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Methylation is closely involved in the development of various carcinomas. How-

ever, few datasets are available for small cell lung cancer (SCLC) due to the scar-

city of fresh tumor samples. The aim of the present study is to clarify

relationships between clinicopathological features and results of the comprehen-

sive genome-wide methylation profile of SCLC. We investigated the genome-

wide DNA methylation status of 28 tumor and 13 normal lung tissues, and gene

expression profiling of 25 SCLC tissues. Following unsupervised hierarchical clus-

tering and non-negative matrix factorization, gene ontology analysis was per-

formed. Clustering of SCLC led to the important identification of a CpG island

methylator phenotype (CIMP) of the tumor, with a significantly poorer prognosis

(P = 0.002). Multivariate analyses revealed that postoperative chemotherapy and

non-CIMP were significantly good prognostic factors. Ontology analyses sug-

gested that the extrinsic apoptosis pathway was suppressed, including

TNFRSF1A, TNFRSF10A and TRADD in CIMP tumors. Here we revealed that CIMP

was an important prognostic factor for resected SCLC. Delineation of this pheno-

type may also be useful for the development of novel apoptosis-related

chemotherapeutic agents for treatment of the aggressive tumor.

D NA methylation-associated gene silencing is a common
event in human cancers, including primary lung can-

cer.(1) Global hypomethylation is thought to play a role in
carcinogenesis of primary lung cancer by increasing chromo-
some instability.(2,3) However, local hypermethylation of pro-
moter CpG islands consistently inactivates their downstream
genes, including tumor-suppressor genes. The CpG island
methylator phenotype (CIMP) displays characteristic alter-
ations of promoter DNA methylation in colorectal cancer,(4)

glioblastoma(5) and breast cancer.(6) Poirier et al.(7) report on
genome-wide DNA methylation in SCLC, by using 34 fresh-
frozen primary tumors, six distinct primary patient-derived
xenografts and seven cell lines. In their study, the methyla-
tion patterns were clearly tied to each gene expression, and
DNA methylation profiling successfully distinguished sub-
types of primary SCLC tumors. However, they mentioned no
clinical feature by subdividing SCLC tumors. Here we set
out a program to establish a clinically-useful subclassification

of SCLC using a CIMP status. Our ultimate goal is to clarify
the clinical importance of the molecular biological classifica-
tion.

Materials and Methods

Subjects and tumor samples. Between 1 July 1995 and 30
September 2009, a total of 1873 patients with primary lung
cancer underwent surgical resection at the Cancer Institute
Hospital, Japanese Foundation for Cancer Research (JFCR),
Tokyo, including 49 (2.6%) SCLC patients. Among these
cases, we excluded combined type SCLC tumors based on
diagnosis by expert pathologists (NM and YI) using World
Health Organization classification.(8) In addition, we found that
the tissue amount of 21 cases was insufficient for further
molecular experiments. Subsequently, we were able to use 28
samples for methylation analysis, and 25 samples were avail-
able for gene expression analysis.
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Cases with atypical histology were examined by a panel of
Japanese expert lung pathologists organized by a neuroen-
docrine tumor study group,(9) and tumors with consensus diag-
nosis were used. Written informed consent for medical
research was obtained from all patients. Clinical and pathologi-
cal data were stored in a database in accordance with hospital
privacy rules. The study protocol was approved by the institu-
tional review board of JFCR.

Illumina Infinium methylation assay and expression microarray

analysis. After bisulfite conversion of genomic DNA, 28 sam-
ples were analyzed using Illumina’s Infinium Human Methyla-
tion27 Beadchip Kit (WG-311-1202), which contains 27 578
CpG loci covering more than 14 830 human RefSeq genes at
single-nucleotide resolution. All microarray datasets have been
deposited into the NCBI GEO database (accession number
GSE50412). All statistical analyses were carried out using b-
values: (signal intensity of methylated probe) ⁄ (signal intensity
of methylated probe + signal intensity of non-methylated
probe), which were quantified using M-values that were calcu-
lated as the base 2 logarithm ratio of the intensities of the
methylated and unmethylated probes.(10)

The RNA integrity number (RIN) index was calculated for
each sample using Agilent 2100 Expert software, and only
RNA samples with RIN number >4 were further processed.
Finally, mRNA expression in 25 SCLC tissue samples was
analyzed by gene expression microarray (SurePrint G3 Human
Gene Expression Microarray Kit 8960M; Agilent Technolo-
gies, Santa Clara, CA, USA). The datasets of mRNA expres-
sion have been deposited into the NCBI GEO database
(accession number GSE62021).

Statistical analysis and validation using in-silico datasets. Unsu-
pervised hierarchical clustering analysis was performed by using
the Euclidean distance and complete linkage algorithm on Clus-
ter 3.0, and the dendrogram and heat map were constructed using
TreeView (http://bonsai.hgc.jp/~mdehoon/software/cluster/
software.htm). To reconfirm the results of hierarchical clustering,
we performed non-negative matrix factorization (NMF),(11,12) a
kind of consensus clustering, by using the GenePattern module
(http://www.broadinstitute.org/cancer/software/genepattern#).
Previously, using the software, we successfully obtained robust
results of clustering for squamous cell carcinomas and adenocar-
cinomas of the lung.(13,14) Here we selected the number of clusters
(k = 2) on NMF, based on the cophenetic correlation coefficients
(k) given by the software. NMF has several advantages: it is more
stable than the self-organizing map and hierarchical clustering, as
well as numbers of clusters are given by the cophenetic correla-
tion coefficients, which means the clustering is more objective, as
detailed by Fujiwara et al.(14) Categorical data were compared
using the v2-test or Fisher’s exact test. A non-parametric approach
(Wilcoxon rank-sum test) was used to determine probes ⁄genes
that are differentially methylated between the two groups of inter-
est. Survival curves were calculated using the Kaplan–Meier
method and survival distributions were compared with a log-rank
test, using SPSS version 22 software (SPSS, Chicago, IL, USA).
To validate our data, in-silico DNA methylation datasets of
tumors, tumor cells and normal lung tissues reported previously
were used as detailed below, whereas we could not perform sur-
vival analysis due to lack of follow-up data in the in-silico data-
sets. The Cox proportional hazards test was used to identify such
factors that influenced the disease-free survival. Multivariate
analyses were performed with a P-value of <0.10 in univariate
analyses. A P-value of <0.05 was treated as significant.

Correlation analysis of downregulated genes and gene expres-

sion, and pathway analysis. Expression patterns and DNA

methylation measurements of genes were linked to the unique
genes following background correction and quantile normaliza-
tion.(15) A Spearman correlation test between methylation and
expression was performed for the 25 tumor tissues following
matching of the two datasets by Gene Symbol, using the crite-
ria of delta-beta >0 and P < 0.05. Next, multiple-testing
P-values were adjusted using the Benjamini and Hochberg
method,(16) and gene lists were constructed on the basis of
genes that were observed to have a correlation coefficient
(Spearman) of less than zero. Then, we selected the most dif-
ferentially-methylated CpG sites with a false discovery rate
(FDR)-adjusted P-value cut-off of 0.05. Finally, we confirmed
the statistically-significant hypermethylation by using the other
dataset reported previously.(17) The Infinium probes were con-
verted by the genomic position (NCBI, v36) of probe
annotation for NimbleGen tiling microarrays. Gene ontology
analysis for these genes was performed using DAVID Bioin-
formatics Resources version 6.7 (http://david.abcc.ncifcrf.
gov/tools.jsp).(18)

Results

Clinicopathology of patients with small cell lung cancer. Clini-
copathological characteristics of 28 patients examined are
summarized in Table 1. They were mostly male (20 ⁄28,
71%) and 24 (86%) underwent lobectomy or more extensive
surgery. Of the 28 patients, 12 (43%) were node-negative, 11
of whom had p-stage I tumors, and overall 5-year survival
was 69.4%. Of the 28 cases enrolled, both tumor and normal
lung tissues were available for 13 cases. So, we used the 13
paired tissues for comparison studies between tumor and nor-
mal tissues. We focused on surgical SCLC cases in this study
because such cases may include early-stage as well as

Table 1. Characteristics of surgically-treated patients with small cell

lung cancer examined in this study

Characteristic Cluster 1 Cluster 2 P-value

Number (n = 28) 9 19

Age, years 68.6 � 5.9 67.0 � 6.8 0.547

Gender, male 4 (44%) 16 (84%) 0.030

Smoking (pack years) 33.8 � 22.4 50.8 � 22.2 0.069

Chemotherapy

Preoperative 4 (44%) 5 (26%) 0.337

Postoperative 6 (67%) 16 (84%) 0.291

Surgical procedure

Limited surgery 1 (11%) 3 (16%) 0.741

pT factor (T1 ⁄ T2 ⁄ T3 ⁄ T4) 3 ⁄ 4 ⁄ 1 ⁄ 1 13 ⁄ 5 ⁄ 1 ⁄ 0 0.227

pN factor (N0 ⁄N1 ⁄N2) 3 ⁄ 3 ⁄ 3 9 ⁄ 6 ⁄ 4 0.721

IHC stain (positive)

(1) Each marker

Chromogranin A 8 (89%) 9 (53%) 0.067

Synaptophysin 8 (89%) 10 (59%) 0.114

CD56 ⁄NCAM 9 (100%) 14 (82%) 0.1802

(2) All three markers

All positive 7 (78%) 7 (41%) 0.075

One or two positive 2 (22%) 8 (80%) 0.216

ly (positive ⁄ negative ⁄NA) 9 ⁄ 0 ⁄ 0 11 ⁄ 7 ⁄ 1 0.030

v (positive ⁄ negative ⁄NA) 8 ⁄ 1 ⁄ 0 15 ⁄ 3 ⁄ 1 0.702

p (positive ⁄ negative ⁄NA) 5 ⁄ 4 ⁄ 0 5 ⁄ 14 ⁄ 0 0.132

pm (positive ⁄ negative ⁄NA) 2 ⁄ 7 ⁄ 0 0 ⁄ 19 ⁄ 0 0.033

Data of age and smoking: mean � SD. IHC, immunohistochemical.
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advanced-stage cases. Tumors with advanced stages are usu-
ally found in patients whose tumors are unresectable and
only biopsy specimens are available.

Comparisons of DNA methylation patterns between tumors

and normal tissues, using both our own data and in-silico data

for validation analysis. After genome-wide DNA methylation
sequencing of 28 tumor tissues and 13 normal lung tissues, we
found 2397 that had an SD of mean b-value that met the >0.2
threshold within the 13 tumor sample set. To identify differ-
ences of global methylation patterns between cancerous and
normal tissues, b-values of the 13 paired tumor and normal tis-
sues were analyzed using the hierarchical clustering and the
NMF. Among of 2397 sites with an SD of mean b-value larger
than 0.2 within tumor samples, 147 candidate sites were
selected and analyzed by excluding the sites with no important
statistical differences between tumor and normal tissues
(Mann–Whitney U-test, P < 0.05), and values ([b-value of
tumor] – [b-value of normal tissue]) smaller than 0.01 in 2 of
13 tumors (Table S1). As shown in Figure 1(a,b), the results
were very similar for the two clustering methods, and tumor
and normal samples were clearly clustered, implying that the
clusters were quite robust. Gene ontology analyses of the 2397
loci implicated three main pathways involved in the etiology
of these cancers: neuroactive ligand-receptor interaction, cal-
cium signaling pathway and gap junction (Table S2).

The validity of DNA methylation patterns between cancerous

and normal tissues in independent cohorts obtained from the

GEO database. Using the 147 genes mentioned above, we veri-
fied this gene set to be discriminable between malignant and
benign lung tissues. The DNA methylation datasets of tumors
and normal lung tissues reported previously(17) were used as
an independent validation set: GSE35341 downloaded from
NCBI GEO data repository http://www.ncbi.nlm.nih.-
gov/geo/query/acc.cgi?acc=GSE35341. We employed 18 SCLC
tumor tissues (T1–T18) and five normal lung tissues (N1–N5)
from the series to confirm our results. To apply the probes of
the Illumina Infinium HumanMethylation27 microarray to that
of the NimbleGen tiling arrays, all sequences of each probe set
were compared and adjusted approximately. According to the
result of clustering analysis in GSE35341, the 147 probes were
able to distinguish cancerous from non-cancerous specimens
sufficiently: 17 out of 18 SCLC were correctly classified as

“tumor” and 4 out of 5 normal lung tissues were correctly
classified as “healthy” (Fig. 2).

Subclassification of small cell lung cancer by methylation pat-

terns. Next, to identify SCLC subgroups, we used the 1741
probes with an SD of mean b-value in tumor tissues >0.2
on each site and performed both the unsupervised hierarchi-
cal clustering (Fig. 3a) and the NMF (Fig. 3b). We identi-
fied two clusters with different methylation levels: Cluster 1
(n = 9) and Cluster 2 (n = 19). As shown in Figure 3(a,b),
the two clusters created by both the methods were exactly
the same, implying that the clusters were very robust. Clus-
ter 1 tumors were identified as SCLC CIMP and Cluster 2
was non-CIMP, because the CpG islands of Cluster 1 tumors
were significantly hypermethylated as compared with Clus-
ter 2 tumors (Fig. 4).
Clinical, pathological and immunohistochemical data of

SCLC in the two subgroups are summarized in Table 1. Com-
parison of the baseline characteristics between these two
groups showed significant differences in gender, ly and pm
factors. Furthermore, tumors of Cluster 2 tended to have a less
neuroendocrine nature, such as chromogranin A (89% Cluster
1 vs 53% Cluster 2), synaptophysin (89% vs 59%) and all
markers (78% vs 41%), although the tendencies were not sta-
tistically significant, which agrees with our previous study
results based on neuroendocrine marker expression.(19)

Survival analysis. During the median follow-up period of
37.4 months, 16 patients suffered cancer relapse: 8 (8 ⁄9, 89%)
in Cluster 1 and 8 (8 ⁄19, 42%) in Cluster 2. The 5-year dis-
ease-free survival (DFS) rate for the entire group was 46.2%,
and the 5-year DFS of Cluster 1 (11.1%) was much lower than
that of Cluster 2 (62.7%). These differences are highly signifi-
cant (Fig. 5, P = 0.002).

Univariate and multivariate analyses for prognosis. Next we
performed multivariate analyses for prognosis, by using vari-
ables with a value of P < 0.10 in the univariate analyses
(Table 2). Postoperative chemotherapy was a significant good
prognostic factor, and being a Cluster 1 patient (SCLC CIMP)
was a poor prognostic factor (Table 3).

Correlation of gene expression with their methylation patterns,

and pathway analysis. Differentially expressed genes were
identified by comparing Cluster 1 (n = 9) and Cluster 2
(n = 16). To validate if methylated genes were actually down-

(a) (b)2D hierarchical clustering Non-negative matrix factorization
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Fig. 1. Hierarchical clustering and non-negative
matrix factorization of paired 13 small cell lung
cancer (SCLC) tumors and 13 normal tissue samples.
Unsupervised clustering of 26 samples was
performed using 147 variably methylated loci. (a)
Hierarchical clustering displays relative methylation
levels (red, more methylated; green, less
methylated). Except for three tumors, clustering
analysis classified tumors and normal tissues. (b)
Non-negative matrix factorization (K = 2)
distinguished tumors and normal tissue except for
two tumors. Samples (n = 26) are listed in the same
order along the x and y axes.
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regulated or not, we examined correlation of methylation with
expression of genes by using the 1741 methylation data with
the gene expression datasets of 58 724 probes. 1530 CpG sites
(corresponding to 1220 genes) were identified, and 46 genes of
them (corresponding to 55 CpG loci) were negatively corre-
lated with the FDR-adjusted P-value < 0.05 (Table S3). Fur-
thermore, tumor necrosis factors (TNFRSF10A and TNFSF8)
and apoptosis factors (TANK and TRADD) were closely related
to the poor prognosis of Cluster 1 patients.
The functional enrichment analysis for these genes revealed

three biological pathways. Two of them were expressed with
significant differences and are listed in Table S4, termed
hsa04210 (apoptosis) and hsa05223 (non-small cell lung can-
cer) (P = 0.0067 and 0.00243, respectively) in KEGG path-
ways. This implies that apoptotic activities and characteristics

related to non-small cell carcinoma (NSCLC) are reduced in
Cluster 1 tumors by hypermethylation.

Discussion

High throughput methylation platforms enable us to reveal
extensive methylation profiling of a large number of genes for a
variety of human cancers, including SCLC. In this study, we
found that the 147 probes could be a molecular classifier
between cancerous and non-cancerous specimens (Fig. 1). This
probe list was validated by using Kalari’s dataset (Fig. 2).(17) In
addition, our functional annotation analysis demonstrated close
relevance between SCLC tumors and the neuroactive ligand-
receptor interaction pathway. Considering both the reports of
Kalari et al. and the present report, loss of proper neuronal dif-
ferentiation may be involved in the progression process of carci-
noma cells to a more highly malignant stage (i.e. SCLC).
Previously, we identified two subgroups with different clini-

cal outcomes by gene expression profiling using 38 surgically
resected high-grade neuroendocrine tumors, including 15 pure
type SCLC tumors(19), and confirmed by immunohistochem-
istry of neuroendocrine markers.(20) Of the two subgroups, one
subset (termed non-HGNT2) showed significantly worse prog-
nosis compared with another (5-year survival 12% vs 83%;
P = 0.0094). Here, by applying DNA methylation profiling
techniques, we obtained two clusters with different methylation
patterns and different prognosis: Cluster 1 with global high
CIMP and poor prognosis (SCLC CIMP) and Cluster 2 with
low CIMP and better prognosis (non-CIMP). Poirier et al.(7)

also observed distinct subtypes of SCLC by using a DNA
methylation profiling technique. In their study, the three clus-
ters (termed M1, M2 and SQ-P) were identified with each dif-
ferent methylation pattern as well as with distinct gene
expression. They confirmed that two subtypes (M1 and M2)
were significantly more frequently methylated compared with
the SQ-P. They discussed the relationship between the methy-
lation status and the biological aggressiveness of tumor itself,
but did not show any clinical data linked with the results. We
successfully showed that the increasing methylation level was
related to the poor prognosis. This suggests the possibility that
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Fig. 2. Hierarchical clustering of 18 small cell lung cancer (SCLC) (T1–
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Unsupervised clustering of the total 23 samples was performed using
the 147 probe set that was used in our study (Table S1), to validate
whether the gene set could be an SCLC classifier. This set showed that
17 out of 18 SCLC were correctly classified as “tumor” and 4 out of 5
normal lung tissues were correctly classified as “healthy.”
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Fig. 3. Clustering of 28 small cell lung cancer
(SCLC) tumors by hierarchical clustering (a) and
non-negative matrix factorization (b). Consensus
index values range from 0 to 1, with 0 being highly
dissimilar and 1 being highly similar. Note that the
independent two methods created exactly the same
two clusters (Clusters 1 and 2).
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it could be useful for surgical indication and for determining
adjuvant therapy.
A number of genes with higher methylation levels and

downregulated gene expression proved to be involved in the
apoptosis and NSCLC pathways. To our knowledge, there are
few reports describing that these pathways might be strongly
related with the therapeutic results of SCLC. The apoptotic
pathway plays an essential role in the development and main-
tenance of tissue homeostasis,(21) and has an important role in

carcinogenesis, cancer progression and resistance to anti-cancer
agents.(22) It has been reported that the apoptosis pathway can
be effectively inactivated in SCLC cells.(23,24) The authors of
these reports found resistance to FasL and TRAIL-induced
death of SCLC cells, and identified silencing of Fas, TRAIL-
R1 and caspase-8 expression caused by DNA methylation. In
the present study, we found that SCLC CIMP had a particu-
larly worse outcome compared with that of non-CIMP, and
showed markedly lower expression of TNFRSF1A,
TNFRSF10A and TRADD. Among them, TNFRSF10A was the
most frequently hypermethylated and downregulated gene,
inactivation of which was also reported previously in osteosar-
comas,(25) gastric carcinomas(26) and glioblastoma multi-
forme.(27) These results strongly suggested an important
prognostic role of epigenetic suppression of TRADD.
This is the first paper that describes the 5-year DFS rates of

distinct molecular SCLC subgroups (SCLC CIMP and non-
CIMP). However, there were some limitations of our study: (i)
the small number of cases; (ii) all samples were surgically
resected; (iii) there was no validation set; and (iv) the influence
of preoperative chemotherapy. Because the mainstream treat-
ment for SCLC patients is chemo-radiotherapy or chemother-
apy alone, surgical treatment is seldom undertaked. Therefore,
we rarely obtain sufficient fresh materials for research. Even
when samples can be obtained, preoperative chemotherapy
makes analyses difficult. In this study, 9 (32%) of 28 SCLC
patients underwent chemotherapy before surgery. To maintain
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Fig. 5. Disease-free survival analysis by Kaplan–Meier method for the
two clusters obtained by two clustering methods. Survival of Cluster 1
with high CpG methylator phenotype (CIMP) was significantly poorer
than that of Cluster 2 with non-CIMP (P = 0.002). The 5-year disease-
free rates in Cluster 1 (n = 9) and in Cluster 2 (n = 19) were 11.1 and
62.7%, respectively. The median disease-free survival was 9.6 months
for Cluster 1 and 86.9 months for Cluster 2.

Table 2. Results of univariate analysis of prognostic factors

influencing disease-free survival

Variable Hazard ratio 95% CI P-value

Age, years 0.972 (0.888, 1.064) 0.539

Gender, male 0.641 (0.221, 1.862) 0.414

Smoking 0.979 (0.956, 1.002) 0.079

Preoperative chemotherapy 2.593 (0.926, 7.264) 0.070

Postoperative chemotherapy 0.198 (0.069, 0.565) 0.002

Limited surgery 1.377 (0.387, 4.897) 0.621

pT factor 1.853 (1.025, 3.350) 0.041

pN factor 1.518 (0.819, 2.814) 0.185

NE marker immunostaining

Chromogranin A 3.011 (0.853, 10.62) 0.087

Synaptophysin 2.514 (0.712, 8.875) 0.152

NCAM† 27.68 (0.099, 7707) 0.248

All positive 2.111 (0.732, 6.095) 0.167

pl 1–3 1.347 (0.488, 3.723) 0.565

pm (+) 4.858 (0.970, 24.34) 0.055

v (+) 3.062 (0.402, 23.31) 0.280

ly (+) 2.041 (0.580, 7.186) 0.267

Cluster 1 (SCLC CIMP) 4.399 (1.578, 12.27) 0.005

†For NCAM, an exact CI was not able to be calculated because of no
negative cases in Cluster 1. CI, confidence interval; CIMP, CpG island
methylator phenotype; NE marker, neuroendocrine marker including
chromogranin A, synaptophysin and NCAM; SCLC, small cell lung can-
cer.

Table 3. Results of multivariate analysis of prognostic factors

influencing disease-free survival

Variable Hazard ratio 95% CI P-value

Postoperative chemotherapy 0.179 (0.057, 0.557) 0.003

Cluster 1 (SCLC CIMP) 4.708 (1.553, 14.27) 0.006

CI, confidence interval; CIMP, CpG island methylator phenotype; SCLC,
small cell lung cancer.

© 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd
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the statistical power, we could not avoid excluding these cases.
Similarly, we could not design an additional validation test. In
future we need further studies with increased numbers of cases,
including extended and pretreated tumors.
In summary, we revealed that SCLC CIMP could be an

important prognostic indicator after surgical treatment. This
may be a useful resource for surgical indication for SCLC
patients, especially with cT1N0M0 stage tumors, and may help
in the development of novel chemotherapeutic agents, includ-
ing demethylating agents.
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Table S1. The 147 genes, most differentially hypermethylated in 12 or more among 13 small cell lung cancer (SCLC) tumors, compared with
paired normal lung tissues.

Table S2. Biological function of genes differentially methylated in 92.3% or more of small cell lung cancer (SCLC) tumors, compared with paired
normal lung tissue.

Table S3. The most differentially hypermethylated genes with an inverse correlation between methylation and expression in small cell lung cancer
(SCLC). Genes were sorted by decreasing correlation coefficient.

Table S4. Biological function of genes differentially methylated with an inverse correlation between methylation and gene expression.
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