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Purpose: Cochlear implants (CIs) enable children with severe and profound hearing
impairments to perceive the sensation of sound sufficiently to permit oral language
acquisition. So far, studies have focused mainly on technological improvements
and general outcomes of implantation for speech perception and spoken language
development. This study quantitatively explored the organization of the semantic networks
of children with CIs in comparison to those of age-matched normal hearing (NH) peers.

Method: Twenty seven children with CIs and twenty seven age- and IQ-matched NH
children ages 7–10 were tested on a timed animal verbal fluency task (Name as many
animals as you can). The responses were analyzed using correlation and network
methodologies. The structure of the animal category semantic network for both groups
were extracted and compared.

Results: Children with CIs appeared to have a less-developed semantic network structure
compared to age-matched NH peers. The average shortest path length (ASPL) and
the network diameter measures were larger for the NH group compared to the CIs
group. This difference was consistent for the analysis of networks derived from animal
names generated by each group [sample-matched correlation networks (SMCN)] and
for the networks derived from the common animal names generated by both groups
[word-matched correlation networks (WMCN)].

Conclusions: The main difference between the semantic networks of children with CIs
and NH lies in the network structure. The semantic network of children with CIs is
under-developed compared to the semantic network of the age-matched NH children. We
discuss the practical and clinical implications of our findings.
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INTRODUCTION
Cochlear Implantation (CI) has been the procedure of choice in
the last quarter of a century for successful treatment of profound
sensorineural hearing loss (Balkany et al., 2002). Over the years,
approval for age of implantation has dramatically dropped, up to
children in their first year of life (Peterson et al., 2010; Von Ilberg
et al., 2011). Very young implantation brought expectations for
children with CIs to develop language within normal-age lim-
its. However, although early implantation generally yields good
progress, many children with CIs still do not reach age equivalent
language capabilities. In fact, this population shows great variance
in their language performance, variance which is believed to result
from factors that interact and effect language development trajec-
tories in an unpredictable manner (Schwartz et al., 2013). Thus,
it is difficult to predict children with CIs language development

outcome (Geers et al., 2007). Several studies have demonstrated
delays in lexical development in children with CIs post implan-
tation (i.e., Blamey et al., 2001; Le Normand et al., 2003). For
example, Walker and McGregor (2013) demonstrated deficits in
word learning processes in a group of young early implanted chil-
dren (ages of 3; 6–6; 9). Since It is important to gain insight
into the specific characteristics of the diverse language aspects
in children with CIs (Boons et al., 2012) and since recent find-
ings suggest that toddlers’ abilities to associate speech sounds with
objects or to learn novel words are more strongly related to vocab-
ulary development than to speech perception abilities (Schwartz
et al., 2013), we examine the semantic organization of the lexi-
con in children with CIs. The research presented here is the first
quantitative analysis of the semantic level of children with CIs,
compared to that of age-matched normal hearing (NH) peers.
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While most behavioral examination of language develop-
ment in children with CIs post implantation point to high
rates of improvement [using measures such as the Reynell
Developmental Language Scales (Svirsky et al., 2000), Peabody
Picture Vocabulary Test (PPVT; Dunn and Dunn, 1981, 1997),
Clinical Evaluation of Language Fundamentals (CELF; Semel
et al., 1995), Mean Length of Utterance (MLU; Blamey et al.,
2001), and steeper rates of post operatives language measures
(Dawson et al., 1995)], research indicates that many children with
CIs may never reach full language capabilities as their NH peers
(Peterson et al., 2010; Von Ilberg et al., 2011). The reasons for
this are: limited auditory experience during the sensitive periods
for normal language development, lack of audition in the period
prior to implantation or limited auditory input provided by the
implant (Peterson et al., 2010). Yet, much is unknown regard-
ing the large variance in language development post implantation.
For example, research conducted by Ouellet and colleagues ana-
lyzed the vocabulary exhibited by children with CIs implanted at
the age range of 22–76 months (Ouellet et al., 2001; Le Normand
et al., 2003). These authors found that children with CIs were
delayed in vocabulary development compared to age matched NH
peer norms, but did follow typical developmental stages of lan-
guage acquisition. Furthermore, Geers et al. (2003) analyzed a
large sample of children with CIs and found, in a battery of lan-
guage tests, that only about half of the children in the study, which
were expected to develop language within the normal range,
showed language abilities comparable with that of hearing age
mates.

While studies examining language in children with CIs using
standardized, omnibus language tests provide important infor-
mation on the effectiveness of implantation, they cannot explain
why many children do not achieve age-appropriate language
capabilities. It is unclear whether the poorer lexical abilities pre-
sented by some children with CIs are a result of poor lexical
representation, or merely a by-product of their phonological
deficit. In light of the lack of research on semantic development of
CI subjects, such research is of value. In addition, examinination
of the CI population offers a unique and unequaled opportu-
nity to investigate processes of language development, due to the
fact that these subjects present pure cases of incomplete language
development that are related to auditory deprivation. As such,
they provide a uniqiue opportunity to study many unanswered
questions regarding language development.

Investigating the more specific mechanisms of language pro-
duction in children with CIs, Wechsler-Kashi et al. (2013) exam-
ined lexical organization, using verbal fluency task in a group
of implanted children and an age- and IQ- matched group of
NH peers. Children with CIs generated significantly fewer words
compared to the NH group on semantic (i.e., in 1 min, name all
the animals you can think of) and phonological (i.e., in 1 min,
name all words that start with the sound f ) verbal fluency tasks.
To date, there are no other reported studies referring specifically
to the semantic level of processing or semantic representations
in the CI population (see Schwartz et al., 2013 for more recent
research). Wechsler-Kashi et al. (2013) show that children with
CIs seem to access words in semantic and phonological categories
less efficiently than NH peers. These differences were linked to

differences in lexical representations, capacity or organization.
These differences might derive from delays in lexical development
(learning words for categories) or reflect phonological mediation
on access to semantic information. Yet, the specific underlying
mechanism responsible for these differences remains unknown.
Is it a result of auditory issues, resulting in a smaller mental lex-
icon, or can the difference in lexical access of children with CIs
shown by Wechsler-Kashi et al. (2013) be a result of deficits in the
semantic memory level of this population? In order to address
this issue, investigation of the semantic memory organization in
children with CIs compared to NH peers is required. As Cleary
(2009) suggested, this is an understudied, yet promising, area of
research in children with hearing impairments.

Semantic memory is the system of human memory that stores
concepts and facts, regardless of time or context. As a stricter
definition, semantic memory is responsible for the storage of
semantic categories and of natural and artificial concepts (Budson
and Price, 2005; Patterson et al., 2007). How semantic memory is
organized, and more specifically, which words are close to oth-
ers and how this system is organized into subcategories, remains
an open question (Rogers, 2008). Over the years, many different
models have been suggested in attempt to model the organiza-
tion of knowledge, yet to date, no one unifying model exists
(see Rogers, 2008 for an extensive review). Recently, a growing
amount of research in neurocognitive domains is being con-
ducted through the use of computational network tools (graph
theory based) mainly founded on the Small World Network
model (SWN; Milgram, 1967; Watts and Strogatz, 1998). The use
of such tools, based on the SWN model, in language research
is developing and has already provided many unique insights
into the nature of language processing and the organization of
knowledge (Borge-Holthoefer and Arenas, 2010).

The basic components of a SWN are sub-clusters of nodes and
relatively short path lengths (number of edges connecting two
nodes in the network). Two main characteristics of SWNs are
the networks clustering coefficient (CC) and its average short-
est path length (ASPL). The CC refers to the probability that two
neighbors (a neighbor is a node j that is connected through an
edge to node i) of a randomly chosen node will themselves be
neighbors. The ASPL refers to the average shortest amount of
steps (nodes being traversed) needed to be taken between any
two pair of random nodes. A SWN is characterized by having a
large CC and a short ASPL. This model has successfully described
a wide range of sociological, technological, biological and eco-
nomical networks (Boccaletti et al., 2006; Cohen and Havlin,
2010; Kenett et al., 2010, 2012; Newman, 2010; Madi et al., 2011;
Bransburg-Zabary et al., 2013). Furthermore, a rapidly growing
body of neuroscientific research demonstrates and investigates the
SWN features of the anatomical and functional levels of the brain
(Sporns, 2011; Stam and van Straaten, 2012). The use of such
network tools in cognitive domains is growing rapidly, mainly to
investigate the complex system of language and memory struc-
ture (Vitevitch, 2008; Chan and Vitevitch, 2010; Vitevitch et al.,
2012; see Baronchelli et al., 2013 for a recent review). In the lin-
guistic domain, lexicons of different languages seem to display
SWN characteristics, and is considered to be a fundamental prin-
ciple in lexical organization. This type of organization allows for
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fast search and retrieval of information, thus capturing the core
properties of semantic networks (Steyvers and Tenenbaum, 2005;
Borge-Holthoefer and Arenas, 2010; Kenett et al., 2011).

Recently, the use of network tools in neurocognitive research
has expanded into new fields, such as clinical populations and
developmental research. The application of such tools in clini-
cal populations, suffering from psychiatric or neuropsychological
disorders, aims at examining such disorders via network tools, to
provide quantitative observations that can be applied, empirically
and clinically, to these populations (for a recent review, see Stam
and van Straaten, 2012). Mota et al. (2012), for example, used a
network based approach to study the speech produced by psy-
chotic and schizophrenic patients, by creating “speech graphs”
for each clinical population (Mota et al., 2012). They showed,
for the first time, that a quantitative analysis of these speech
graphs can differentiate between these two populations, provid-
ing valuable clinical information not measured by classical clinical
measurements.

Applying such tools in developmental research made it pos-
sible to study the development of brain structure of children in
their first years of life. The research has shown that as the brain
develops, it re-organizes itself from a SWN state toward a more
structured topology of brain networks (Boersma et al., 2011; Fan
et al., 2011; Yap et al., 2011). For example, Boersma et al. (2011)
made use of complex network tools to conduct a longitudinal
examination of the development of EEG bands in resting state
EEGs of 5-year-old children compared to 7-year-old children. The
authors report an increase in CC and ASPL in all EEG bands mea-
sured, as children got older. This transition, from SWN toward
structured networks, has also been demonstrated in an investiga-
tion of white matter pediatric development during the first year of
life (Yap et al., 2011). From a cognitive perspective, network tools
are being applied to examine language acquisition and new word
learning mechanisms (Steyvers and Tenenbaum, 2005; Hills et al.,
2009a,b). Hills et al. (2009a) applied network tools to investigate
the developmental growth of early noun networks and examine
the learning principles applied in such noun networks. As such,
developmental computational research sheds new light on the
nature of early brain organization, highlighting the importance
of a transition from an initial SWN state in early brain networks
toward a more structured, organized state.

As the amount of studies implementing network tools in clin-
ical population research and the developing brain grow, research
using computational tools to examine clinical issues of the devel-
oping brain is starting to emerge. Beckage et al. (2011) explored
the difference in semantic networks of typically developing chil-
dren and late-talking children. Although the semantic network of
typically developing children exhibits SWN properties at as early
as 15 months of age, late-talkers exhibit these SWN properties to
a much lesser extent. As such, applying network tools to investi-
gate the semantic organization of children with CIs may elucidate
whether the poorer linguistic performance exhibited by children
with CIs is related to their semantic network organization or it
is purely phonological in nature. Specifically, can network tools
shed further light on the performance of children with CIs in
the verbal fluency research, conducted by Wechsler-Kashi et al.
(2013)?

The verbal fluency task is widely used in neuropsychological
and cognitive research (Ardila et al., 2006). In semantic verbal
fluency tasks, subjects are required to generate words from a cer-
tain category (such as fruits or animals) in a certain amount
of time (usually 60 s). While different semantic categories have
been used for this task, the animal category is the most widely
used, as it is more universal in its nature, with only minor differ-
ences found across different languages and cultures (Ardila et al.,
2006). Although this task is easy to explain and conduct, it actu-
ally conveys a complex cognitive process. According to the main
cognitive theory of the verbal fluency task, this cognitive process
is comprised of two different processes—clustering and switch-
ing (Troyer et al., 1997, 1998; Troyer, 2000). Clustering refers to
retrieving words within a subcategory. Switching refers to the pro-
cess of switching from one subcategory, when the retrieval from
this subcategory is exhausted, to a new subcategory. For example,
in the animal category, clustering produces semantically related
words (i.e., dog–cat) and switching allows jumping to a new ani-
mal subcategory (i.e., cat–dolphin) (see Troyer, 2000 for semantic
subcategories norms).

While the verbal fluency task provides an efficient way to
investigate semantic memory organization (easy task to conduct,
yet provides rich information) scarce network research has so
far been conducted on this task. This is due to the random
nature of both the retrieval exhaustion of subcategories, and the
switching process between subcategories. A pioneer research con-
ducted by Goni et al. (2010b) developed a search algorithm in
an attempt to model this process. Their algorithm is based on a
random walk through a cluster of nodes, combined with switch-
ing to any other nodes with a certain probability, based on the
Markov chains approach. Though the authors prove the feasi-
bility of their approach, they acknowledge that their approach
is not optimal. Currently there are two main studies attempting
to computationally investigate the animal category organization
expressed in this task. Lerner et al. (2009) investigated whether
network analysis of the animal category fluency data can pro-
vide further evidence to the change in semantic organization
between normal controls, persons with mild cognitive impair-
ment and persons suffering from Alzheimer’s disease. In their
networks, nodes represented animal names generated by each
of the three groups, and links between nodes were drawn sim-
ply based on whether these two nodes were named in succession
by at least one subject. The results of this research revealed that
the semantic network of the animal category of persons suffer-
ing from AD has a higher CC, shorter ASPL and a lower amount
of low-frequency nodes. This work is the first network analy-
sis of a verbal fluency task, supporting the fruitfulness of such
research. Taking a more rigorous statistical approach, Goni et al.
(2010a) analyzed the semantic organization of the animal cate-
gory in a large sample of Spanish and English speaking subjects. In
order to provide a statistical approach to determine link drawing
between nodes, these authors developed a statistical framework
based on the co-occurrence of animal words generated by their
sample. While their method provides a more quantitative method
to infer subcategory organization of the animal category, their
method relies on a complex statistical method to predict links
between nodes.
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The present research introduces a new method to quantita-
tively analyze the verbal fluency task based on the correlation
between word profiles generated by the sample. Our approach
takes into account the individual random exhaustion of subcat-
egories, based on subject responses. In this approach, we assume
a general organization into subcategories, even if not completely
exhausted by an individual subject. For example, if one subcate-
gory of the animal category is household pets, includes cat, dog,
etc., than when retrieving from this subcategory the word dog, it
is likely that the word cat will also be retrieved. Thus, we expect
a high correlation score between the appearance of the word dog
and the appearance of the word cat in our sample—participants
who generate the animal word dog, are likely to also generate the
animal word cat.

In the present study we conduct the first quantitative research
on the semantic network of children with CIs, by quantita-
tively comparing the semantic network of these children with the
semantic network of their normal age-matched hearing peers.
To this end, we analyzed the results of a verbal fluency task
(Wechsler-Kashi et al., 2013), in order to construct the semantic
networks of both CI and NH groups. Analyzing the properties of
these semantic networks allowed us to identify and quantify the
difference between these two groups.

METHOD
The data analyzed in this research was gathered by Wechsler-Kashi
et al. (2013). In the present research we analyzed only the ani-
mal category task of the VF experiment. In this task, subjects had
to generate as many names of animals they could think of, in
1 min. Their responses were recorded and later on analyzed on
various parameters (Wechsler-Kashi et al. (2013) for a complete
description).

PARTICIPANTS
Fifty-four subjects aged 7–10 were included in the analysis.
All participants underwent language screening via the Clinical
Evaluation of Language Fundamentals (CELF-3; Semel et al.,
1995). In addition, the Test of Non-verbal Intelligence (TONI 3;
Brown et al., 1997) was administered to NH and CI subjects. Only
NH children who passed both a hearing screening (described
below) and the CELF language screening were included. All chil-
dren included in the analysis had normal IQ scores (above 80 on
TONI non-verbal intelligence test). English was the native and
primary language of all children tested.

Twenty-seven NH children (ages 7; 0–10; 8, M = 8; 9, SD =
1.12) were included. Seventeen were girls and 10 were boys. Their
average TONI score was 109.3 (SD = 10.2). The inclusion crite-
ria for hearing participants were: no parentally reported history
of speech or language deficits, no reported neurological or emo-
tional disorders and no known visual impairments that cannot
be corrected by glasses. All hearing children underwent an audi-
ological screening before initiating the actual experiments. This
screening was conducted at 20 dB in frequencies 500, 1000, 2000,
and 4000 Hz. Two responses were required in each frequency in
each ear in order to pass the hearing screening.

Twenty-seven children with CIs (ages 7; 0–10; 8, M = 8; 9,
SD = 1.11) were included. Eleven were girls and 16 were boys.

Their average TONI score was 109.7 (SD = 11.5). CI partici-
pants had severe to profound bilateral sensori-neural hearing loss
diagnosed before the age of 3 years, with at least 6 months of expe-
rience with CI prior to participation in this study. Nine children
used one CI device in one ear only (right or left), 10 had bilat-
eral implants, and 8 had a combination of a CI in one ear and
a hearing aid in the other (bi-modal amplification). None of the
children included in the analysis had a history of infections or
device failure that had caused non-use of the CI for a long period
of time. All the children in the CI group were users of oral com-
munication or total communication. The children with CIs were
asked to use the typical setting for their CI(s) and hearing aid.

DATA PREPARATION
In order to analyze the data, we converted the responses for each
group into data matrices. This matrix was constructed such that
each row contains all answers of a single (CI or NH) subject, and
each column is a unique animal name given by the entire sample.
Each cell, therefore, denotes whether a subject i generated animal
word j or not, in a binary manner— “1” indicating that subject
i generated animal noun j, and a “0” indicating that he/she did
not. The NH participants, as a group, named 132 different ani-
mal names, and the CI participants named 106 different animal
names. In this sense, the analysis resulted in a 27 (subjects) × 132
(animal words) matrix for the NH group and a 27(subjects) ×
106 (animal words) matrix for the CI group.

WORD CORRELATIONS
The first step in constructing the semantic networks was calculat-
ing correlations between the responses to the verbal fluency task.
These correlations convey the relation between two word profiles
(the responses of a specific word by all subjects; e.g., cat and dog),
and were calculated by Pearson’s formula:

C(i, j) = (Xi − μi)(Xj − μj)

σiσj
(1)

Where xi and xj are the response profile of words i and j, and σi

and σj are the STD of the response profiles of words i and j. Note
that the word-word correlations (or in short, word correlations)
for all pairs of words define a symmetrical matrix, in which each
(i, j) element is the correlation between words i and j.

CORRELATION BASED SEMANTIC NETWORKS
The word correlation matrix can be studied in terms of an adja-
cency matrix of a weighted, undirected network. In this approach,
each word is a node in the network, and an edge (link) between
two nodes (words) is the correlation between them, with the
correlation value being the weight of that link. Thus, the word
correlation matrix represents a fully connected weighted network
in which nodes represent words, and links represent the cor-
relations between words. This representation can be filtered to
uncover the most meaningful information about the network.
Here we used the Planar Maximally Filtered Graph (PMFG)
method to this end (Tumminello et al., 2005; Kenett et al., 2011).
Since we were primarily interested in the structure of the net-
works, we binarized the networks (by converting all edges to a
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uniform weight = 1) and analyzed the networks as unweighted,
undirected networks.

Because these word correlation networks are based upon
matched sample size for both groups—children with CIs and NH
children, we define these word correlation networks as Sample-
Matched Correlation Networks (SMCN). In order to remove any
sample size bias, we also added a second analysis, in which we
analyzed data from both groups, based on common target animal
words given by both groups, by at least two subjects in each group.
This resulted in 75 common animal words, generated by both
groups. We define these networks as Word-Matched Correlation
Networks (WMCN). This process enabled us to quantitatively
compare the differences between the networks.

The network parameter calculations (for both SMCNs and
WMCNs) were performed with the Brain Connectivity Toolbox
for Matlab (Rubinov and Sporns, 2010). The network parame-
ters calculated were the CC, the ASPL (L), the network’s diameter
(D), and the mean degree number (<k>) (Boccaletti et al., 2006).
To examine the network’s CC and ASPL, a random network was
created with the same number of nodes and edges. The clus-
tering coefficient (CCrand) and ASPL (Lrand) of these random
networks were calculated. Finally, the small-world-ness measure
(S; Humphries and Gurney, 2008) was calculated to quantitatively
examine the small-world nature of the network. This measure
examines the trade-off between the networks CC and its ASPL
and is the first quantitative measure established for quantifying
the “small-world-ness” feature of a specific network. Using this
measure, any S-value larger than 1 (S > 1) defines the network
as a SWN.

Finally, the WMCNs allow us to quantitatively compare the CI
and NH networks. To this end, we make use of the word-centrality
concept (Kenett et al., 2011) to quantify the importance of each
word (node) in the network. Thus, in the network, a word impact
score of node i is defined as the difference between the ASPL of
the network when removing word i, with the ASPL of the full
network:

WC(i) = 〈SP(A /∈ i)〉 − 〈SP(A)〉 (2)

Where A represents the network adjacency matrix, and 〈SP〉
is the ASPL of the network. Hence, this impact score
indicates the centrality, or importance, of a word i in
the network.

RESULTS
SAMPLE-MATCHED CORRELATION NETWORKS
We began the analysis by constructing the SMCN from the
word correlation matrix, using the PMFG filtering process. Then,
the different SWN properties of the SMCNs were calculated
(Table 1).

These results show that both SMCNs are SWNs. The CC for
both networks was much higher than those of their matched
random networks. Furthermore, the small-world-ness measure
also indicated that both networks are SWN (S > 1). The results
reveal that the NH-SMCN is more spread out than the CI-SMCN:
The NH-SMCN diameter is larger than that of the CI-SMCN
(DNH = 16 > DCI = 11); the CC of the NH-SMCN is lower than

Table 1 | Summary of results of sample-matched correlation

networks analysis.

Parameter NH CI

N 132 106

L 6.15 4.69

D 16 11

CC 0.66 0.67

< k > 5.91 5.89

CCrand 0.05 0.05

Lrand 2.93 2.76

S 6.57 7.83

N, number of nodes in the network; L, average shortest path length; D, diameter;

CC, clustering coefficient; <k>, mean degree; CCrand, clustering coefficient of

random graph; Lrand, average shortest path length of random graph; S, small-

world-ness measure.

that of the CI-SMCN, indicating that the CI-SMCN is more con-
densed than the NH-SMCN (CCNH = 0.66 < CCCI = 0.67) and
the ASPL of the NH-SMCN which is larger than that of the CI-
SMCN ASPL, indicating that the NH-SMCN is more disperse
than the CI-SMCN (LNH = 6.15 > LCI = 4.69). Finally, while
the CI-SMCN has fewer nodes than the NH-SMCN (106 nodes vs.
132 nodes), it has a larger small-world-ness score (SNH = 6.57 <

SCI = 7.83). This difference in network structure is further evi-
dent in a visual presentation of the SMCNs (Figure 1), which
was done using the Cytoscape software (Shannon et al., 2003).
Altogether, by visually and quantitatively examining the under-
lying representation of both SMC networks, it is apparent that
there is a difference in structure, with the NH-SMCN being more
spread out than the CI-SMCN.

This difference between the two networks might be affected
by the difference in size of the two network (106 nodes for
the CI-SMCN, compared to 132 nodes for the NH-SMCN) or
by the different words constituting the two networks (as both
group’s generated somewhat different animal words). In order
to eliminate these possible confounds, and in order to com-
pare the semantic networks of both groups, we constructed
a WMCN for each group. These WMC networks are com-
prised of only the common words generated by both groups
(75 words). If the semantic networks of both groups are simi-
lar, we do not expect any differences in their semantic network
statistics.

WORD-MATCHED CORRELATION NETWORKS
We calculated both WMCNs, in the same method described
above. We then calculated the different SWN measures of the
WMCNs (Table 2). The results show that both WMCNs are SWN.
The CC for both networks is much higher than that of their
matched random networks. In addition, the small-world-ness
measure indicates that both networks have SWN characteristics.
If both networks were similar, we would not expect any differ-
ences in their SWN parameters, which is clearly not the case.
Similar to our findings for the SMC networks analysis, the two
groups seem to differ in their network structure. This can be seen
visually (Figure 2), and is also supported quantitatively by the
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FIGURE 1 | 2D visualization of Sample-Matched correlation networks for the NH group (A) and the CI group (B).

Table 2 | Summary of results of word matched correlation networks

analysis.

Parameter NH CI

N 75 75

L 4.30 3.52

D 9 7

CC 0.67 0.65

< k > 5.84 5.84

CCrand 0.06 0.06

Lrand 2.59 2.57

S 6.80 7.06

N, number of nodes in the network; L, average shortest path length; D, diameter;

CC, clustering coefficient; < k >, mean degree; CCrand, clustering coefficient of

random graph; Lrand, average shortest path length of random graph; S, small-

world-ness measure.

parameters measured (Table 2). Results of WMC networks analy-
sis indicate that the two groups differ in their diameter and ASPL,
indicating that the NH-WMC network is more spread out than
the CI-WMC network, thus replicating the findings of the SMCNs
analysis.

By calculating the WMC networks that are composed of the
same words generated by both groups, we can further examine
the difference between the semantic networks of both groups.

This was done by three different statistical analyses: first, we
generated a large sample of random networks with the same
number of nodes and edge probability between nodes as in the
WMC networks. This was done to examine whether the net-
work measures calculated for the WMCNs do not result from a
null-hypothesis random network. Second, we used the bootstrap
method (Efron, 1979) to generate partial WMCNs and exam-
ined the difference between the network measures distribution
between these two bootstrapped partial WMCNs. This was done
in order to examine whether the statistical measures computed
for the WMCNs reliably signify marked differences between the
two networks. Finally, we measured word centrality—calculating
the impact score of each node (word) in the network for
both WMC networks and then compared the results of each
group.

NETWORK VALIDATION
To validate the topological properties of the networks, and more
important, the topological differences between the NH and CI
groups, we use two complementing validation methodologies:

Simulation of random networks
Here we examine the statistical measures calculated for both
WMC networks, and test that they do not result from a null-
hypothesis of a random network. To this end, we generate a large
sample of random networks with a fixed edge probability and

Frontiers in Psychology | Language Sciences September 2013 | Volume 4 | Article 543 | 6

http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences/archive


Kenett et al. CI semantic networks

FIGURE 2 | 2D visualization of word-match correlation networks for the NH group (A) and the CI group (B).

compare the WMCN topological measures to the values resulting
from the bootstrapped simulations.

To conduct this analysis, we first generated an Erdos-Renyi
(Boccaletti et al., 2006; Cohen and Havlin, 2010) random net-
work, with the same number of nodes as of the WMCNs, and
with the same probability for an edge to be drawn between two
nodes. For this random network, the three main network mea-
sures (CC, D, L) were calculated. This process was simulated with
10,000 realizations of the network, and resulted with a reference
bootstrapped distribution for each network measure. The empir-
ical values are then compared against their reference distribution
to evaluate their statistical significance. This analysis revealed that
for both of the WMC networks, all three network measures were
statistically significant (all p’s < 0.001; Table 3).

Bootstrapped partial WMCNs
To examine whether the statistical measures computed for both
networks reliably signify a marked difference between them, we
made use of the bootstrap method (Efron, 1979) to simulate
random partial WCMN networks for both NH and CI groups
and compared these networks. This was done for two reasons:
(1) if the two WMC networks truly differ from each other, then
any sub-network consisting of the same nodes in both networks
should also be different and (2) the bootstrap method enables
the generation of many simulated partial WMC networks, allow-
ing us to statistically examine the difference between the two
networks.

In order to conduct our statistical analysis of bootstrapped
partial WMC networks, we randomly chose 40 words (nodes) out
of the entire 75 words comprising the WMCNs, then constructed
for each group separately their partial WMCNs of these random
40 words, and for each such partial WMCN computed their L, D,

Table 3 | Summary of results for simulated random network

distribution analysis.

Parameter NH CI SRN

L 4.3 3.52 2.58 (0.08)

D 9 7 5 (0.5)

CC 0.67 0.65 0.08 (0.01)

L, average shortest path length; D, diameter; CC, clustering coefficient; NH, NH-

WMC network; CI, CI-WMC network; SRN, simulated random network.

and CC measures. This process was simulated with 10,000 real-
izations, and resulted in 10,000 samples of partial WMC networks
for groups and their L, D, and CC measures. An independent sam-
ple t-test analysis was conducted to investigate for each network
measure the difference between both bootstrapped partial WMC
networks (Table 4). This analysis revealed a significant difference
between the two distributions for all three network measures (all
p’s < 0.001). Thus, while these differences are numerically small,
they are significantly different and replicate the main findings—
the diameter and the ASPL of the NH network is larger than that
of the CI network.

WORD CENTRALITY
The search for words that have a significant importance in a
semantic network can be conducted with network tools. In net-
work theory, the importance of a node is quantified using differ-
ent measures, such as the betweeness-centrality or the eigenvalues
centrality measures (Boccaletti et al., 2006). Here we used the
word centrality measure (Kenett et al., 2011). This measure quan-
tifies the impact of a certain node i on the network, defined as the
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Table 4 | Summary of results of bootstrapped partial word matched

correlation networks analysis.

Parameter NH CI

L 2.96 (0.24) 2.94 (0.24)

D 3.60 (0.57) 3.56 (0.57)

CC 0.667 (0.02) 0.668 (0.02)

L, average shortest path length; D, diameter; CC, clustering coefficient; NH, par-

tial NH-WMCN distribution; CI, partial CI-WMCN distribution. Values represent

distribution mean value. The difference between L, D, and CC measures for both

partial networks is significantly different (all p’s < 0.001).

difference between the ASPL of the network after removing node
i with the ASPL of the full network.

In order to investigate the impact of a given word i in
both WMC networks, we iteratively removed each word from
the sample, and recalculated the WMC network and the ASPL
of the network without this specific word, and then calcu-
lated the impact of each of the 75 words, as defined above
(Kenett et al., 2011). This was performed separately for both
WMC networks. As the path length measure is directly related
to the spread of activation within the network (Balota and
Lorch, 1986; De-Groot, 1989), calculating the impact score of
every node measures the nodes general effect on the spread of
activation within the network. A positive impact score signi-
fies that after the deletion of word i, the ASPL became larger
than the average ASPL of the full network, indicating that this
word has a positive effect on the spread of activation within
the network. In contrast, a negative impact score signifies that
after the deletion of word i, the ASPL became smaller than
the ASPL of the general network, indicating that this word
has a negative effect on the spread of activation within the
network.

If the networks do not differ, removal of a word i from both
networks should have a similar effect on the ASPL of the net-
works. As such, further than providing the effect each node has
on the spread of activation in the network, calculating the impact
score of the nodes for both networks allows us to statistically
examine whether the networks differ. The impact score of all
nodes in the WMCNs are plotted in Figure 3. A two-sample
independent t-test between the impact scores of CI and NH
groups revealed a significant difference between them [t(148) =
13.218; p < 0.01]. As all words in the WMCNs were generated
by both groups, this difference indicates a difference in the gen-
eral structure of the network. This significant difference between
the impact scores for all nodes between the two groups further
strengthens the findings of the quantitative analysis that indi-
cates a difference in the structure of the network between the two
groups.

DISCUSSION
In this paper we present the first quantitative examination of
the semantic network of children with CIs compared to the
semantic network of age-matched NH children. Since research
on the semantic aspects of children with CIs is scarce (Schwartz
et al., 2013; Wechsler-Kashi et al., 2013), the work presented here

FIGURE 3 | Word impact score for both word-matched correlation

networks. The NH network is denoted in blue, and the CI network is
denoted in red. X -axis—75 word-matched nodes. Y -axis—centrality
score.

takes a step forward in understanding the nature of the semantic
organization in children with CIs.

We quantitatively analyzed the responses given by a sample
of children with CIs and a matched control group of NH chil-
dren to a semantic verbal fluency task of the animal category
(Wechsler-Kashi et al., 2013). These responses were used to con-
struct for each group their word correlation matrix—a matrix
donating the similarities of response profiles between animal
words generated by each group seperately. The word correlation
matrices were then used to extract the semantic networks of chil-
dren with CIs and their age-matched NH peers. This was done
by constructing for both groups word correlation networks either
matched by sample size (SMCN) or by words generated by both
groups (WMCNs). These networks allowed us to investigate the
characteristics and structure of each network on its own, and
more importantly to compare between the two networks (for the
WMCNs).

The results demonstrate the SWN nature of both CI and
NH semantic networks. However, two main differences are con-
sistent across the analysis of both types of networks: first, the
diameter of the network is larger for the NH compared to
the CI network; and second, the ASPL is larger for the NH
compared to the CI network. These differences were consistent
for both the SMCN, which analyzed the entire words gener-
ated by each group, and for the WMCNs, which analyzed only
words that were retrieved by both groups. Thus, the main dif-
ference between the semantic networks of children with CIs
compared to their age-matched NH peers seems to lie in the
structure of the network—the semantic network of children
with CIs is more condensed and less spread out than the NH
semantic network.

Furthermore, in order to statistically investigate the differ-
ence between the WMC networks, we conducted a bootstrap
analysis on the networks. First, we generated a large sample of
random networks with the same number of nodes and proba-
bility of an edge between nodes as those of the WMCNs. For
these random networks we calculated the network topological
measures and reiterated this process 10,000 times. This process
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resulted in a reference distribution of the values of the different
topological measures investigated. We then examined the sta-
tistical significance of either of the WMC networks topological
measures to fall within their bootstrapped reference distribution.
This analysis revealed that all WMCNs measures are significantly
outside the reference distribution, marking that both WMCNs
are not a result of a hull-hypothesis random network. Next,
we used the bootstrap method to investigate whether the two
WMCNs significantly differ from each other. This was done
by randomly creating partial WMC networks, calculating net-
work measures for these partial WMC networks and reiterating
this process 10,000 times. We then statistically compared the
bootstrap distribution of the network measures for both WMC
networks. This analysis found significant differences between all
bootstrapped measure distribution, providing further evidence
for the differences between the two groups, in the sense that
both ASPL and diameter were significantly larger for the boot-
strapped partial NH WMC network compared to the CI WMC
network.

Finally, our calculation of impact score for each node in both
WMC networks allowed us to examine how each node (word)
influences the spread of activation within the network and to
compare these effects between both networks. This examina-
tion revealed a significant difference between both networks. If
the networks were the same, the removal of a random node
i would have none or similar effect on both networks, con-
trary to what we found. While the NH-WMCN contains mostly
positive impact score nodes, thus indicating that most nodes con-
tribute in part to the spread of activation within the network,
the CI-WMCN contains mostly negative impact score nodes,
thus indicating that most nodes inhibit the spread of activa-
tion within the network. Thus, this impact score calculation
strengthens our argument regarding the key factor differentiat-
ing CI and NH semantic networks—the structure of the network.
A possible implication of the differences in the ease of spread-
ing activation between the two groups may account for the
difficulties of children with CIs in processing relevant aspects
of semantics which require the activation of multiple (includ-
ing distantly related) meanings (i.e., Kenett et al., 2011). For
example, the development of types of language capabilities that
require access to multiple meanings, including more distantly
related meanings (e.g., ambiguous, metaphoric and figurative
language) may depend on the structure of the network. As such,
we postulate that the CI semantic network structure characteris-
tics uncovered in this research may influence further higher-order
linguistic abilities, which we plan to further study in future
work.

Current studies using computational tools to examine the
developing brain have revealed a transition in the nature of brain
networks, from a SWN to a more ordered, structured nature
(Boersma et al., 2011; Fan et al., 2011; Yap et al., 2011). In the
semantic domain, Beckage et al. (2011) have shown that late-
talking children exhibit a less Small World semantic network than
typical-talking children. Taken together, it seems that a similar
transition from a SWN to a more ordered network is crucial
for normal language development (Boersma et al., 2011; Fan

et al., 2011; Yap et al., 2011). Our findings show that children
with CIs exhibit a less ordered semantic network than age- and
IQ- matched NH peers. We interpret this less ordered state to
imply a lag in the natural network transition, which might explain
the various semantic difficulties exhibited by this population. In
this sense, children with CIs exhibit a semantic network which
might be similar to younger children rather than to their age-
matched NH peers. Thus, developing clinical applications to
facilitate transition of their semantic network from its small-
world state to a more structured state may enhance their semantic
capabilities.

The current study demonstrates the feasibility and impor-
tance of applying network tools to examine semantic organi-
zation in the CI population. While the results presented here
derive only from the animal semantic category, it would be
fruitful to analyze additional semantic categories in order to
draw firm conclusions regarding differences in semantic organi-
zation of CI and NH children. We plan to further expand our
network analysis of the CI children data collected by Wechsler-
Kashi et al. (2013), and to apply further advanced quantitative
measures on this data, both for the semantic and phonological
categories. Furthermore, we plan to conduct additional quali-
tative analyses on this data to expand the quantitative findings
presented here. Finally, we plan to collect similar data from a
sample of younger NH children, to verify our results and pro-
vide further evidence for lexicon organization development. This
sample of younger children will be matched in lexicon size
and allow us to better examine the nature of the lag in lexi-
con development we uncovered in children with CIs (see Rice,
2003).

In summary, the work presented here is the first quantita-
tive research examining the semantic network of children with
CIs. We compared the semantic network of children with CIs
to that of age matched NH peers. This comparison allowed
us to quantitatively show the difference between these two
semantic networks and to describe the nature of this differ-
ence. While further work is required in the area of semantics in
children with CIs, insights from this and future research might
enhance children with CIs semantic processing abilities through
therapy, and may shed light on processes related to language
acquisition.
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