
REVIEW

Microsimulation Modeling in Food Policy:
A Scoping Review of Methodological Aspects
Elly Mertens, Els Genbrugge, Junior Ocira, and José L Peñalvo
Unit of Non-communicable Diseases, Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium

ABSTRACT

Food policies for the prevention and management of diet-related noncommunicable diseases (NCDs) have been increasingly relying on
microsimulation models (MSMs) to assess effectiveness. Given the increased uptake of MSMs, this review aims to provide an overview of the
characteristics of MSMs that link diets with NCDs. A comprehensive review was conducted in PubMed and Web of Knowledge. Inclusion criteria
were: 1) findings from an MSM; 2) diets, foods, or nutrients as the main exposure of interest; and 3) NCDs, such as overweight/obesity, type 2 diabetes,
coronary heart disease, stroke, or cancer, as the disease outcome for impact assessment. This review included information from 33 studies using MSM
in analyzing diet and diverse food policies on NCDs. Hereby, most models employed stochastic, discrete-time, dynamic microsimulation techniques
to calculate anticipated (cost-)effectiveness of strategies based on food pricing, food reformulation, or dietary (lifestyle) interventions. Currently
available models differ in the methodology used for quantifying the effect of the dietary changes on disease, and in the method for modeling the
disease incidence and mortality. However, all studies provided evidence that the models were sufficiently capturing the close-to-reality situation
by justifying their choice of model parameters and validating externally their modeled disease incidence and mortality with observed or predicted
event data. With the increasing use of various MSMs, between-model comparisons, facilitated by open access models and good reporting practices,
would be important for judging a model’s accuracy, leading to continued improvement in the methodologies for developing and applying MSMs
and, subsequently, a better understanding of the results by policymakers. Adv Nutr 2022;13:621–632.

Statement of Significance: Given the advancement in the application of microsimulation modeling in evaluating food policies and
measuring diet-related disease burdens, the present scoping review serves as an exercise to inform future modeling, hereby highlighting the
need for transparency in model development, application, and dissemination to advance and safeguard accuracy and relevance in modeling
efforts.
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Introduction
Chronic non-communicable diseases (NCDs) are the leading
cause of mortality and morbidity globally (1), with much of
this burden attributable to suboptimal diets (2, 3). In 2019,
8 million global deaths were estimated to be attributable
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to poor diet, with cardiovascular diseases (CVDs) as the
leading cause of death, followed by cancers and type 2
diabetes (T2DM) (3). Further, these diet-related diseases
disproportionately affect socio-economically disadvantaged
population subgroups, with health disparities increasing
over time (1). Improving diet for the prevention and
management of NCDs features high on the global agenda (4,
5), highlighting the need for thorough decision-making tools
to inform effective food policies.

Policy modeling has been used extensively in public
health to identify potentially impactful strategies informed
from different sources of population data (6). Similarly, the
development of effective strategies for improving diet can be
guided by health decision-modeling tools, as such techniques
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are able to estimate the impact of a potential dietary
improvement on reducing the burden of chronic NCDs in a
particular population group. The most used epidemiological
model structures for the evaluation of health policies include
comparative risk assessments (CRAs) (7, 8) and state-
transition models, based on either the cohort or individual
(6). A state-transition model simulates consecutive transi-
tions between predefined health states and the likelihood
of an event happening at a specific time interval. Whether
individual trajectories rather than the deterministic mean
response of a homogeneous cohort are of interest determines
whether a cohort-based or an individual-based model is
more appropriate (9–11). A cohort-based model assesses
populations or cohorts who share the same characteristics,
while an individual-based or microsimulation model (MSM)
simulates for each individual his/her potential disease
history based on disease probabilities that fit his/her
individual risk profile. Aggregated individuals’ disease
histories provide population-level estimates on disease
outcomes with associated measures of uncertainty due to the
inclusion of stochastic variation. In this way, MSMs allow
for incorporating baseline variability in individuals’ charac-
teristics (6, 11, 12), a feature that is especially relevant when
analyzing food policies. This is because dietary habits vary
largely within populations (13), contributing to population’s
heterogeneity in disease histories, and thus making an MSM
a key priority tool for informed decision-making on diet and
health. In addition, MSMs have the advantage of proactively
evaluating, for each individual, a potential outcome of
interest prior to actual implementation of a food policy, as a
way of ex-ante evaluating population health strategies; this is
a theoretical analogue to a randomized controlled trial, with
treatment and control being applied to the same hypothetical
population.

MSMs for diet and NCDs provide policy-relevant output
by forecasting the disease incidence and mortality under
the current dietary practices compared with a counterfactual
food policy scenario. This allows for the identification of
effective dietary strategies to improve health, including their
(cost-)effectiveness (6) and drivers of health inequalities
(14). Because of these promising features, there is growing
interest in the development of MSMs for food policies and
for measuring diet-related disease burdens. The aim of this
review is to provide an overview of the published studies
using an MSM that links diet and/or food policies with
NCDs. Due to the complexity of the model development,
we aim to review the different approaches taken, including
the model framework, key inputs, assumptions, and outputs,
as well as the assessment of the model’s validity, scenario
sensitivity, and uncertainty.

Methods
Search strategies and data extraction
For this Scoping review, a literature search was performed
in PubMed and Web of Science in January 2021 to identify

relevant articles using the following search terms: (“diet∗”
OR “fat” OR “sugar∗” OR “fruit” OR “vegetable” OR
“meat” OR “sodium” OR “salt” OR “grains” OR “fibre” OR
“energy” OR “portion size”) AND (“disease” OR “burden”)
AND ((“microsimulation” OR “micro-simulation” OR “state-
transition model” OR “Markov model” OR (“stochastic”
AND “individual∗ model”)) without time restrictions. Arti-
cles included in the present review met the eligibility criteria:
1) findings from an MSM; 2) diets, foods or nutrients, or
food policies as the main exposure of interest; and 3) NCDs,
such as overweight/obesity, T2DM, myocardial infarction
(MI) and coronary heart disease (CHD), cerebrovascular
disease (stroke), or cancer as the disease outcome for the
burden of a food policy assessment. Searches were restricted
to English-language publications and conference abstracts
were not included. The selection of articles that met the
inclusion criteria was based on information available in the
manuscript.

Figure 1 presents the PRISMA flow diagram (Preferred
Reporting Items for Systematic Review and Meta-Analyses)
(15). The initial search yielded 269 articles and, after
removing duplicates, 179 abstracts were screened, yielding 69
abstracts retrieved for a full-text review. After exclusion of 36
full-text articles (with reasons as mentioned in Figure 1), 33
articles were included in the present review.

Information was extracted from the full-text articles,
their supplementary materials, and their reference lists in
relation to the application of the MSM for evaluating food
policies, as well as its development and assessment. Extracted
information included:

1) Publication details: authors, year, country, and
acronym/name of the MSM, when available;

2) Population details: demographics of the starting cohort,
including country and age; number of individuals; open
compared with closed cohort; and time horizon and cycle
length of follow-up;

3) Details of the primary objective of the MSM: the food
policy scenarios or dietary factors under study, NCDs of
interest, and outcome measure of the main analyses;

4) Model development details: model type, approaches to
formulate the starting cohort, approaches to estimate
individual disease risks, approaches to quantify dietary
impacts on the disease process, and model implementa-
tion software; and

5) Model assessment details: model validation, including
face validity, internal and external validation, scenario
sensitivity analyses, and uncertainty analyses.

Definitions of the criteria used in this review are presented
in Box 1.

Results
The last decade has seen a growing trend towards the use of
MSMs in the field of diet and food policies in relation to the
NCD burden. This review identified 33 studies, mostly from
the United States (23 studies), using an MSM in analyzing
diet or diverse food policies on NCDs (Table 1).
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FIGURE 1 Flowchart of the literature review (PRISMA flow diagram). Abbreviations: PRISMA, Preferred Reporting Items for Systematic
Reviews and Meta-Analyses.

Objectives of MSMs
The purpose of most MSMs was to evaluate food policies,
except for 2 studies that were instead modeling optimal
dietary intakes (16, 17). The food policy strategies most fre-
quently considered were taxes on sugar-sweetened beverages
[10 studies; (18–27)], subsidies on fruits and vegetables [7
studies; (21, 24–26, 28–30)], sodium/salt reduction policies
[6 studies; (21, 31–36)], and reformulation and labeling
policies [12 studies; (21, 23, 31–40); Table 1]. The impacts
of these food policies on dietary consumption were obtained
from previous studies on price elasticities for taxes and
subsidies (17 studies), time-trend series or published effect
sizes for reformulation (9 studies), labeling (4 studies), and
dietary interventions (5 studies; Supplemental Table 1).
Once the change in diet induced by the food policy was
introduced, the subsequent effect on the natural history

of disease was directly and/or indirectly quantified (via
changing biological risk factors, which in turn influence
the NCD risk), using published estimates of the etiological
effects of diet on the NCD risk by age and sex. In some
studies, the impact of the food policy on the disease outcome
was assumed to occur a few years after implementation
of the intervention; in particular, a time delay for weight
changes after a caloric intake change (18, 19, 22, 23, 25,
27), a 5-year time lag for CVD (21, 32, 34, 35, 41), and
an 8-year time lag for gastric cancer (34, 35) have been
used. Similarly, the impact of the food policy was assumed
to fade out over the years in 6 food policy scenarios
(22, 39, 42, 43).

In most studies, overweight/obesity, T2DM, MI, CHD,
and stroke were the diseases of interest, because of their
high disease burdens in the populations being modeled

Diet-NCD microsimulation models: a scoping review 623



BOX 1
Definitions for the methodological aspects discussed in the review

Definition References

Individual-level
state-transition models

For each individual, his/her disease history is simulated by applying a set of randomly treated
transition processes that operate in discrete time intervals, often annually.

(10–12)

Base-case scenario A natural disease history model that describes the course of the disease process from onset to
progression to death in a biologically meaningful and representative way whilst being
mathematically as simple as possible and using estimable model parameters.

(12)

Food policy scenario A counterfactual scenario that can potentially modify an individual’s diet and alter the natural
disease history.

(12)

Starting
cohort

A theoretical group of individuals defined by a set of demographic and clinical characteristics
relevant for the course of the disease process modeled. In an individual-level state-transition
model, cohort members might be heterogenous in their demographic and clinical
characteristics. Often the cohort is a synthetic population—i.e., the characteristics of the
population match the various statistical distributions of the real population—and is
therefore a close-to-reality population to be used in modeling.

(10)

States Relevant states in a simple state-transition model include: “health,” “disease,” and “death,” with
disease being an intermediate state between health and death, and death being an
absorbing state. States are collectively exhaustive and mutually exclusive: i.e., an individual
can only be in exactly 1 state at each model cycle. Further specifications of distinct states,
including the number of distinct states, depend on the disease process, the research
question, and data availability, as well as how demographic and clinical characteristics are
attributed to states.

(10–12)

Transition probabilities Individuals are allowed to move between states, with their probabilities of moving depending
on demographic and clinical characteristics and the current state, and possibly also
accounting for previous states’ histories.

Time horizon The follow-up time of the cohort, related to the number of cycles.
Cycle length The time period between the potential transitions to distinct health states, and the duration of

experiencing particular events.
Validation analyses A kind of model assessment that refers to the consistency of the model with

observed/predicted data. Validation for decision modeling includes face validity
(plausibility), internal validity (verification), cross validity (between-model comparison,
external consistency), external historical validity, and external predictive validity.

(12)

Scenario sensitivity analyses A kind of model assessment that refers to the explorations of model results under various
scenarios, often varying model parameters that are inestimable or poorly estimable.

(12)

Uncertainty analyses A kind of model assessment that refers to the variability/uncertainty inherent to the modeling,
aimed at better informing the decision by assessing confidence in a chosen modeling
strategy and/or determining the need for additional information. Uncertainty for decision
modeling includes stochastic uncertainty, parameter uncertainty, heterogeneity, and
structural uncertainty.

(12, 51)

(Table 1), and based on the available evidence of their
relationships with diet (Supplemental Table 1). However,
the outcome measure of the main analyses was often
health-care costs (23 studies), either operationalized
as a cost-effectiveness analysis (i.e., costs/disease
or quality-adjusted life years; 18 studies) or as
medical expenditures (6 studies), followed by the
number of (new) cases and deaths (10 studies) and
the number of cases/deaths prevented/postponed
(8 studies).

Methodological approaches for the development of an
MSM
The reviewed MSMs differed in their model type and the
methodologies used to formulate the theoretical starting

cohort of individuals that resembles the reality of the
population under study and to define the natural history of
the disease, using individual risks and associated transition
rules for disease incidence and mortality (Table 2).

Model type.
The MSMs identified were based on state-transition mod-
eling techniques, most employing dynamic, stochastic,
discrete-time microsimulation techniques; that is, for each
individual, a disease history is simulated by applying a set of
randomly treated transition processes that operate in discrete
time intervals, often annually (Table 2). In only 4 studies,
a compromise was made between the model flexibility and
execution time by applying a combination of macro- and
micro-simulation approaches. With such partial MSMs, the
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risk factor history follows an MSM and the disease and
mortality factors follow a cohort or Markov model, assigning
probabilities of diseases and mortality that are used as
averages over all (or a subgroup) of the simulated individuals.

Formulation of the starting cohort.
MSMs were initially populated by a sample of theoreti-
cal (synthetic) individuals using population distributions’
parameters of demographics and risk factors (including
diet) taken either from observational prospective cohort
studies [as applied in (17, 41, 42)] or, more frequently, from
population-representative health surveys, often combined
with census statistics [as applied in (16, 18–40, 43–48)].
This sample of individuals—the starting cohort—was either
drawn by taking a weighted sample of individuals included
in the cohorts/surveys or was created by generating a “close-
to-reality” synthetic population (Table 2). Most models were
restricted to the adult population, but 6 studies also included
children (Supplemental Table 2) (17, 27, 29, 30, 48, 49). In
studies using an open cohort design (16, 18–21, 24, 27, 29,
32–39, 41, 43, 46), individuals can enter the cohort and leave
the cohort (mortality), with rates of entry and exit based
on population projections by census statistics to account for
population ageing and demographic shifts over the years.

Individual risks (and associated transition rules).
In all studies, synthetic individuals entering the MSM
acquired individualized risk factor trajectories, simulated
using age and time trends from survey data, and that
determined the associated individualized health transition
rules. For all studies identified, a dynamic MSM based on
discrete time was used; hence, individuals in the MSM were
simulated to experience particular events in cycles with a
length of either 1 day (40), 1 month (19, 24, 27), or, more
commonly, 1 year (16–18, 20–23, 25, 26, 28–39, 41–48)
(Supplemental Table 2). Subsequently, cycles were run for a
predefined, fixed number of years, varying from 1 to 35 years
(16–19, 21, 24–29, 31–41, 43–45, 47, 48), or for the lifetime
of the individuals included (i.e., until death or the age of 100,
whichever came first) (20, 22, 23, 26, 28, 30, 39, 42, 44–46).

The daily, monthly, or annually based risks and the
associated transition probabilities for the onset of the NCDs
of interest were estimated from either a multi-state life
table approach, a hazard calculation approach, a risk score
framework, or a CRA framework (Table 2). In a multi-
state life table approach (17, 29, 38, 42, 47), the transition
probabilities (for an individual to develop the disease before
his/her next birthday) were derived from published age-
and sex-specific incidence/prevalence rates. This approach is
often applied for (mortality) events where no information on
risk factors is available. In a hazard calculation model (17,
18, 24, 25, 41), the disease probabilities were calculated by
multiplying the incidence rate by the ratio of an individual’s
hazard of an event to the typical hazard in the cohort
that year. These 2 basic approaches are likely to result in
conservative, lower-bound projections of the disease risk, as
in the counterfactual food policy scenario they only consider
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TABLE 2 Microsimulation models for diet, food policies, and NCDs, and their modeling approaches for formulating the starting cohort and
estimating individual disease risks

Approaches Short explanation References

Model type Dynamic,
discrete-time,
stochastic
microsimulation
model

For each individual in the population, a set
of randomly treated transition rules,
determined by individual characteristics,
are applied at each time step, leading to
the possibility of transitioning to another
health state (that are mutually exclusive
competing and exhaustive) or death.

CVD PREDICT (16, 20, 23, 26, 28, 39)
US IMPACT Food Policy Model (32, 33, 37)
CHOICES model (19, 27)
IMPACTNCD model (21, 34, 35)
SPHR Diabetes Prevention Model (22)
ModelHealth CVD (36)
Unspecified (18, 24, 25, 30, 31, 40–46, 48)

Partial micro-
simulation

Markov-type state-transition model that
combines microsimulation of risk factors
with macrosimulation of disease and
survival

DYNAMO-HIA model (29)
Disease Prevention Microsimulation Model

(47)
Unspecified (17, 38)

Formulation of the
starting cohort

Weighted sampling
(with
replacements)

Expansion of the survey sample by
sampling individuals from the survey
with replacements using sample weights;
only possible if the survey reports all
baseline variables needed

(16, 18, 20, 22–26, 28, 30, 31, 39, 41, 42, 44,
46, 47, 50)

Generating a
“close-to-reality”
synthetic
population

Expansion of the survey sample with other
data sources, using statistical approaches
such as synthetic reconstruction,
model-based generations, combinatorial
optimization, and/or (non-)parametric
statistical matching

(19, 21, 32–37, 43)

Simulating an individual by sampling from
cohort-specific joint probability
distributions; guided by correlation
matrix of risk factors

(17, 18, 24, 25, 30, 31, 38, 40, 41, 45, 46, 48)

Estimation of
individual disease
risk

From literature and/or
published inci-
dence/prevalence
rates

Using multi-state life tables with 1-year
intervals to estimate disease probability

(17, 29, 38, 42, 47)

Hazard calculation
approach

Calculating an individual’s relative hazard of
an event in relation to the typical hazard
in the cohort that year, and multiplying
this ratio by the cohort- and year-specific
incidence rate to estimate his/her disease
probability

(18, 24, 25, 41, 45)

Risk score framework Using risk functions with the specific risk
exposures of an individual to estimate
his/her disease probability

Framingham risk equations (16, 20, 22, 23,
26, 28, 30, 31, 36, 39, 47, 50), Globorisk
(46), RECODe (44, 46), Pooled Cohort (44),
QRISK2 (22), Leicester Risk Score (22), kcal
to body weight (40, 43)

Comparative Risk
Assessment
framework

Using population-attributable fractions to
estimate disease incidence not
attributable to modeled risk factors, and
multiplying this not-attributable
incidence by the relative risks of specific
risk exposures of an individual to
estimate his/her disease probability.

(21, 32–35, 37)

ModelHealth CVD is a stochastic discrete-time model to estimate life-time incidence of CVD events and associated costs in a representative cross-section of US population.
Abbreviations: CHOICES model, Childhood Obesity Interventions Cost-Effectiveness Study project; CVD, cardiovascular disease; CVD PREDICT model, Cardiovascular Disease
Policy Model for Risk, Events, Detection, Interventions, Costs and Trends; DYNAMO-HIA model, Dynamic Modelling for Health Impact Analysis; NCD, noncommunicable disease;
QRISK2, a cardiovascular disease risk algorithm version 2; RECODe, Risk Equations for Complications Of type 2 Diabetes; SPHR, School for Public Health Research Diabetes
Prevention Model.

the influence of the dietary exposures of interest relevant
to the disease risk. More recent approaches, however, also
consider a broader range of relevant risk factors. In a risk
score framework, as applied in the Cardiovascular Disease
Policy Model for Risk, Events, Detection, Interventions,
Costs and Trends (CVD PREDICT) models (16, 20, 23, 26,
28, 39, 50); in some recent models of Basu and coworkers

(30, 31, 44–46); and in other studies (19, 22, 27, 36, 38, 40,
42, 43, 47), the disease risk was calculated using calibrated
risk scores, often Framingham risk equations, that translate
the distributions of traditional risk factors into specific
disease outcomes and are validated to empirical, historical
disease trends. In contrast, in a CRA framework, as applied
in IMPACTNCDmodel (a dynamic, discrete-time, stochastic
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microsimulation model) (21, 34, 35), the US IMPACT Food
Policy model (32, 33, 37), and the Dynamic Modelling
for Health Impact Analysis (DYNAMO-HIA) model (29),
the disease risk was captured by all the well-accepted risk
factors, with magnitudes of associations dependent on the
prevalences of risk factors in the population. Hereby, these
models take into account the distributional nature of the risk
factors and their impacts on the population disease risks,
hence providing more accurate estimates of disease risks. In
an MSM context, both the risk score and CRA framework
are highly dependent on the data available from nationally
representative surveys in order to calculate an individual’s
disease risk. Nevertheless, independent of the approach used
to model disease risks, the future projections rely on existing
data and trends in the prevalence of risk factors, and hence
are likely to overestimate disease events when risk factors and
their corresponding clinical treatments improve over time.

The MSMs simulate whether an individual will transition
to a new state or remain in the current state at the end
of the cycle using stochastic transition rules; that is, the
uncertainty of experiencing an event was incorporated, for
example, by using Monte Carlo simulation, with sampling
from a binomial (21, 34, 35) or a uniform distribution (21,
32–35, 37), possibly with the inclusion of common random
numbers (16, 18, 20, 22, 23, 26, 28, 38, 39, 42, 50).

After modeling the base case scenario for disease inci-
dence and mortality, a symmetric model with the same in-
dividuals was used to study the influence of a counterfactual
food policy scenario by means of quantifying the impact
of the food policy on dietary intakes and, subsequently,
the impact of dietary change(s) on the disease/mortality
risk (Supplemental Table 1), while ensuring that the disease
process is represented consistently across the scenarios (10).

Model assessment
When applying an MSM, evidence of model credibility was
derived from examining validity, scenario sensitivity, and
parameter uncertainty (Table 3).

Regarding model validation, only 3 studies included face
validity (17, 22, 38), whereas most studies included internal
and external validation. So far, a systematic comparison
between models—that is, using 2 models for the same
research question—has not yet been reported, although
this between-model comparison would provide important
insights in the variability due to the underlying model
structure with assumptions. Internal validity checks included
calibrating the starting cohort (31) and the modeled disease
incidence and mortality rates (22, 30–32, 37, 46–48). External
validity checks included comparing a model’s output with
either observed (16, 18, 20–24, 26, 28, 31–33, 36–39, 41, 43,
48, 50) and/or predicted data (16, 21, 32, 33, 37) on disease
incidence and mortality rates.

Scenario sensitivity analyses included modeling results
under various scenarios using variations in some preselected
model parameters (12), such as varying taxes and subsidy
levels (18, 23, 24, 28, 30, 41, 44–46), price elasticities (20,
23, 29, 43), and consumption trends (18, 24, 30, 34, 40,

43, 45, 46). This often provided further understanding of
the research question rather than assessment of the model
performance.

Uncertainty analyses of the MSMs included only cov-
ered examining parameter uncertainty; that is, when the
estimated input values that steer outcomes are themselves
uncertain, because of measurement error, sampling error,
variability, and proxy data. Examples of this in the MSM
included the uncertainties inherited in cohort/survey data
referring to the representativeness/accuracy of the estimates
of population characteristics and dietary intakes, their accu-
racy for generating likely trajectories of future risk factors
and disease prevalences based on observed trends, and the
uncertainties in the estimations of effect estimates. Studies
quantified their parameter uncertainty by x-times repeated
model replication either in a deterministic sensitivity analysis
(DSA)—also known as a 1-way sensitivity analysis—to
answer “what-if” questions or, more frequently, a probability
sensitivity analysis (PSA) (51). In a DSA, as applied in 2
studies (38, 41), parameter values are manually specified as
multiple-point estimates successively to test the sensitivity of
the model’s results to a specific parameter or sets of parame-
ters. In a PSA, as applied in most studies (17–35, 37–42, 44–
46, 48), the parameter values are sampled from predefined
probability distributions and varied simultaneously to fully
evaluate the combination of uncertainty in all model inputs
on the robustness of model results. The PSA has become the
accepted standard for providing nuanced decision options
that generate 95% CIs or IQRs around the mean or median.
This is, however, not the same as knowing the impact of
an input parameter taking a specific value on the outcome,
which is often of interest for policy decision-makers.

Discussion
Methodological considerations
This review provided an overview of the structure and
methodological features of existing MSMs for food policies
tackling diet and NCDs, independently of the findings of
the individual models. An MSM is a suitable approach
for untangling the multifaceted diet-health associations and
the influence that diet has in the accumulation of multiple
risks for each individual, while accounting for the large
random variation in diet between individuals and population
subgroups contributing to heterogeneity in the disease
burden.

Results of the models are inevitably influenced by the
choices of data sources and uncertainties around the input
data sources and assumptions inherent to the modeling. In
order to model the impact of diet on the onset of one or
more NCDs, the available MSMs incorporated a broad range
of data inputs from various publicly available data sources
(52). Briefly, models relied on using cohort/survey data for
demographics, trends in prevalences of biological factors and
dietary intakes, and disease incidence and mortality rates by
age and sex, and using published literature data for well-
accepted risk factor–health associations and, when using a
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TABLE 3 Model assessment, including model validity, scenario sensitivity and uncertainty analyses

Model assessment Examples on how this is carried out

Model validation Face validity Manually checking each transition (17, 38)
Manually checking sampling values (22)

Internal validation Model calibration to national data (22, 30, 31, 47, 48)
Comparison of the synthetic population with the original sample of

the Health Survey of England to internally validate the synthetic
population and their risk factor trends (21)

Baseline hazard rate in the risk equations of disease incidence and
mortality calibrated to observed rates in health audits (46)

Annual case fatality for CVD calibrated to forecasted mortality rates in
a population attributable risk framework (32, 37)

External validation Comparison against
Historical/observed data (16, 18, 20–24, 26, 28, 31–33, 36–39, 41, 43,

48, 50)
Forecasted/predicted data (16, 21, 32, 33, 37)

Scenario sensitivity analysis Modeling results under various
scenarios in 1-way sensitivity
analyses

Varying values of model parameters:
Tax/subsidy/funding/sales ban levels (18, 23, 24, 28, 30, 41, 44–46, 48)
Consumption trends, including purchases trends (18, 24, 30, 34, 40,

43, 45, 46, 48)
Diet-risk factor associations (31, 36, 43, 47, 48)
Options in intervention strategy (21)
Participation rate (22, 30, 44, 48)
Participation time length/intervention duration (22, 30, 48)
Intervention efficacy during and afterwards (22, 44, 47)
Discount rate and willingness to pay (22, 32, 33, 37)
Policy size effects of labeling and food reformulation (36, 37, 39)
Elasticities (20, 23, 29, 43)
Bias in dietary recall (46)
Additional disease outcome:
Lung cancer (30)

Uncertainty analysis Parameter uncertainty analyses
(second-order)

Deterministic sensitivity analysis (38, 41)
Probabilistic sensitivity analysis
x-times repeated model replications by Monte Carlo sampling from

the distributions/uncertainty ranges of the input parameters
100 times in (29)
1000 times in (17, 19, 20, 23, 26–28, 39, 42, 48)
10,000 times in (18, 24, 25, 30, 31, 38, 40, 41, 44, 46)
Not specified in (45)
x-times repeated model replications by Monte Carlo sampling from

the distributions of the input parameters, and from a different
sample of the synthetic population

1000 times in (21, 22, 34, 35)
2000 times in (32, 33, 37)
Copula functions (24)

Abbreviation: CVD, cardiovascular disease.

risk score framework, well-established risk prediction mod-
els. Risk prediction models, derived both from traditional
statistical methods (53–55) and machine learning techniques
(56, 57), are abundantly present in the literature, but often of
unknown value in MSM development because of the absence
of external validation, direct comparison with other models
on the relative predictive performance, or because they are
not yet tailored to local settings. Therefore, modeling the
individual disease risk via a risk score framework could
only be endorsed when validated risk prediction models
for the specific disease of interest are available. Also, the
modeling approach following a CRA framework is relying on
not only the available evidence of well-accepted risk factor–
health associations, but also the known disease incidence
in the population or when this could be estimated by, for

example, using multi-state life table models, such as the
WHO disease modeling software (DISMOD II). Modeling
results that give insights on the population disease burden,
health-care costs, and/or cost-effectiveness of a food policy
scenario through time are therefore highly dependent not
only on the underlying modeling assumptions, but also on
the data available from nationally representative surveys and
census statistics.

With the increasing application of MSMs in public health
food policy, it is important to judge a model’s accuracy
in making relevant predictions. In particular, the external
historical and external predictive validity are the most
aligned with the model’s purpose of providing the decision-
maker with insight into what would happen after imple-
mentation of certain food policy strategies. The external
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validation involves simulating events that have occurred
and examining to what extent results under the base-case
scenario correspond with observed/predicted event data.
When supporting decision-making, failure to predict future
trends is, however, not necessarily a concern, as policy
decisions are based on scenario comparisons cancelling out
systematic errors in absolute predictions. Still, because of the
increasing number of MSMs for diet and NCDs, between-
model comparisons—which involve comparing a model with
others and determining the extent to which they calculate
similar results—become increasingly important for judging
a model’s accuracy (58). Indeed, underlying methodological
assumptions might differ between MSMs evaluating health-
care costs or cost-effectiveness and those estimating the
disease burden. This is mainly because the former were
developed for that particular purpose of evaluating a specific
food policy scenario on a specific NCD outcome, while
the latter were fitted to provide a more detailed simulation
of individual risk factors and disease trajectories, including
accounting for diverse individual features affecting health.
This highlights the need for greater transparency in the
model development, application, and dissemination to ad-
vance and safeguard accuracy and the relevance of modeling
in informing public health.

In the counterfactual food policy scenario, individual
risks and associated transition probabilities were adjusted for
the effect estimates of the food policy impact on diet, and
subsequently the disease incidence and mortality, directly
and/or indirectly (i.e., mediated by changes in risk factors).
In all studies, it was noted that etiological effects of dietary
changes on the specific NCDs and risk factors were estimated
from robust meta-analyses. However, it is important to
consider that amongst the direct and/or mediated effects of
these dietary changes on NCDs, these changes could also
have an effect upon a wide range of health burdens that were
not modeled [e.g., a beneficial effect on productivity (59)
and cancer prevention (60)]. Moreover, targeting one food
group/nutrient is likely to change dietary intakes of other
food groups, resulting from compensatory or rewarding
behavior, as accounted for in some studies (18, 24, 25, 30,
39, 41). Also, that is why instead of focusing on the specific
food groups/nutrients targeted in the food policy strategy
of interest, some studies accounted for diet as a whole
to represent more likely, counterfactual dietary practices
with their influence on the onset of NCDs: for example,
using the (Alternative) Healthy Eating Index (24, 44, 45)
or the Mediterranean Dietary Score (46). Impacts of food
policy strategies on disease risks are, however, thought to
be conservative, because of the use of dietary survey data
that are prone to recall bias, socially desirable reports, and
underreporting of unhealthy foods (61).

In conclusion, MSMs have been applied to study the
impacts of food policy strategies on NCDs from 2010
onwards, with cost-effectiveness as a key outcome measure
of interest, and most models have been developed for the US
adult population. MSMs mimic individual health trajectories
over the life course, incorporating heterogeneity in food

policy effects. This allows for exploring the distributional
nature of a policy’s impact on the population’s health over
time, and thereby providing evidence to support timely
implementation in a cost-effective way. The output of every
model is, however, highly dependent on the best available
evidence on population characteristics and effect estimates
using publicly available data, and the set of assumptions
regarding the life course of the individuals simulated. It is
therefore important to accurately calibrate and validate the
models to the population dynamics they are supposed to
describe/simulate. In particular, the between-model compar-
isons become increasingly important for judging a model’s
accuracy as the number of MSMs increases. In line with
this is the need for good reporting practices and model
transparency: that is, the model developers should provide
sufficient information enabling researchers to evaluate model
performance before applying it for their purposes. This
would lead to continued improvement in methodologies for
developing and applying MSMs and, subsequently, a better
understanding of the results by policymakers.

Outlook
Incorporating a life-course approach and bringing additional
inputs into the MSM, such as early-life determinants and
current and potential future choices on key lifestyle fac-
tors, namely diet, physical activity, smoking, and alcohol
consumption, is key for disentangling the influences of and
the interplays between (early-life) lifestyle factors on the
progression to NCDs (62), and thus for identifying effective
early-life strategies to prevent and control NCDs in future
generations of adults (63).

Extending the model to specific populations, including
those in low- and middle-income countries where addressing
the rising burden of NCDs is a public health priority (64),
will allow for the evaluation of policy strategies in different
population subgroups or geographic locations instead of
running experimental trials in different resource settings.
The MSM’s ability in ex-ante evaluations of counterfactual
scenarios is, however, limited by the strength of causal
inferences available in the literature that were used to inform
model inputs.

In addition, integrating interactions within and between
individuals, populations, and the environment enables cal-
culations of the probabilities of events occurring through
the social and built environment, as applied in agent-based
simulation models for understanding who to target and how
best to target them (6, 65). The identification of cost-effective
and feasible policy strategies to improve population health
will be crucial to increase sensible use of resources, as well
as potential economic gains from increased productivity and
reduced health-care utilization.
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