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Introduction
The world is in the midst of an anthropogenic cli-
mate crisis, with implications for the survival of 
humanity and millions of other species of life on 
Earth. Climate change is directly linked to human 
morbidity and mortality, and healthcare itself has 
a large carbon footprint which urgently needs to 
be corrected.1–3 However, the primary drivers of 
climate change are greenhouse gas emissions 
from fossil fuel use. In addition to being an issue 
of human health, climate change is an issue of 
social justice, with marginalized groups at highest 
risk of experiencing the negative effects of climate 
change while contributing a relative paucity of 
greenhouse gas emissions (the wealthiest 10% of 
the population are responsible for 52% of all car-
bon emissions).4

Regardless of its etiology, climate change has 
already and will continue to affect human health, 
likely in increasingly drastic and severe ways.5 
Examples of the effects of climate change on human 
health include heat-related mortality, food insecu-
rity and reduced crop yields, increased suitability 
for infectious diseases transmission, rising sea lev-
els, cardiovascular morbidity, mortality from 
increasingly severe wildfires, and the myriad health 
effects resulting from other extreme weather events 
such as floods and droughts.5 These changes will 
be felt hardest by marginalized groups, including 

those in low- and middle-income countries and 
persons from non-White racial backgrounds and/or 
with low socioeconomic status, that is, climate 
change is a social justice issue.5

One of the essential pillars that holds up the func-
tionality of our current healthcare system is the 
availability of effective antibiotics for bacterial 
infections. Without effective antibiotics, surger-
ies, cancer treatment, organ transplantation, and 
community-acquired infections could be fatal, 
resulting in millions of additional lives lost annu-
ally. In addition, some of the gains in childhood 
survival because of antibiotic availability of effec-
tive antibiotics for respiratory infections would be 
washed away. With the changing climate, this 
situation will be pushed closer to a breaking point 
because, as we will demonstrate, climate change 
and antibiotic resistance are intimately linked. 
This paper will discuss observations of some of 
these phenomena already occurring, those that 
are likely to occur, and those that are possible as 
the status quo maintainers of the world continue to 
fail to rise to the challenge of climate change.

Heat and antibiotic resistance
Temperature is intimately linked with bacterial 
processes and infections.6 Horizontal gene trans-
fer, a major mechanism for the acquisition of 
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antibiotic resistance, is increased by increasing 
temperatures. In addition, increases in tempera-
ture generally increase bacterial growth rates.7

There is significant evidence that bacterial infec-
tion rates are associated with increases in tempera-
ture, a discussion of which follows. An international 
study of 22 cities found that distance from the 
equator and socioeconomic factors were both 
associated with risk of Gram-negative bactere-
mia.8 Fewer antibiotic-susceptible Acinetobacter 
infections occur during winter months.9 Another 
study found that humidity, monthly precipitation, 
and temperature were all correlated with rates of 
Gram-negative bloodstream infections in hospi-
talized patients.10

For the diagnosis of cellulitis, a dose–response 
relationship between incidence and temperature 
has been found.11 Similarly, there was a dose–
response relationship between hospital admis-
sions due to urinary tract infections and 
temperature.12 The relationship between tem-
perature and infection rate holds true also for 
surgical site infections after knee and hip arthro-
plasty,13 Legionnaire’s disease,14 and other types 
of surgical site infections.15

Not only are infection rates increased by temper-
ature, antibiotic resistance is associated with 
increased temperatures. Increasing local temper-
ature and population density both lead to 
increased rates of antibiotic resistance.16 The 
relationship between temperature and popula-
tion density was true for the ubiquitous patho-
gens Escherichia coli, Klebsiella pneumoniae, and 
Staphylococcus aureus.16 MacFadden et al. found 
that the increases in antibiotic resistance were 
associated with average minimum temperature,16 
a value which has been on the rise due to climate 
change.17 The combination of increased num-
bers of infections and increasingly antibiotic-
resistant pathogens will inevitably lead to more 
and more antibiotic-resistant pathogens as cli-
mate change worsens.

Now we move to one of the most important diar-
rheal pathogens globally, Salmonella. Heat and 
humidity both increase rates of salmonellosis,18 
which is becoming increasingly antibiotic resistant. 
In addition, poultry intestinal colonization by 
Salmonella is increased by heat stress.19 With mil-
lions of global cases, the combination of increased 

case numbers, increased colonization rates in ani-
mals, and increasing antibiotic resistance, climate 
change has the potential to increase significantly 
the burden and morbidity from salmonellosis 
worldwide.

Another underexplored consequence of higher 
temperatures is the effect it will have on human 
behavior, including prescribers, as higher temper-
atures increase irritability and reduce critical 
thinking.20,21 Telemedicine, increasingly used for 
all types of medical encounters because of the 
COVID-19 pandemic, has been associated with 
increased unnecessary antibiotic prescriptions 
(visits unrelated to the COVID-19 pandemic), 
which may be a result of time pressure as visits are 
shorter when antibiotics are prescribed and 
patients are more satisfied.22,23 As increased use of 
unnecessary antibiotics and local prescribing prac-
tices are known risk factors for antibiotic resist-
ance,16 the association between temperature and 
behavior could have significant ramifications.

Disasters and infections
As the climate warms, the capacity of the atmos-
phere to hold water increases exponentially, 
meaning storms will be more severe and come 
with more precipitation. More precipitation leads 
to flooding, flood-related infections, population 
displacement, refugees, and overcrowding. 
Overcrowding is associated with increases in 
infection rates.24–27 Flooding can result in the 
spread of waterborne infections because of the 
overflowing of contaminated water from sewage 
lines or contamination by livestock.

Nitrogen fertilizers increase antibiotic resistance28 
and therefore, floodwater pollution by nitrogen 
fertilizers during severe flooding due to climate 
change will increase antibiotic resistance. 
Eutrophication, which can be worsened by flood-
ing, increases antibiotic resistance and can lead to 
dissemination of resistant pathogens and antibiotic- 
resistance genes.29

Extreme weather events resulting in flooding will 
more strongly disrupt weak sanitation infrastruc-
ture, increase crowding in already crowded 
areas, and spread antibiotic resistance from dis-
semination of sewage, a known reservoir for 
antibiotic-resistance genes.30 With dissemina-
tion of antibiotic resistance, progressive use of 
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broad-spectrum antibiotics will be required, 
resulting in a fatal cycle of the promotion of anti-
biotic resistance and its spread.

Pollution and antibiotic resistance
More and more intense precipitation will lead to 
increased runoff and inevitably higher levels of 
pollution in our water. Pollutants are known to 
induce expression of antibiotic-resistance genes 
and bacterial mutagenesis.31 Increased agricul-
tural runoff (i.e. eutrophication from fertilizers) 
will increase bacterial blooms in water systems 
and high concentrations of bacteria will increase 
opportunities for transfer of antibiotic-resistance 
genes.

Pollutants, including heavy metals from manu-
facturing and industrial practices, can be dissemi-
nated into the environment with flooding,32 which 
will become more severe with the extreme weather 
events precipitated by climate change. As metals 
in soil are known to increase antibiotic resist-
ance,33,34 this process will result in the dissemina-
tion of antibiotic resistance.

Antibiotic resistance, waterborne infections, 
and sanitation
In addition to flooding discussed above, 
extreme weather events will lead to drought in 
some areas. Water scarcity during droughts 
leads to reductions in sanitation and higher 
densities of people sharing the same water 
source.35 With crowding and shared water, 
waterborne infections are primed for explosive 
outbreaks. Water and food scarcity run hand in 
hand, which could result in poorer nutrition on 
top of increased diarrheal diseases. Children’s 
risk of acquiring antibiotic-resistant enteric 
pathogens is affected by malnutrition, crowd-
ing, and poor sanitation.36 Inevitably this will 
lead to more severe diarrhea and higher mortal-
ity rates, particularly with higher rates of antibi-
otic resistance preventing the administration of 
effective therapy.

Microplastics increase gene exchange in bacteria37 
in water sources, which could lead to increased 
dissemination of antibiotic resistance. As the cli-
mate warms, one can envision a nightmare sce-
nario in which Vibrio species increase in prevalence 
and range due to oceanic warming,38 become 
more antibiotic resistant due to microplastics, and 

lead to outbreaks of antibiotic-resistant cholera 
and necrotizing fasciitis.

Downstream (indirect) antibiotic resistance
As the climate changes, bacterial and viral infec-
tions will be impacted (Table 1). Vector habitats 
will expand, leading to increased numbers of vec-
tor-borne infections.5 Higher temperatures also 
increase insect vector activity.39 Drought leads to 
elimination of mosquito predators, allowing them 
to multiply unhindered in the residual pools of 
stagnant water.40 With exposure of previously 
naïve populations, there will be increases in the 
number of hospital admissions from vector-borne 
diseases.5 The result of increased hospitalizations, 
particularly for those with severe illness requiring 
intensive care, will be more days with invasive 
devices and hospital-acquired infections, which 
are often antibiotic resistant.41 In addition, 
patients with critical illness are more likely to be 
discharged to nursing homes or rehabilitation 
facilities, which are breeding grounds for antibi-
otic resistance. Increased throughput through this 
pathway (i.e. from vector-borne diseases) could 
result in more antibiotic-resistant infections. The 
population at risk for vector-borne diseases as a 
result of climate change is only expected to 
increase, with estimates of 500 million more peo-
ple at risk by 2050.42

As the range of malaria vectors increases, more 
persons will acquire the infection, again in per-
sons who are previously naïve and have a higher 
chance of severe infections (and downstream hos-
pital-acquired infections). With expanding vector 
range, the areas where antimalarial resistance has 
been relatively contained will extend and spread, 
increasing the global burden of antimalarial agent 
resistance. In malaria-endemic areas with greater 
than average rainfall due to climate change, there 
may be increased opportunities for mosquito pro-
liferation due to increased standing water.5 
Climate change has already resulted in the spread 
of malaria to places previously not endemic.43

Another form of antimicrobial resistance related 
to climate change that is worth mentioning is 
tuberculosis. Crowding increases transmission 
rates of tuberculosis44 and with climate refugees 
and increased population density/crowding inevi-
tably there will be increased spread of antibiotic-
resistant tuberculosis. The co-occurrence of 
poverty, antibiotic-resistant tuberculosis, and 
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lack of access to medical care and diagnostics 
could potentially result in a huge outbreak of anti-
biotic-resistant tuberculosis. Regarding antibi-
otic-resistant tuberculosis, one study found that 
reduced humidity (which could occur in areas 
affected by climate-induced drought), had higher 
rates of antibiotic-resistant tuberculosis.45 In 
addition to aiding the spread of tuberculosis, pop-
ulation density is associated with antibiotic resist-
ance in other organisms.46

As a result of climate change, some areas will have 
more rainfall, whereas others will have more 
drought, and with drought, wildfires. In addition 
to human casualties and the loss of biodiversity 
from massive wildfires, respiratory problems will 
occur in survivors. A substantial body of evidence 
demonstrates that particulate counts result in 
increased cardiovascular morbidity and mortality 
both in the short term and the long term.47–49 In 
addition, direct exposure to fire can result in per-
manent lung-scarring and lead to bronchiectasis.50 
Patients with bronchiectasis are known to harbor 
antibiotic-resistant infections bacteria51 and to 
have multiple infections/exacerbations, another 
tributary to the common final pathway linking cli-
mate change with antibiotic resistance.

As climate change creates a resource bottleneck, 
farming and livestock producers will be increas-
ingly pressured to maximize their crop and ani-
mal yields. In the past, this has often been 
achieved with antibiotics. Though by no means is 
unnecessary antibiotic use in farming/livestock a 
thing of the past, pressured resources could cause 

resurgence and increase dissemination of antibi-
otic resistance within ecosystems.

Lastly, to touch on the COVID-19 pandemic. 
Climate change increasingly brings humans and 
animals into contact and has and will continue to 
result in outbreaks of zoonotic and vector-borne 
diseases with pandemic potential. With the pan-
demic, we have seen shortages of personal protec-
tive equipment and resultant increases in 
hospital-acquired infections.52 As diseases con-
tinue to emerge and potentially overlap, these 
shortages and resultant increases in hospital-
acquired infections (which tend to be antibiotic 
resistant) will only increase. As to the effects of 
climate on COVID-19 outcomes, the data are 
mixed, with some studies showing effects of tem-
perature on mortality and others finding no asso-
ciation.53–56 However, climate change, with its 
concomitant extreme weather events and particu-
late matter pollution, contributes to cardiopulmo-
nary morbidity, a known risk factor for poor 
COVID-19 outcomes. Regardless of the nature of 
the interaction, because of its ubiquity, climate 
change is likely to affect the COVID-19 pandemic 
and its victims.

Conclusion
Climate change is a social justice issue and its 
unmitigated progression will disproportionately 
affect the health and well-being of persons in 
low- and middle-income countries across the 
globe. In this time, we must take action at every 
level to reverse the tide of impending climate dis-
aster. There is no fitness cost to bacteria of being 
antibiotic resistant,57 and therefore, we must pre-
vent antibiotic resistance due to climate change 
now, rather than try to fix it later. Antibiotic 
resistance and climate change are intimately 
linked and as a profession we have a duty to 
address both to protect the health of our patients 
and our planet.
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Table 1.  Climate change sequelae and their effects on bacterial and viral 
infections.

Climate change factor Bacterial infections Viral infections

Extreme weather events +5 +5

Increased global temperature +5,8,10–16,18 +5

Droughts +5 +40

Floods +29 +/–

Vector transmission n/a +5

Vector range n/a +5
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