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Thank you for the opportunity to respond to Professor Gins-
burg’s communication regarding our mBio paper on combi-

natorial cationic and oxidative stress in Candida albicans (1, 2). I
am writing on behalf of my coauthors, who have helped with and
aligned themselves with this response.

Our main goal in this study was to examine the responses of
C. albicans to cationic and oxidative stress (1). Most of our exper-
iments were performed in vitro using stressors and doses that have
been used historically in the field (3 and references therein). We
then tested the relevance to phagocytic attack. Professor Ginsburg
queries the nature of the oxidative and cationic stresses that we
employed. We imposed cationic and oxidative stress using Na�

and H2O2, respectively, to permit comparison with previous pub-
lications that have examined osmotic and oxidative stress re-
sponses in C. albicans by using these stressors. While K� is more
relevant to phagocytosis, it is worth remembering that Na� stress
is relevant to some host niches, such as the kidney. However, in
our study, we showed that catalase is inhibited by both K� and
Na� (Fig. 6B in reference 1).

Professor Ginsburg questions the physiological relevance of
the stress doses that we examined from the perspective of the
phagocyte. Previous studies indicate that C. albicans may be ex-
posed to relatively high concentrations of reactive oxygen species
(ROS) and cations in some host niches. In phagocytes, cation
concentrations have been reported to reach the 0.2 to 0.3 M range
(4). There are conflicting reports regarding ROS levels. Some
studies suggest that steady-state H2O2 levels may be relatively low
(e.g., 5), while others suggest that ROS might reach high local
concentrations within the phagosome during the oxidative burst
(4, 6). Frankly, because of the significant technological challenges
associated with making such dynamic measurements (7, 8), there
is a lack of detailed information about the maximal concentra-
tions to which fungal cells are exposed in phagocytes as a conse-
quence of the oxidative burst and cationic fluxes. Indeed, Winter-
bourne states, “We do not yet have probes that can quantify
cellular production of specific oxidants” (8). In our study, we ex-
amined the impact of combinatorial stress in vitro by using 5 mM
H2O2 and 1 M NaCl (1). We accept that these may lie outside
normal physiological ranges. However, we performed these mech-
anistic studies having first shown that the synergistic effects of
combinatorial oxidative and cationic stresses are observed over a
wide range of concentrations (Fig. 2 in reference 1).

Professor Ginsburg highlights the importance of the antimi-
crobial effects of hypochlorous acid. We did not examine this; it
would be interesting to do so. However, it is worth considering the
following points. As Professor Ginsburg points out, H2O2 is con-
verted to HOCl in the phagosome by myeloperoxidase (MPO).
However, myeloperoxidase is reported to be less active at the al-
kaline pHs (9, 10) that are reached in the phagosome during the
oxidative burst (11). Also, although the extent to which MPO

deficiency increases susceptibility to microbial infection is de-
bated in the field (a substantial proportion of individuals with
MPO deficiency are asymptomatic), it is clear that MPO defi-
ciency does not lead to the severe susceptibility to infections ob-
served in patients with chronic granulomatous disease, a disorder
of the phagocyte NADPH oxidase (12, 13).

We observed that ectopic catalase expression partially rescues
synergistic killing in vitro as well phagocytic killing ex vivo (1).
These findings, together with the observation that catalase-
deficient C. albicans cells are more susceptible to neutrophil killing
(14), support the idea that H2O2 detoxification mechanisms pro-
vide protection for C. albicans following phagocytosis. We also
observed that the phagocytic killing of fungal cells is attenuated to
similar extents by pharmacological inhibition of cationic fluxes or
the oxidative burst (Fig. 8A in reference 1). This is consistent with
our suggestion that the mechanisms of synergistic killing dissected
in vitro are relevant to phagocytic killing.

We did not use azide or aminotriazole to inhibit catalase inside
cells. These inhibitors are not specific for catalase. For example,
azide inhibits energy metabolism, which, interestingly, affects re-
sistance of C. albicans to antimicrobial peptides (15), and amino-
triazole induces the amino acid starvation response and filamen-
tation in C. albicans (16).

We are aware that the C. albicans catalase gene responds to
carbon source. Indeed, one of the citations quoted by Professor
Ginsburg was published by my group (17). Actually, we reported
this in an earlier paper (18). Of more relevance is the observation
that catalase gene expression is induced following phagocytosis by
PMNs (18, 19).

We remain convinced that C. albicans is exquisitely sensitive to
combinatorial cationic and oxidative stresses and that catalase
makes a significant contribution to this phenomenon. New lab
members have independently recapitulated the synergistic killing
as well as the impact of catalase obtained by using independently
generated mutants. Also, the major impact of such stresses on the
transcriptome has been reconfirmed by RNA sequencing as part of
a larger study of combinatorial stresses (in preparation). Our
study was limited to combinations of cationic and oxidative stress.
We did not examine other types of stress to which C. albicans cells
may be exposed following phagocytosis, such as antimicrobial
peptides (mentioned by Professor Ginsburg) or proteases and
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acidification. It would be interesting to examine other stress com-
binations. Indeed, we would be delighted if our study has encour-
aged others to examine the impact upon C. albicans of other types
of combinatorial stress.

In closing, my coauthors and I thank Professor Ginsburg for
his interest in our study and for his suggestions. However, we
strongly refute the suggestion that we have intentionally used un-
realistic amounts of reagents or intentionally disregarded key
published data.
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