

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(4-Bromophenyl)-1-(4-chlorobenzyl)-1*H*-pyrazole-5-carbaldehyde

Fu-Rong Li, Yu-Juan Zhang, Feng-Guang Guo, Gui-Yun Duan and Yan-Qing Ge*

Taishan Medical University, Tai an 271016, People's Republic of China Correspondence e-mail: ygge@yahoo.cn

Received 24 May 2012; accepted 15 June 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.036; *wR* factor = 0.104; data-to-parameter ratio = 15.8.

The title compound, C₁₇H₁₂BrClN₂O, was synthesized by [3-(4-bromophenyl)-1-(4-chlorobenzyl)-1Hoxidation of pyrazol-5-yl]methanol under mild conditions. The pyrazole ring makes dihedral angles of 3.29(9) and $74.91(4)^{\circ}$, respectively, with the bromophenyl and chlorophenyl rings.

Related literature

For applications of nitrogen-containing heterocyclic compounds in the agrochemical and pharmaceutical fields, see: Ge et al. (2007, 2009, 2011). For the biological activity of some pyrazole derivatives belonging to this class of compounds, see: Xia et al. (2007). For a related compound, see: Hao et al. (2012).

organic compounds

Experimental

Crystal data

C ₁₇ H ₁₂ BrClN ₂ O	$\gamma = 93.098 \ (5)^{\circ}$
$M_r = 375.65$	V = 782.8 (8) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 6.759 (5) Å	Mo $K\alpha$ radiation
b = 10.061 (5) Å	$\mu = 2.80 \text{ mm}^{-1}$
c = 12.263 (5) Å	T = 293 K
$\alpha = 109.080 \ (5)^{\circ}$	$0.18 \times 0.15 \times 0.14 \text{ mm}$
$\beta = 94.521 \ (5)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2005) $T_{\min} = 0.860, T_{\max} = 0.891$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.104$ S = 1.053151 reflections

200 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

4563 measured reflections 3151 independent reflections

 $R_{\rm int} = 0.013$

2410 reflections with $I > 2\sigma(I)$

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This study was supported by the Science and Technology Development Project of Shandong Province (2011GGH22112 and 2012 GSF11812).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2439).

References

- Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ge, Y.-Q., Dong, W.-L., Xia, Y., Wei, F. & Zhao, B.-X. (2007). Acta Cryst. E63, o1313-o1314.
- Ge, Y. Q., Hao, B. Q., Duan, G. Y. & Wang, J. W. (2011). J. Lumin. 131, 1070-1076
- Ge, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). Heterocycles, 42, 197-206. Hao, B.-Q., Xu, W.-R., Meng, F.-C. & Duan, G.-Y. (2012). Acta Cryst. E68, 0877.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xia, Y., Dong, Z. W., Zhao, B. X., Ge, X., Meng, N., Shin, D. S. & Miao, J. Y. (2007). Bioorg. Med. Chem. 15, 6893-6899.

supplementary materials

Acta Cryst. (2012). E68, o2203 [doi:10.1107/S1600536812027298]

3-(4-Bromophenyl)-1-(4-chlorobenzyl)-1H-pyrazole-5-carbaldehyde

Fu-Rong Li, Yu-Juan Zhang, Feng-Guang Guo, Gui-Yun Duan and Yan-Qing Ge

Comment

Synthesis of nitrogen-containing heterocyclic compounds has been a subject of great interest due to the wide application in agrochemical and pharmaceutical fields (Ge *et al.* 2007, 2009, 2011). Some pyrazole derivatives which belong to this category have been of interest for their biological activities (Xia *et al.*, 2007). Considerable efforts have been devoted to the development of novel pyrazole compounds. The title compound (Fig. 1) is a new pyrazole derivative, which was synthesized in order to study and compare its biological properties with other related compounds (Xia *et al.*, 2007). The title compound was screened for anticancer activities and found to be inactive. We report here the crystal structure of the title compound. The pyrazole ring makes dihedral angles of 3.29 (9) and 74.91 (4)°, respectively, with the bromophenyl and chlorophenyl rings. This conformation is close to that found in a related pyrazole derivative (Hao *et al.*, 2012).

Experimental

A mixture of (3-(4-bromophenyl)-1-(4-chlorobenzyl)-1H-pyrazol-5-yl)methanol (0.02 mol) and PCC (0.06 mol) in DMF (50 ml) was stirred for 3 h. After the starting material was consumed (monitored by TLC), the reaction mixture was poured into water (100 ml) and extracted with dichloromethane. The organic extracts were washed with water, dried, filtered and concentrated. The final product was isolated by column chromatography on silica gel (yield 72%). Crystals of the title compound suitable for X-ray diffraction were obtained by allowing a refluxed solution of the product in ethyl acetate (0.10 *M*) to cool slowly to room temperature (without temperature control) and allowing the solvent to evaporate for 3 days.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for the CH₂ group) and 0.93 Å (for aromatic CH); their isotropic displacement parameters were set to 1.2 times the equivalent displacement parameter of their parent atoms.

Computing details

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *XP* in *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted.

3-(4-Bromophenyl)-1-(4-chlorobenzyl)-1*H*-pyrazole-5-carbaldehyde

Crystal de	ata
------------	-----

$C_{17}H_{12}BrClN_2O$	Z = 2
$M_r = 375.65$	F(000) = 376
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.594 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71069$ Å
a = 6.759 (5) Å	Cell parameters from 5043 reflections
b = 10.061 (5) Å	$\theta = 0.9 - 28.3^{\circ}$
c = 12.263 (5) Å	$\mu = 2.80 \text{ mm}^{-1}$
$\alpha = 109.080 \ (5)^{\circ}$	T = 293 K
$\beta = 94.521 (5)^{\circ}$	Block, colourless
$\gamma = 93.098 \ (5)^{\circ}$	$0.18 \times 0.15 \times 0.14 \text{ mm}$
$V = 782.8 (8) Å^3$	
Data collection	
Bruker SMART APEX CCD area-detector	4563 measured reflections
diffractometer	3151 independent reflections
Radiation source: fine-focus sealed tube	2410 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.013$
φ and ω scans	$\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 4$
(SADABS; Bruker, 2005)	$k = -12 \rightarrow 11$
$T_{\min} = 0.860, \ T_{\max} = 0.891$	$l = -13 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
S = 1.05	H-atom parameters constrained
3151 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0602P)^2 + 0.068P]$
200 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
0 constraints	$\Delta ho_{ m max} = 0.50 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\min} = -0.43 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
	Extinction coefficient: 0.019 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	1.33740 (5)	-0.03239 (4)	-0.36464 (3)	0.07272 (18)
C1	0.2091 (4)	0.4007 (3)	0.0013 (3)	0.0622 (7)
H1	0.1666	0.4399	-0.0546	0.075*
C2	0.3841 (4)	0.3206 (3)	-0.0184 (2)	0.0488 (6)
C3	0.4976 (4)	0.2937 (3)	-0.1103 (2)	0.0486 (6)
H3	0.4800	0.3243	-0.1740	0.058*
C4	0.6443 (4)	0.2110 (2)	-0.0884 (2)	0.0439 (6)
C5	0.4145 (4)	0.2593 (3)	0.1680 (2)	0.0529 (6)
H5A	0.4587	0.1766	0.1837	0.063*
H5B	0.2711	0.2569	0.1693	0.063*
C6	0.5106 (4)	0.3908 (3)	0.2619 (2)	0.0476 (6)
C7	0.3960 (4)	0.4906 (3)	0.3274 (2)	0.0533 (7)
H7	0.2582	0.4783	0.3110	0.064*
C8	0.4806 (5)	0.6079 (3)	0.4166 (2)	0.0588 (7)
H8	0.4013	0.6738	0.4601	0.071*
C9	0.7135 (5)	0.4130 (4)	0.2855 (3)	0.0772 (10)
Н9	0.7940	0.3483	0.2415	0.093*
C10	0.7995 (5)	0.5311 (4)	0.3743 (3)	0.0867 (11)
H10	0.9374	0.5459	0.3893	0.104*
C11	0.6828 (5)	0.6255 (3)	0.4398 (2)	0.0606 (8)
C12	0.8084 (4)	0.1521 (3)	-0.1560 (2)	0.0449 (6)
C13	0.9331 (4)	0.0666 (3)	-0.1209 (2)	0.0580 (7)
H13	0.9110	0.0459	-0.0541	0.070*
C14	1.0906 (5)	0.0105 (3)	-0.1818 (3)	0.0624 (8)
H14	1.1735	-0.0465	-0.1562	0.075*
C15	0.8436 (5)	0.1785 (3)	-0.2571 (3)	0.0591 (7)
H15	0.7611	0.2351	-0.2835	0.071*
C16	0.9981 (5)	0.1229 (3)	-0.3193 (3)	0.0616 (7)
H16	1.0186	0.1408	-0.3875	0.074*
C17	1.1211 (4)	0.0411 (3)	-0.2803 (2)	0.0497 (6)
Cl1	0.79191 (16)	0.76908 (10)	0.55587 (7)	0.0864 (3)
N1	0.4642 (3)	0.2545 (2)	0.05291 (18)	0.0478 (5)
N2	0.6237 (3)	0.1883 (2)	0.01222 (19)	0.0482 (5)

01	0 11 40 (2)	0.4		0.082((2))	0.0795 (()		
01	0.1149 (3)	0.4	203 (3)	0.0836 (2)	0.0785 (6)		
Atomic	Atomic displacement parameters $(Å^2)$						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Br1	0.0582 (2)	0.0828 (3)	0.0653 (2)	0.01627 (16)	0.02256 (15)	0.00339 (16)	
C1	0.0485 (16)	0.0687 (18)	0.0609 (17)	0.0207 (14)	-0.0006 (14)	0.0088 (14)	
C2	0.0431 (14)	0.0466 (13)	0.0507 (14)	0.0101 (11)	0.0009 (11)	0.0079 (11)	
C3	0.0502 (15)	0.0489 (14)	0.0447 (14)	0.0116 (12)	-0.0003 (11)	0.0127 (11)	
C4	0.0457 (14)	0.0406 (12)	0.0438 (13)	0.0081 (10)	0.0052 (11)	0.0110 (10)	
C5	0.0530 (16)	0.0523 (15)	0.0565 (16)	0.0091 (12)	0.0201 (12)	0.0183 (12)	
C6	0.0464 (15)	0.0530 (14)	0.0476 (14)	0.0083 (11)	0.0178 (11)	0.0186 (12)	
C7	0.0535 (16)	0.0626 (17)	0.0469 (14)	0.0163 (13)	0.0160 (12)	0.0181 (13)	
C8	0.071 (2)	0.0601 (17)	0.0475 (15)	0.0200 (14)	0.0202 (13)	0.0154 (13)	
C9	0.0508 (18)	0.079 (2)	0.080 (2)	0.0106 (15)	0.0246 (16)	-0.0071 (17)	
C10	0.0503 (19)	0.100 (3)	0.088 (3)	-0.0059 (18)	0.0204 (17)	-0.001 (2)	
C11	0.076 (2)	0.0576 (16)	0.0471 (15)	-0.0060 (14)	0.0220 (14)	0.0137 (13)	
C12	0.0445 (14)	0.0426 (13)	0.0452 (13)	0.0060 (11)	0.0065 (11)	0.0107 (11)	
C13	0.0630 (18)	0.0687 (18)	0.0516 (15)	0.0275 (14)	0.0175 (13)	0.0263 (14)	
C14	0.0639 (18)	0.0686 (18)	0.0604 (17)	0.0303 (15)	0.0158 (14)	0.0232 (15)	
C15	0.0572 (17)	0.0703 (18)	0.0621 (17)	0.0221 (14)	0.0133 (14)	0.0345 (15)	
C16	0.0671 (19)	0.0727 (19)	0.0515 (16)	0.0130 (15)	0.0179 (14)	0.0254 (14)	
C17	0.0448 (14)	0.0493 (14)	0.0469 (14)	0.0064 (11)	0.0103 (11)	0.0035 (11)	
C11	0.1054 (7)	0.0785 (6)	0.0600 (5)	-0.0247 (5)	0.0211 (4)	0.0047 (4)	
N1	0.0454 (12)	0.0472 (11)	0.0491 (12)	0.0106 (9)	0.0109 (9)	0.0115 (10)	
N2	0.0470 (12)	0.0473 (12)	0.0527 (13)	0.0162 (9)	0.0148 (10)	0.0156 (10)	
01	0.0548 (13)	0.1008 (17)	0.0737 (15)	0.0337 (12)	0.0132 (11)	0.0150 (13)	

supplementary materials

Geometric parameters (Å, °)

Br1—C17	1.900 (3)	C8—C11	1.363 (4)
C101	1.203 (4)	C8—H8	0.9300
C1—C2	1.459 (4)	C9—C10	1.384 (5)
C1—H1	0.9300	С9—Н9	0.9300
C2—N1	1.358 (3)	C10—C11	1.361 (5)
C2—C3	1.376 (4)	C10—H10	0.9300
C3—C4	1.393 (4)	C11—C11	1.741 (3)
С3—Н3	0.9300	C12—C13	1.378 (4)
C4—N2	1.342 (3)	C12—C15	1.385 (4)
C4—C12	1.471 (4)	C13—C14	1.387 (4)
C5—N1	1.462 (3)	C13—H13	0.9300
C5—C6	1.514 (4)	C14—C17	1.368 (4)
С5—Н5А	0.9700	C14—H14	0.9300
С5—Н5В	0.9700	C15—C16	1.377 (4)
С6—С9	1.370 (4)	C15—H15	0.9300
C6—C7	1.382 (4)	C16—C17	1.365 (4)
С7—С8	1.379 (4)	C16—H16	0.9300
С7—Н7	0.9300	N1—N2	1.342 (3)
O1—C1—C2	125.6 (3)	С10—С9—Н9	119.8

O1—C1—H1	117.2	C11—C10—C9	120.2 (3)
C2—C1—H1	117.2	C11—C10—H10	119.9
N1—C2—C3	106.4 (2)	С9—С10—Н10	119.9
N1—C2—C1	125.1 (3)	C10—C11—C8	120.7 (3)
C3—C2—C1	128.5 (3)	C10-C11-C11	119.8 (3)
C2—C3—C4	105.7 (2)	C8—C11—Cl1	119.5 (2)
С2—С3—Н3	127.1	C13—C12—C15	117.2 (2)
С4—С3—Н3	127.1	C13—C12—C4	120.7 (2)
N2—C4—C3	110.4 (2)	C15—C12—C4	122.1 (2)
N2—C4—C12	119.5 (2)	C12—C13—C14	122.3 (3)
C3—C4—C12	130.0 (2)	С12—С13—Н13	118.9
N1—C5—C6	111.9 (2)	C14—C13—H13	118.9
N1—C5—H5A	109.2	C17—C14—C13	118.4 (3)
С6—С5—Н5А	109.2	C17—C14—H14	120.8
N1—C5—H5B	109.2	C13—C14—H14	120.8
С6—С5—Н5В	109.2	C16—C15—C12	121.4 (3)
H5A—C5—H5B	107.9	C16—C15—H15	119.3
C9—C6—C7	118.2 (3)	C12—C15—H15	119.3
C9—C6—C5	120.9 (2)	C17—C16—C15	119.6 (3)
C7—C6—C5	120.9 (3)	C17—C16—H16	120.2
C8—C7—C6	121.7 (3)	C15—C16—H16	120.2
С8—С7—Н7	119.2	C16—C17—C14	121.1 (3)
С6—С7—Н7	119.2	C16—C17—Br1	119.5 (2)
C11—C8—C7	118.8 (3)	C14—C17—Br1	119.4 (2)
С11—С8—Н8	120.6	N2—N1—C2	111.8 (2)
С7—С8—Н8	120.6	N2—N1—C5	118.3 (2)
C6—C9—C10	120.4 (3)	C2—N1—C5	129.5 (2)
С6—С9—Н9	119.8	N1—N2—C4	105.6 (2)