and progenitor cell;
IU: in utero; LAD-1: leukocyte adhesion deficiency type 1; MMC: myelomeningocele (spina bifida); MPS-IH:
mucopolysaccharidosis type IH (Hurler syndrome); MSC: mesenchymal stromal cell; n: number of participants (+
control/reference-treated patients); OI: osteogenesis imperfecta (brittle bone disease); P: pediatric; PMSC-ECM:
placental MSCs seeded on an extracellular matrix; SCD: sickle cell disease; T: treated arm; TDBT: transfusion-
dependent beta-thalassemia; XSCID: X-linked severe combined immunodeficiency.
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5.2. In Utero

Due to uncertainties and bioethical concerns associated with nascent technologies
of in utero ATMP application, few prenatal therapies are currently in clinical trials, and
those that are aim squarely at preventing or ameliorating severe diseases with in utero
onset, rather than reducing costs or increasing therapeutic efficiency in diseases otherwise
suitable for postnatal ATMP application. In addition to animal studies for in utero ATMP
application (see Section 4), non-ATMP in utero therapies such as curative intra-amniotic
administration of ectodysplasin A protein for hypohidrotic ectodermal dysplasia [257] have
paved the way for registration of the first in utero ATMP clinical trials.

For HSPC application, hydrops fetalis in alpha-thalassemia major represents a textbook
case of the need for and unique potential of in utero therapeutic applications. With in
utero blood transfusions as a powerful life-saving technology [258], in utero HSPC trans-
plantation was a logical next step in a conventional HSCT trial with planned enrolment of
10 patients (NCT02986698) [259,260], and possibly paving the way for pioneering in utero
gene therapy applications in the clinic, based on autologous HSPCs.

Drawing on MSCs, the in utero transplantation of placental MSC is envisaged in a trial
addressing myelomeningocele (aka spina bifida; NCT04652908) as supportive treatment
for successful outcomes of in utero myelomeningocele surgery, with the planned enrolment
of 35 patients for combined treatment and 20 patients as surgery-only controls [255]. Based
on allogeneic fetal expanded MSCs, another study addresses osteogenesis imperfecta
(NCT03706482) with administration of three doses in utero in the treatment group vs. three
doses starting at 4 months after birth for the control group [256].

6. Tools for Success of Early Interventions

In addition to benefits concerning therapeutic efficacy specifically for ATMPs, juvenile
treatments in general cater for a large and growing market, as detailed elsewhere in this
Special Issue [261], and as for any research and medical sector, growing application will
lead to the creation of additional resources. In this respect, progress across all aspects of
ATMP development will benefit from early interventions, but of particular importance here
might be the recent developments for cell sources, vector development, and in particular,
the burgeoning field of nanomedicine, as detailed subsequently.

6.1. Sources for Cell-Based Therapies

For CAR cells, T and NK cells as the substrate for the generation of CAR-T and
CAR-NK cells, respectively, have a variety of abundant sources. For T cells, typically
autologous peripheral blood mononuclear cells (PBMCs) are collected by leukapheresis
before the isolation of T cells by CD3 selection [262]. T cells then require activation before
transduction to create CAR-T cells, and activation is most reproducibly achieved with
anti-CD3/anti-CD28 antibody-coated beads. Transduction is then typically performed by
lentiviral or γ-retroviral vectors, with the preference of lentiviral vectors due to their safer
integration profile [263] and effective transduction of quiescent cells [264]. For NK cells
with their HLA-independent action, autologous but also allogeneic cell sources are suitable,
including induced pluripotent stem cells, NK cell lines, umbilical cord blood or allogeneic
PBMCs [265]. Depending on the cell source, such as PBMCs, irradiation of CAR-NK cells
may not be necessary, whereas for other cell sources, such as the commonly used, cytotoxic
and highly passaged NK92 cell line, irradiation is required to prevent malignancies [266].
Based on PBMCs, CD3-negative followed by CD56-positive selection is usually employed to
isolate NK cells before activation and transduction. Importantly, off-the-shelf NK cell lines
for specific malignancies are already available, such as CD38/BCMA-targeting FT576 line
for multiple myeloma [267], and the CD19-targeting FT596 line for B cell malignancies [268].

In HSPC-based cellular therapies, BM, mobilized peripheral blood and umbilical
cord blood are all popular sources of HSPCs, each with their own set of advantages and
disadvantages, determined by differences in collection procedures, cellular content (cell
types and numbers) and outcomes of transplantation [269]. The same tissues serve as HSPC
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sources for ATMP-related pediatric applications; however, children as donors or recipients
of HSPCs face their own unique challenges [270–272]. For decades, BM has been the gold
standard source of HSPCs in children; however, in recent years, an increasing number of
centers has instead used mobilized peripheral blood as the primary source of HSPCs [273].
The procedure is less invasive than BM harvesting, and also characterized by the more rapid
engraftment of HSPCs after transplantation [274]. For the collection of mobilized peripheral
blood, mobilization agents such as G-CSF and plerixafor are administered to the patient
to allow the rapid egress of HSPCs from BM into peripheral blood, from where they are
then collected by a blood cell separator (apheresis machine) [275]. The procedure is more
challenging in children, especially in those under 10 kg (higher risk of hypovolemic shock,
hypocalcemia, hypervolemic cardiac overload and adverse events related to insertion of
dialysis catheters), requiring more time and money than in adults [272]. There is, therefore,
considerable scope for adjustment to pediatric needs, both for current procedure protocols
and for existing adult-oriented technology, such as standard apheresis machines with their
large extracorporeal volume in relation to the total blood volume of small children [276].
Even though higher HSPC yields are obtained during harvest in children compared with
adults, the scarcity of stem cells with long-term repopulating potential (present among
large numbers of committed progenitors or mature blood cells) in the available sources
requires the enrichment and expansion of those cells in cultures to achieve therapeutic
doses of products. Improvement and innovation in every step of source cell processing,
from mobilization (newer mobilizing regimens to maximize HSPC harvest) to apheresis
(to increase cell yields and minimize associated risks) and cell culture procedures (to
retain stemness and long-term repopulating capacity of cells) are needed for the industrial
translation of HSPC-based therapies [277–279].

MSCs are a heterogeneous subset of multipotent adult stem cells present in multiple
tissues of different sources. Human MSCs can easily be isolated from the umbilical cord,
BM, and adipose tissue, and when expanded in vitro can differentiate into different meso-
dermal cell linages with exceptional genomic stability and few ethical issues [280]. These
characteristics have marked their importance in cell therapy, regenerative medicine and tis-
sue repair. BM and adipose tissue are well characterized and documented sources of MSCs.
When selecting adequate sources, clinicians should consider some practical limitations
concerning the difficulty and invasiveness of the procurement process and various donor
characteristics [281]. For BM-derived MSCs, harvesting these cells is a painful, invasive
procedure, with a risk of viral exposure and with a potential reduction with donor age
in the number, differentiation potential and maximal life span of BM-derived MSCs [282].
Instead, a large number of MSCs can be obtained from the adipose tissue through mini-
mally invasive lipoaspiration methods [283], which maintain their potency with increasing
donor age and possess a more robust immunomodulatory capability than BM-derived
MSCs [284]. Finally, umbilical cord (UC)-derived MSCs exert faster self-renewal properties
than BM-derived MSCs and can be obtained with a painless collection procedure from
Wharton jelly, veins, arteries, the umbilical cord lining and the subamnion and perivascular
regions [285].

Of note, for off-the-shelf application of any cell type, cell material needs to be expanded,
which may be enhanced by new developments in advanced expansion technologies. This
might also be necessary for autologous applications, where the underlying disease condi-
tion affects cell yield and function. A key step here is a transition from yield-limiting planar
to multi-layer and target-cell-optimized microcarrier systems, where porous microcarriers
may be of particular benefit for MSC expansion [48]. Alternatively, early ATMP applica-
tion, with its ballpark drop in reagent requirements and cost, may effectively address the
challenge of providing sufficient cell material instead.

Once collected and possibly expanded, cells of interest need to reach their application
target, a process for which the selection of preclinical and clinical studies in Sections 4 and 5
indicates a range of different successful cell delivery modalities for early interventions.
Accordingly, intravenous injection readily allows CAR-T and -NK cells to find their engi-
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neered, receptor-specific targets, and allows HSPCs, MSCs and many other cell types to
home to their tissue of origin. Alternatively, the intraosseous application of HSPCs has
advantages for the speed of reconstitution [194], and targeting of cells to the CNS (where
generally direct vector injection is preferred), the eye or the embryo with their correspond-
ing transport barriers would usually altogether rely on topical delivery instead [286–288].

6.2. Traditional Viral and Non-Viral Vectors

The plethora of diverse ATMPs requires the use of different delivery vehicles and
routes of administration of cells and genetic material for the achievement of optimal
therapeutic effects in adults and children.

For the delivery of GTMPs, efficient transfer of genetic material or genome editing
tools into target cells is a key step for success. For both ex vivo and in vivo applications,
various viral and non-viral vectors have been developed as delivery vehicles, each one
with their own advantages and disadvantages [289,290]. Improvements can be achieved
by ongoing technical innovations, such as in the delivery of cells or genetic material to
the tissues and cells of interest for in vivo application [291–297] or for ex vivo applica-
tion in the isolation of suitable cells [16,298–300] or in more effective delivery into cells,
and possibly nuclei, at improved efficiency and low toxicity [87,301–306]. Viral vectors
(γ-retroviruses, lentiviruses, adenoviruses and adeno-associated viruses) were among the
first exploited delivery platforms and are still highly prevalent due to their inherently high
efficiency of gene transduction to eukaryotic cells (extensively reviewed in [106]). Here,
AAVs in particular are almost universally exploited for in vivo application, whereas lentivi-
ral vectors are usually the vectors of choice for permanent ex vivo HSPC modifications.
Traditionally, ex vivo gene therapy has been applied to HSPCs, which is still associated
with chemical myeloablation and corresponding treatment-related morbidities. Recent
advances in antibody-mediated conditioning, such as through the targeting of CD117 cells,
promise to improve the tolerability of HSPCs modified ex vivo and reduce treatment-related
mortality [307]. Meanwhile, non-hematopoietic tissues are usually modified by in vivo
strategies, which poses the problem of accessibility or homing to target tissues but has lower
treatment-related morbidities. Lately, in vivo therapy is also being pursued for HSPCs as a
safer, cheaper, and potentially more efficient therapeutic approach. Hemoglobinopathies, as
the most common monogenic disorders, are once more paving the way as a test bed for new
methodology, with the recent publication of several in vivo [293,308–310] and one in utero
application of GTMPs [137]. Viral gene delivery is frequently associated with considerable
immunogenicity and risks of genotoxicity, although many non-viral delivery methods have
disadvantages of their own, including frequently lower transfer efficiency, and reduced
specificity and duration of gene expression [311]. The fast-paced contemporary research
field of non-viral vectors covers polymers, lipids, inorganic particles, engineered virus-like
particles, hybrid systems of these vector types and naked nucleic acids for chemical or
physical transfer [289,310,312]. For GTMPs, gene editing represents a special field of deliv-
ery application, because the persistence of editors would be detrimental and permanent
changes in target cells can be introduced by highly transient action instead. The latter is
most frequently achieved by electroporation ex vivo, whereas in vivo AAV-based delivery
currently predominates [313], as a compromise between the desired efficiencies and the
disadvantages of long persistence, low payload capacity and concerns over using high
titers of viral vectors. Toward clinical application, there is, therefore, an increasing need for
in vivo delivery technology with tissue specificity, flexible half-life, high payload capacity,
reproducibility, GMP compliance and low immunogenicity. For traditional vectors, these
properties are often difficult to achieve.

6.3. Nanomedicine

Nanomedicine has the potential to transform the delivery of therapeutic transgenes
by providing highly versatile nanoparticle-based delivery platforms with improved safety
profiles. Small particles in the nano-size range (at least one dimension < 100 nm [314]) can
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nowadays be engineered at large scales and with high precision to enable non-personalized
as well as precision therapies [315]. Moreover, recent advances in nanoparticle designs to
incorporate complex architectures, bio-response moieties and targeting agents allow for
substantial control over their interactions with biological environments and help overcome
biological barriers [315]. Therefore, nanoparticles can be tailored, among others, to protect
the transgenes from degradation by nucleases, to reduce the stimulation of immune re-
sponses or to selectively target specific tissues or cell types to allow for maximum efficiency
and minimal off-target effects. The genetic payload itself can be either entrapped into the
nanoparticles or attached to the particle surface [316,317].

Side effects are of particular concern for early therapies in pregnancy, because the
safety of the pregnant mother and the highly vulnerable developing fetus are at stake. In
this context, the placenta, at the interface between maternal and fetal tissues, is critical for
fetal development [318]. It governs active and passive gas, nutrient, hormone and waste
transport, while blocking many larger molecules from passage to the fetus. Importantly,
drug characteristics, such as acid/base properties, hydrophobicity or size, may affect se-
lective passage and the potentially harmful accumulation of drugs in fetal, maternal or
placental tissues. Nanoparticle-based delivery of therapeutics (e.g., chemical compounds,
biologics and nucleic acids) may utilize such effects on placental translocation and interac-
tions in order to facilitate the specific targeting of maternal, placental or fetal tissues for a
highly targeted treatment and for the prevention of off-target effects [319]. For instance,
the correction of maternal diseases will require a nanoparticle design that does not allow
placental tissue accumulation or fetal translocation, whereas therapeutics for placental
complications would rely on nanocarriers that preferentially locate to this particular organ.
For fetal therapies, nanoparticles can be administered to the maternal circulation if particles
with high placental transfer and specific targeting moieties for placental tissues can be
identified. Alternatively, they can be injected directly into the amniotic fluid, umbilical
vein or specific fetal tissues to bypass the placental barrier. However, even if the fetus is
targeted directly, it will be important to ensure minimal fetal to maternal particle transfer.
A recent study has proven the potential of in utero fetal gene editing by showing that the
intra-amniotic administration of polymeric nanoparticles containing peptide nucleic acids
(PNAs) and donor DNAs was able to correct a disease-causing mutation in the β-globin
gene in a mouse model of human β-thalassemia [175]. In another study, PLGA nanoparti-
cles were used for efficient delivery of the CRISPR-complex (Cas9 protein, single gRNA
and a fluorescent probe) into erythroid cells in vitro to elevate fetal globin expression [320].
Interestingly, the initial burst release of the content was followed by a sustained release
pattern, indicating that intelligent nanocarrier designs could be further exploited to control
for the release of the payload according to the therapeutic needs, e.g., to achieve fast release
for genetic editing versus slow or sustained release for epigenetic or RNA editing.

In the past decade, significant efforts have been made to understand nanoparticle trans-
port across the placenta in dependence of their physico-chemical properties and to identify
targeting signals to direct their localization to specific tissues (mostly the placenta) [175].
Particle size is a key factor to affect placental translocation with a negative correlation
(higher transfer for smaller particles), but other particle properties, such as surface charge,
material composition or surface ligands, have an impact as well. Due to this complexity, it
is still difficult to predict the placental transfer of a nanoparticle, and most likely a combina-
tion of multiple particle characteristics will determine its transplacental transport behavior.
In addition to passive targeting approaches by the modulation of physico-chemical parti-
cle properties (e.g., size, charge, hydrophilicity, shape and chemical composition), active
targeting strategies can enable the delivery of the payload to specific cell types or tissues.
Several research teams have screened for and identified peptides or antibodies to target
placental tissue [321,322]. For instance, Li et al. [323] have conjugated peptides targeting
chondroitin sulfate A (CSA; expressed at the membrane of placental trophoblasts) to the
surface of nanoparticles to deliver siNRF2 and sisFlt-1 to the placenta, which improved
maternal and fetal outcomes in a preeclampsia mouse model [323]. Although siRNAs are
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not considered as ATMPs [324,325], this study highlights the feasibility of nanocarriers for
the targeted placental delivery of genetic material to improve placental functions. In fact,
proper placental function is essential for successful pregnancy, and consequently, placental
dysfunction is involved in the pathogenesis of many pregnancy complications (e.g., in-
trauterine growth restriction, preeclampsia, preterm birth). In addition, recent work from
Singh et al. indicates that persistent DNA damage in the placenta affects embryonic health,
which emphasizes the importance of genome integrity for placental health and embryonic
development [326]. Therefore, in addition to maternal or fetal therapy, the placenta could
be an interesting target for ATMPs to improve health outcomes in complicated pregnancies
and to reduce adverse health effects later in life.

Research on nanoformulations of chemical compounds, biologics or nucleic acids
for in utero or pediatric use is still in its infancy, but slowly gathering momentum. In
general, the main classes of nanoparticles exploited in nanomedicine applications are
polymer-based, lipid-based, inorganic or dendrimer nanoparticles [315,327]. Most pre-
natal nanotherapies employ non-ATMP cargo, such as conventional drugs, siRNA and
proteins [327,328], but there is growing interest to apply nanocarriers for gene addition
and gene editing in pregnancy. In fact, the first transplacental gene delivery using plasmid
DNA:lipopolyamine complexes to achieve non-invasive fetal drug delivery was reported
as early as 1995 [329]. More recent examples explored transferrin-targeted PEGylated
immunoliposomes to deliver plasmid DNA to fetal brain [330] or internalizing the arginine–
glycine–aspartic acid (iRGD)-coated diblock copolymer complexed to hIGF-1 plasmid
DNA under the control of trophoblast-specific promoters (Cyp19a or PLAC1) to improve
fetal growth restriction [331]. Although there are evidently tremendous opportunities for
novel nanoparticle-based ATMPs, there are still some challenges ahead concerning the
efficiency, stability and toxicity of nanocarriers [315]. These will need to be addressed
comprehensively, such as by new intelligent nanoparticle designs, in order to achieve the
full potential of nanoparticle-based delivery platforms and to establish safety for routine
clinical application. In parallel, ongoing systematic assessments of patient safety, as well
as of occupational and environmental risks along the life cycle of corresponding medici-
nal products and ATMPs, is required to share the information with all parties involved,
including regulators, consultants, manufacturers, physicians and patients [332,333].

Systemic delivery via intravenous infusion is the most common approach for GTMP
administration, although direct/local delivery of treatment into affected tissues (e.g., BM
and the liver) is also used depending on clinical application [16]. Recently, the direct
delivery to the fetal liver, lungs and intestines by the injection of mRNA-loaded LNPs into
the fetal vitelline vein has been performed to achieve corresponding protein expression in
the fetal liver [165]. For MSCs, both systemic delivery (intravenous/intraarterial infusions)
or local/direct delivery (e.g., intramuscular and intratracheal injections) of cells have
been tested in several preclinical and clinical studies [334]. In pediatric clinical trials
of MSCs for aGvHD and bronchopulmonary dysplasia, intravenous and intratracheal
routes are used, respectively [335,336], whereas for the limited in utero applications of
MSCs for prenatal treatment of congenital diseases such as osteogenesis imperfecta and
myelomeningocele, infusions via the umbilical vein or local/direct intraspinal infusions
are administered [67,255].

7. Non-Technical Considerations for the Routine Application of Early
ATMP Interventions

As technology, preclinical and clinical development has progressed to facilitate early
interventions, a clear majority and a large proportion of the public express their approval
of pediatric and of in utero applications of gene therapy to treat inherited diseases, respec-
tively [337]. Beyond general attitudes, financial considerations clearly favor a shift from
adult to early interventions for safe and efficacious treatments, whereas many ethical and
regulatory impediments that remain for the still-developing ATMP sector (see Section 2)
are further exacerbated, as detailed subsequently.
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7.1. Financial Considerations

ATMPs are typically priced between USD 18,950 for tissue-engineered products and
USD 1,206,751 for gene therapy, with the aforementioned prices excluding procurement,
inventory and administration costs [338]. The high sales price of marketing-approved
ATMPs can be attributed to a variety of factors, including cell sourcing (i.e., cell/tissue
acquisition and expansion), GMP manufacturing (i.e., labor-, time- and cost-intensive GMP
protocols and procedures, costly clinical-grade reagents and stringent quality control),
distribution, and clinical application, including treatment and long-term follow-up [339].
The highly personalized nature of ATMPs, which restricts the scalability of manufacturing
pipelines, and the small number of patients qualifying for these treatments, further add to
the high prices of ATMPs. An examination of concrete cost factors specifically for ATMPs
highlights the benefit of early interventions, in particular for the procurement of starting
material and GMP manufacturing (including storage and distribution) and quality control
(Figure 3).
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The extraordinary cost of ATMPs compared with small-molecule drugs is most read-
ily accepted where ATMPs represent potentially curative treatments, allowing financial
comparisons of one-off cures vs. lifelong palliative treatments. However, for many ATMPs,
there are additional, less tangible financial benefits. Even for ATMPs with the uncertainty of
truly curative outcomes, considerations of permanently reduced disease severity for ATMP
applications, of potentially catastrophic financial and health consequences for chronic
palliative treatments, and of hope for a curative ATMP outcome or for prolonged survival
and potential access to improved future therapies, should enter pricing considerations, in
particular for ultra-rare diseases [198]. All three aspects strongly favor early intervention.

For the specific case of GTMPs, a major cost is that of vector production for the delivery
of genetic materials. Here, juvenile or prenatal application would allow a ballpark change
in materials, and thus, cost, per patient, in addition to reducing requirements for what is
frequently limiting cell material for ex vivo GTMPs. Assuming an average body weight
of 70 kg [340], a neonatal weight of 3.5 kg [341] and approximately 3 × 105 cells for in
utero therapeutic intervention [137,342], an assumed vector cost of USD 100,000 per adult
patient [89] at, e.g., 5 × 108 lentiviral transduction units per kg [194], would be reduced
to USD 5000 in neonates and to USD 85 for in utero treatment [137,194,342]. Before any
markup of commercial products and treatment-associated cost, this change in pricing
would greatly increase accessibility of treatment.

7.2. Ethical and Regulatory Considerations

From the ethical and regulatory standpoint, de novo pediatric developments or adap-
tations of adult treatments are impaired by the absence of a consensus for the establishment
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of pediatric safety specifications, as analyzed elsewhere in this Special Issue [343]. Conse-
quently, even for conventional small-molecule drugs, pediatric applications lag far behind
developments for adults [344,345], as is also apparent in the TEDDY European Paedi-
atric Medicines Database [346]. For ATMPs compared with conventional drugs, clinical
studies on early interventions are at an additional disadvantage, because such studies
frequently include long in-patient treatment in an unfamiliar environment and because of
the difficulty of achieving truly informed consent for what are often highly sophisticated,
hard-to-explain studies with many inherent uncertainties, both known and unknown [347].
Ethical issues generally prevail in pediatric drug studies, but do so even more in ATMP,
and specifically GTMP studies. In contrast to other ATMPs, such as CAR-T cells developed
to treat aggressive and otherwise lethal cancer types, non-toxic stem cells such as MSCs
and autologous, genetically modified HSPCs are often envisioned to treat a variety of
debilitating but manageable (if conventional supportive therapy is offered) genetic disor-
ders, which substantially lowers the acceptable risk for corresponding drugs and greatly
delays their development process, as well as their evaluation in children [348]. Specifically
for HSPC-based GTMPs, concerns about drug-mediated insertional mutagenesis and off-
targeting still remain the major hurdles for the endorsement of new pediatric clinical trials
of related drugs, whereas for those drugs that make it through clinical trials, the need for
the long-term monitoring of recipients for many years after drug administration sets back
their final pediatric application approval [349–351]. In addition to these considerations
for the general acceptability of ATMPs for early treatments, other concerns are uniquely
associated with pediatric and/or in utero applications.

7.2.1. Pediatric

The same considerations that drive the long-established gap between the number
of adult- and pediatric-approved conventional treatments, such as for small-molecule
drugs, also drive the gap between adult and pediatric ATMP applications. For palliative
treatments, this creates a dilemma where, in extreme cases, the treating physician may face
the choice of unauthorized off-label use of adult medicines to pediatric patients [98], or
of leaving the pediatric patient without treatment altogether. For often curative ATMPs,
this dilemma is exacerbated, where pediatric patients, as far as has been analyzed, exhibit
higher stem cell yields and fewer irreversible disease-related morbidities [194], and would
be spared years of palliative treatment and reduced quality of life by early application. On
the other side of the argument, safety considerations surrounding experimental treatments
for underage patients create a strong counterincentive to trial the participation or approval
of pediatric studies. As for adult studies, inclusion criteria for pediatric patients therefore
invariably stipulate that trial participants do not respond to standard treatments, although
what constitutes a satisfactory response and acceptable quality of life under standard
treatments is often open to interpretation. Particularly for slowly progressing diseases, an
additional consideration is the ongoing development and prospect of novel and potentially
curative treatments, from which younger patients might still benefit later.

7.2.2. In Utero

At present, there is no legal framework for routine in utero ATMP application, chiefly
due to the costly and technically demanding nature of the correspondingly limited body
of preclinical work, combined with concerns about potential germline transmission and
safety to mother and child [352]. Moreover, frequent uncertainty over genotype–phenotype
correlation and the actual severity of the disease in postnatal life (e.g., due to genetic
modifiers) may not allow clear-cut decisions based on medical necessity, and the relative
certainty of a severe in utero or postnatal phenotype is a key criterion for in utero gene
therapy according to the consensus statement by the International Fetal Transplantation
and Immunology Society [352]. Correspondingly, better-established postnatal treatments
are always preferred where disease onset and severity allow, in particular where it is feared
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that limited studies in large animal models may not have revealed all risks associated with
prenatal treatment.

These points may weigh on the mind of bioethics review boards or of the treating
physician, but they will also determine attitudes of the affected couples, because for in
utero treatment, the notion of parental protection and responsibility is even more acute than
for pediatric application. A combined feeling of responsibility, uncertainty over phenotype
predictions and over the effectiveness and safety of treatment, and the option of postnatal
treatment will combine to create a reluctance by parents to take up in utero therapy, if there
are alternatives. After all, the condition might be manageable, or a catastrophic outcome
of in utero treatment may come to burden them with the responsibility of having taken
a wrong decision. Therefore, the trailblazers for in utero treatments are, and will be, the
severest and earliest forms of genetic disease, where the risk–benefit ratio will more readily
justify experimental treatments. Here, additional studies in large animal models will be
needed to standardize in utero ATMP technologies and to shore up data in support of in
utero treatment, as bases for the approval and development of corresponding clinical in
utero ATMP applications.

8. Perspectives and Conclusions

Recent diagnostic and prognostic advances allow the ever-earlier informed application
of ATMP products. More efficient, more affordable therapy is possible by in utero or
pediatric applications, with vastly reduced cell and vector requirements for selected ATMP
applications. In addition to improving affordability, efficiency and use of GMP resources,
early application is fundamental to the treatment of many as-yet untreatable diseases with
pre- or perinatal onset. There is, thus, every incentive for ATMPs to narrow the gap for
pediatric vs. adult medication, aided by ongoing developments. Be it a growing number of
in utero and pediatric studies, prolific research into improved cell isolation and expansion
sources and technology, or continuing development of delivery technologies and versatile
nanoparticles as vectors, conditions are shifting in favor of ATMPs and for their early
application in particular. Critical work remains to address ethical and safety concerns for
young or unborn patients, especially where data from adult studies are absent. However,
as successful studies accumulate and establishment of underlying technologies and their
ethical, regulatory and marketing framework conditions allows further development to
gain momentum, prenatal and pediatric application of ATMPs promises safe, efficient and
competitive treatments for a growing number of diseases and patients.

Resource, cost, efficiency and suitability advantages, helped by existing regulatory
incentives for pediatric and orphan drug development and by a change in attitudes towards
advanced therapies, disproportionately favor pediatric and in utero development for
ATMPs, which holds the promise of an increase in the proportion of pediatric and early
interventions in particular, and correspondingly earlier and better treatments in general.
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