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Humans typically lack awareness that they are dreaming while dreaming. However, at times a
remarkable exception occurs and reflective consciousness can be regained while dreaming, referred to
as lucid dreaming. While most individuals experience lucid dreams rarely there is substantial variance

in lucid dream frequency. The neurobiological basis of lucid dreaming is unknown, but evidence

points to involvement of anterior prefrontal cortex (aPFC) and parietal cortex. This study evaluated

the neuroanatomical/neurofunctional correlates of frequent lucid dreams and specifically whether
functional connectivity of aPFC is associated with frequent lucid dreams. We analyzed structural

and functional magnetic resonance imaging from an exceptional sample of fourteen individuals

who reported >3 lucid dreams/week and a control group matched on age, gender and dream recall

that reported <1 lucid dream/year. Compared to controls, the frequent lucid dream group showed
significantly increased resting-state functional connectivity between left aPFC and bilateral angular
gyrus, bilateral middle temporal gyrus and right inferior frontal gyrus, and higher node degree and
strength in left aPFC. In contrast, no significant differences in brain structure were observed. Our results
suggest that frequent lucid dreaming is associated with increased functional connectivity between aPFC
and temporoparietal association areas, regions normally deactivated during sleep.

For reasons not currently understood, humans are typically unaware that they are dreaming while dreaming.
At times, however, a remarkable exception occurs and we can become aware of the fact that we are dreaming, a
state referred to as lucid dreaming!. During lucid dreams, one becomes aware that one is dreaming while remain-
ing physiologically asleep and immersed within a dream environment that often appears strikingly realistic. In
addition to the metacognitive awareness of one’s state of consciousness, during lucid dreams it is also common
to regain episodic memory for waking life as well as the ability to volitionally control actions within the dream
(e.g.>*). Despite initial skepticism from some scientists and philosophers, lucid dreaming has been demonstrated
to be objectively verifiable through volitional eye movement signals which can be recorded in the electrooculo-
gram during polysomnography-verified REM sleep* (for replications and extensions see, e.g., refs.>; for recent
implementations see, e.g., refs.%-1%). For most individuals lucid dreams spontaneously occur infrequently, however
there is substantial variation in lucid dream frequency, ranging, by current estimates, from never (approximately
40-50%) to monthly (approximately 20%) to a small percentage of people that experience lucid dreams several
times per week or in some cases every night!»2. This variation invites the question of whether the frequency of
lucid dreams is related to individual differences in anatomical or functional properties of the brain.

The prefrontal cortex (particularly the lateral and rostrolateral regions), parietal cortex and lateral middle
temporal cortex show low regional cerebral blow flow (rCBF) throughout sleep, including during REM sleep'*'5,
the stage of sleep most strongly associated with dreaming. Hypoactivity of these regions has been postulated
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to underlie the diminished self-awareness and volitional control during dreaming'*>!¢. Consistent with this, a
functional magnetic resonance imaging (fMRI) case study found increased BOLD signal in many of these same
regions during lucid compared to non-lucid REM sleep, including the anterior prefrontal cortex (aPFC), bilat-
eral inferior parietal lobule (IPL), precuneus and inferior/middle temporal gyrus (ITG/MTG)’. However, these
results should be interpreted cautiously given that they are derived from a single subject, and no group-level f{MRI
study of lucid REM sleep has yet been undertaken. EEG studies have also reported increased activity in the beta
band over parietal regions'” or gamma band in frontal regions'® during lucid compared to baseline REM sleep.
However, overall EEG studies of lucid dreaming show considerable discrepancies and at the current time these
results should be interpreted cautiously given methodological issues such as low statistical power!*%.

Despite these caveats, evidence linking frontopolar and parietal regions to lucid dreaming is consistent with
the role of these regions in metacognitive functions. Across the literature, a convergence of evidence indicates
that aPFC in particular is a critical part of the neuroanatomical basis of metacognitive processes. For example,
research has found that aPFC shows increased activation during self-reflection on internal states, such as the eval-
uation of one’s own thoughts and feelings*"*2. Individuals can also learn to voluntarily modulate activity in aPFC
through a metacognitive awareness strategy?'. Furthermore, inter-individual variance in metacognitive ability
has also been linked to aPFC gray matter volume?*** and aPFC functional connectivity?*. Finally, patients with
damage to this region frequently display metacognitive deficits such as an inability to monitor disease symptoms
or accurately appraise their cognitive functioning?>?, similar to the lack of metacognitive insight into the global
state of consciousness characteristic of non-lucid REM sleep dreams?’.

As the initiation of lucid dreaming requires one to achieve metacognitive awareness of the state of conscious-
ness one is in, these findings motivate the hypothesis that individual differences in the anatomy or functional
connectivity of aPFC could be associated with the frequency of lucid dreams. Indeed, lucid dreaming presents
a unique experimental paradigm to further explore the link between aPFC and metacognitive awareness?®%.
In further support of a connection between the metacognitive functions of aPFC and lucid dreaming, a recent
study found increased gray matter volume in two regions of the frontal pole in individuals who scored higher
on a scale assessing the frequency of lucid dreams and/or dream content hypothesized to be related to lucidity™®.
Additionally, these same regions also showed increased BOLD activation in the monitoring component of a
metacognitive thought-monitoring task. However, a limitation of the study was a lack of specific assessment of
lucid dream frequency in the “high lucidity” and “low lucidity” groups (lucid dream frequency for the two groups
was not reported). Furthermore, the groups were distinguished based on a median split on scores to a composite
measure that also included elements that may have varied with dream recall frequency, making it unclear whether
the results could have been partly influenced by differences in dream recall. In summary, research points to the
possibility that frontoparietal cortex, and aPFC in particular, could be associated with lucid dream frequency.
However, an analysis of brain structure and function in individuals who experience frequent lucid dreams, while
also controlling for dream recall frequency, is needed.

In the current research we evaluated an exceptional sample of individuals who reported lucid dreams spon-
taneously in the range of approximately every other night to multiple times per night compared to a control
group matched on age, gender and dream recall frequency but who reported lucid dreams once per year or less.
The primary aim of the study was to test whether differences in brain structure and/or functional connectiv-
ity are associated with frequent lucid dreams while also controlling for dream recall frequency. Based on the
research reviewed above, our primary analysis investigated whether individuals who have frequent lucid dreams
would show increased gray matter density and/or resting-state functional connectivity of aPFC. For analysis
of structural data, we first employed a whole-brain voxel-based morphometry (VBM) analysis®!, followed by
a region-of-interest (ROI) analysis of the aPFC regions reported to be associated with lucid dream frequency
in a previous study®. For resting-state functional connectivity (rsfcMRI) analysis, we employed seed-based
whole-brain functional connectivity analysis of aPFC, based on the aPFC activation peak reported in the fMRI
case study of lucid REM sleep®, which allowed us to explore differences in aPFC functional connectivity with all
other brain regions between groups. We additionally employed a follow-up whole-brain graph-theoretic analysis
to examine differences in functional network properties across all brain areas between groups in a data-driven
approach, as well as evaluated differences in within-network and between-network connectivity in large-scale
resting-state networks (LSNs)*2. Finally, we evaluated several additional cognitive variables which have been
hypothesized to be associated with lucid dreaming and have been linked to PFC function, including working
memory capacity, trait mindfulness and prospective memory (e.g., refs.>***), in order to test for between-group
differences and, if necessary, to be able to control for these variables in our MRI analysis.

Results

Demographic and behavioral results. The mean age for both groups was 22.6 + 5.4 [M + SD]
(range = 18-34) and both groups were composed of 5 males and 9 females. There was no significant difference in
dream recall between the control group (median =5-6 per week; IQR =2) and lucid dream group (median=7
per week; IQR=1) [Z=1.70, p=0.11, Mann-Whitney U-test; see Methods for details on dream recall case-con-
trol matching]. All 28 participants reported high dream recall (>3-4 per week). The frequent lucid dream group
reported significantly more lucid dreams (median =5-6 per week; IQR =1) compared to the control group
(median =0 per week; IQR=0) [Z=4.68, p < 10~%, Mann-Whitney U-test]. The frequent lucid dream group
reported a median of 75 lucid dreams in the last 6 months, a median of 90 lucid dreams for the highest number of
lucid dreams in any 6-month period, and reported experiencing lucid dreams on average for 9.5+ 5.8 [M £ SD]
years. No significant differences between groups were observed for working memory capacity (OSpan, RotSpan,
SymSpan), or questionnaire assessments of mind-wandering frequency, prospective or retrospective memory or
trait mindfulness (all p > 0.25, two-tailed independent samples ¢-test; Table 1).
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Lucid dream
group Control group
(N=14) (N=14) VA P
Dream recall (median) 7 per week 5-6 per week 1.70 0.11
Lucid dreams (median) 5-6 per week g (no lu)c id 4.68 <107°
Dream recall reams
Lucid dreams last 6 mo (median) 75
Lucid dreams most 6 mo (median) 90
M (SD) M (SD) t(26) |p
Gender (Female|Male) 9|5 9|5
Demographic data
Age 22.64 (5.46) 22.66 (5.47) —0.01 0.99
OSpan 32.00 (9.57) 33.21(12.15) —0.29 0.77
Working memory | RotSpan 12.29 (6.37) 14.14 (5.96) —0.80 0.43
SymSpan 16.07 (7.78) 12.93 (6.22) 1.18 0.25
IPI Mind-wandering 3.36 (0.85) 3.32(0.95) 0.12 0.90
PRMQ Retrospective 3.46 (0.69) 3.71(0.65) —0.98 0.34
Questionnaires PRMQ Prospective 3.02(0.61) 3.36 (0.77) —1.32 0.19
TMS Decentering 13.36 (3.50) 11.93 (3.36) 1.10 0.28
TMS Curiosity 18.50 (4.26) 15.36 (4.41) 1.92 0.07

Table 1. Demographic, behavioral and questionnaire data for the frequent lucid dream group and control group.
Note. OSpan = Operation Span, SymSpan = Symmetry Span, RotSpan = Rotation Span, IPI =Imaginal Process
Inventory, PRMQ = Prospective and retrospective memory questionnaire, TMS = Toronto Mindfulness Scale.

Voxel-based morphometry (VBM). No suprathreshold clusters were observed for either the frequent
lucid dream group contrasted with the control group or the control group contrasted with the frequent lucid
dream group at the whole brain level either for raw gray matter density values or after proportional scaling gray
matter values by total intracranial volume (all p > 0.05, two-tailed independent samples ¢-test, corrected for mul-
tiple comparisons at the cluster level). No significant differences in gray matter density were observed for ROIs
in left prefrontal cortex (#(26) = —0.47, p = 0.65, two-tailed independent samples ¢-test), right prefrontal cortex
(t(26) =—0.36, p=0.72, two-tailed independent samples t-test), or the left (#(26) = —0.40, p = 0.69, two-tailed
independent samples t-test) or right (#(26) = —1.31, p=0.20, two-tailed independent samples t-test) hippocam-
pus based on the regions reported in ref.*’. Total hippocampal volume (extracted from FreeSurfer segmentation)
also showed no significant differences between groups for either left (#(26) =0.14, p =0.89, two-tailed independ-
ent samples t-test) or right (#(26) = 0.32, p =0.75, two-tailed independent samples ¢-test) hippocampus.

Seed-based whole-brain resting-state functional connectivity. There were no significant dif-
ferences in in-scanner head motion (mean framewise displacement) between the frequent lucid dream group
(M=0.07, SD=0.03) and control group (M =0.07, SD =0.04) ((26) =0.72, p = 0.48, two-tailed independent
samples ¢-test). As shown in Fig. 1 and Table 2, compared to the control group, the frequent lucid dream group
showed significantly increased functional connectivity between left aPFC and five clusters: the left and right infe-
rior parietal lobule (IPL), left and right middle temporal gyrus (MTG) and right inferior frontal gyrus (IFG) (all
P <0.05, two-tailed independent samples ¢-test, corrected for multiple comparisons at the cluster level; Table 2).
The frequent lucid dream group also displayed reduced functional connectivity between left aPFC and the bilat-
eral insula (all p < 0.05, two-tailed independent samples t-test, corrected for multiple comparisons at the clus-
ter level; Table 2). No significant differences in functional connectivity were observed between groups for right
aPFC (all p > 0.22, two-tailed independent samples t-test corrected for multiple comparisons at the cluster level).
Although aPFC connectivity was the main target of investigation in the current study, we also performed a sup-
plementary seed-based functional connectivity analysis on other regions identified in ref.® to increase BOLD
signal during lucid REM sleep, including left/right IPL, MTG and precuneus. The frequent lucid dream group
showed increased connectivity between left IPL and left MTG, right lingual gyrus; right IPL and left aPFC, right
PCC; right MTG and left aPFC, left MFG, and decreased connectivity between right IPL and right MFG, left
insula, left precentral gyrus and left SMC (all p < 0.05, two-tailed independent samples ¢-test, corrected for mul-
tiple comparisons at the cluster level; Supplementary Table 1). No other suprathreshold clusters were identified.

IPL/IPS subdivision analysis. We performed a follow-up analysis on the clusters in left and right IPL in
order to characterize the overlap between these clusters and anatomical subdivisions of the angular gyrus (PGa/
PGp) and intra-parietal sulcus (hIP1, hIP2 and hIP3) (see Methods: Angular gyrus (AG)/intra-parietal sulcus (IPS)
subdivision analysis). The cluster peak for right parietal cortex was in the anterior AG (PGa) and the overlap
between the functional cluster and the cytoarchitectonic maps was 47.3% for PGa, 24.7% for PGp, 4.2% for hlP1
and 0.6% for hlP3. The cluster peak for left parietal cortex was also in PGa and the overlap between the func-
tional cluster and the cytoarchitectonic maps was 34.3% for PGa, 19.7% for PGp, 6.7% for hlP1 and 0.2% for
hIP3 (Fig. 2). Frequent lucid dreamers showed significantly increased mean functional connectivity between left
aPFC and left PGa (#(26)3.20, p = 0.004, two-tailed independent samples t-test), right PGa (#(26) =2.46, p=0.02,
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Figure 1. Seed-based resting-state functional connectivity differences between frequent lucid dream and
control groups. Top panel: (a) Seed region of left aPFC with significant differences between groups. To estimate
connectivity, spherical ROIs of 6 mm radius were defined in aPFC based on the peak voxel reported in Dresler et
al® which had increased fMRI BOLD signal response during signal-verified lucid REM sleep dreaming. (b) The
frequent lucid dream group showed increased resting-state functional connectivity between left aPFC and the
bilateral angular gyrus (AG), bilateral middle temporal gyrus (MTG) and right inferior frontal gyrus (IFG). All
clusters are significant at p < 0.05, corrected for multiple comparisons at the cluster level. Middle panel: Volume
slices illustrating bilateral MTG and IFG results. Bottom panel: Volume slices illustrating bilateral AG results.

Peak MNI
Volume (mm?®) | Peak t-value | p (cluster FDR) | X ‘ Y ‘ VA
Frequent lucid dream group > Control group

LIPL (AG) | 500 4.74 0.005 —36 | —68 |46
RIPL(AG) | 671 4.56 0.001 48 —62 |50
LMTG 258 4.25 0.04 —68 | =24 | —12
RMTG 262 4.08 0.04 64 —-38 | -6
RIFG 396 4.46 0.01 42 34 —14
Frequent lucid dream group < Control group
Linsula 1108 4.59 <0.001 —34 | =20 |6
Rinsula 696 4.40 0.001 32 —-24 |0

Table 2. Whole-brain seed-based resting-state functional connectivity for left aPFC between groups. Note.
IPL = Inferior parietal lobule; AG = angular gyrus; MTG = middle temporal gyrus, IFG = inferior frontal gyrus.
All clusters significant at p < 0.05, cluster corrected. L: left, R: right.

two-tailed independent samples ¢-test) and right hIP1 (#(26) =2.59, p =0.02, two-tailed independent samples
t-test). No other anatomical subdivisions of AG/IPS showed significant differences between groups (all p > 0.06,
two-tailed independent samples ¢-test).

Large-scale functional resting-state networks analysis. We next tested whether connectivity
within and between established LSNs differed between groups. We first computed the average connectivity
(Fisher-transformed correlation coefficients) within and between all pairs of nodes within 7 distinct systems
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Figure 2. Clusters in lateral parietal cortex showing increased resting-state functional connectivity with aPFC
in the frequent lucid dream group overlaid with cytoarchitectonic subdivisions of IPL/IPS. The angular gyrus
can be subdivided into anterior (PGa; blue outline) and posterior (PGp; white outline) subdivisions based on
cytoarchitecture. IPS can be divided into three subdivisions (hIP1 on the posterior lateral bank- yellow outline,
hIP2 which is anterior to hIP1- purple outline, and hIP3 which is posterior and medial to both subdivisions-
green outline). The cluster peak as well as maximal cluster extent localized bilaterally to a dorsal segment of the
anterior angular gyrus (PGa). Region-of-interest (ROI) analysis revealed increased connectivity between left
aPFC and bilateral PGa (blue outline) [all p < 0.05].

identified in a meta-analysis* (see Methods: Large-scale networks analysis). No significant differences in con-
nectivity were observed between groups within any LSN (all p > 0.29, two-tailed independent samples ¢-test)
(Supplementary Fig. 1a). There were also no differences in between-network connectivity between groups (all
p>0.16, two-tailed independent samples t-test). Next, we evaluated the overlap between our seed-based func-
tional connectivity results and a 17-network parcellation of human brain connectivity®. The regions identified
in our functional connectivity analysis overlapped with both default mode network (DMN) and frontoparietal
control networks (FPCN), with the strongest overlap occurring within a subsystem of the FPCN (Supplementary
Fig. 1b). We followed up this spatial overlap analysis by evaluating the connectivity within the FPCN subsystem
that showed the largest overlap with the functional connectivity results, based on a 400 node parcellation of the 17
networks*. However, no significant difference in average network connectivity (average across all FPCN subsys-
tem nodes) was observed within this network between groups (#(26) = —1.08, p=0.29, two-tailed independent
samples t-test). Thus, while the frequent lucid dream group showed increased functional connectivity of left aPFC
with regions of IPL and MTG that overlapped with this FPCN subsystem, there was no difference in the average
connectivity of this subsystem between groups.

Whole-brain graph-theoretic analysis. To evaluate whole-brain differences in network and topological
properties, we next parcellated the brain into 1015 regions according to the Lausanne 2008 atlas®”*® and per-
formed graph-theoretic analysis. Graphs were thresholded over a range of connection densities (0.05 <8 <0.35)
for which the area under the curve (AUC) was computed for each node. Multiple comparisons were corrected
against a max ¢ distribution across all nodes in the network (see Methods: Graph-theoretic network analysis).
Node degree and strength showed significant differences between groups in left aPFC after correcting for multi-
ple comparisons, with higher node degree (t,,,=4.58, p ;= 0.0003, p,,,= 0.03, two-tailed independent samples
t-test, max t corrected) and node strength (t,,,= 4.40, p,p, = 0.0003, p,,,, = 0.04, two-tailed independent samples
t-test, max ¢ corrected) in the frequent lucid dream group compared to the control group (Fig. 3). No differences
in betweenness centrality or eigenvector centrality were observed between groups for any node (all p > 0.05,
two-tailed independent samples t-test, max t corrected).

Discussion

Summary of main findings. To the best of our knowledge, the current study is the first to evaluate dif-
ferences in brain structure and functional connectivity of individuals who experience lucid dreams with high
frequency. We found that compared to a control group matched on age, gender and dream recall frequency,
individuals who reported lucid dreams spontaneously approximately every other night or more had increased
resting-state functional connectivity between the left anterior prefrontal cortex (aPFC) and the bilateral angular
gyrus (AG), bilateral middle temporal gyrus (MTG) and right inferior frontal gyrus (IFG). The frequent lucid
dream group also showed decreased functional connectivity between left aPFC and bilateral insula. Whole-brain
graph-theoretic analysis revealed that left aPFC had increased node degree and strength in the frequent lucid
dream group compared to the control group. In contrast to these functional changes, we did not observe any
differences in brain structure (gray matter density) in any brain area between groups (c.f. ref.*°). Furthermore,
no differences were observed between frequent lucid dream and control groups in behavioral or questionnaire
measures of working memory capacity, prospective memory, mind-wandering frequency or trait mindfulness.
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Figure 3. Whole-brain graph-theoretic network differences between frequent lucid dream and control groups.
(a) aPFC node (red sphere) with significantly higher degree (k) and strength (s) in the frequent lucid dream
group from axial (top panel) and left sagittal (bottom panel) views. (b) Left panel: Mean node degree (top row)
and strength (bottom row) over density (cost factor) thresholds 0.05 < § <0.35 (step size 0.01) for frequent lucid
dream (blue triangles) and control groups (red circles) for significant node shown in panel a. Shaded regions
show 95% confidence intervals for each §. Right panel: boxplots of area under the curve (AUC) for frequent
lucid dream and control groups. The bottoms and tops of the boxes show the 25th and 75th percentiles (the
lower and upper quartiles), respectively; the inner white band shows the median; and the whiskers show the
most extreme data points not considered outliers (outliers are plotted separately with red squares). Asterisks
indicate significant differences (p < 0.05) between conditions with a nonparametric bootstrap test after
correcting for multiple comparisons against a surrogate max ¢ distribution across all nodes.

Our results converge with a recent fMRI case study of lucid dreaming, which found that a highly similar
network of brain areas increased fMRI BOLD signal during lucid compared to baseline REM sleep, including
bilateral aPFC, bilateral ITG/MTG, and bilateral medial/lateral parietal cortex (including AG)°. These same
brain areas, particularly aPFC and IPL/AG, show reduced regional cerebral blood flow (rCBF)!>'** during
REM sleep compared to waking (see ref.'” for a review). Hypoactivity of these regions coupled with preserved
or increased activity in limbic/paralimbic structures and extrastriate cortices has been postulated to facilitate a
mode of brain function conducive to hallucinatory dream mentation but diminished higher-order conscious-
ness/self-awareness*>*!. The current results suggest that increased functional integrity during wakefulness
between aPFC and temporoparietal association areas—all regions that show suppressed activity in REM sleep
and increased activity during lucid REM sleep—is associated with the tendency to have frequent lucid dreams.

Lucid dreaming and brain connectivity. Becoming lucid during REM sleep dreaming involves making
an accurate metacognitive judgment about the state of consciousness one is in, often by recognizing that the
correct explanation for an anomaly in the dream is that one is dreaming"?. The finding that changes in the func-
tional connectivity of aPFC is associated with lucid dream frequency is therefore consistent with a large literature
linking this region to metacognitive functions, including the evaluation of one’s thoughts and feelings®*? and
variance in the capacity to make accurate metacognitive judgments®?*,

Given the link to metacognition, it has been speculated that lucid dreaming is linked to neural systems that
regulate executive control processes, in particular the frontoparietal control network (FPCN)??. The FPCN is a
large-scale brain network that is interconnected with both the default mode network (DMN), which is linked to
internal aspects of cognition, such as autobiographical memory***, spontaneous thought*%, and self-referential
processing?, and the dorsal attention network (DAN), which is involved in visuospatial perceptual attention*®#.
Being spatially interposed between these two systems, the FPCN is postulated to integrate information coming
from the opposing DMN and DAN systems by switching between competing internally and externally directed
processes®.
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Based on a parcellation of 17 resting-state networks in the human brain, which distinguished potentially sep-
arable FPCN networks™, a recent study found that the FPCN could be fractionated using hierarchical clustering
and machine learning classification into two distinct subsystems: FPCNa, which is more strongly connected to
the DMN than the DAN and is linked to introspective processes, and FPCNb, which is more strongly connected
to the DAN than the DMN and is linked to regulation of perceptual attention®. The current results show that
frequent lucid dreams are associated with increased functional connectivity between aPFC and a network of
regions that showed substantial overlap with the FPCN sub-network corresponding most closely to FPCNa3®>*(,
However, neither connectivity within FPCN broadly defined through meta-analysis nor connectivity within
FPCN sub-networks as defined through parcellation of resting-state networks was significantly associated with
frequent lucid dreaming in the current study. This may be attributed to both the partial overlap of the regions that
showed increased aPFC connectivity in lucid dreamers with FPCN networks, as well as the fact that lucid dream
frequency was associated with increased connectivity between these regions and aPFC in the left hemisphere, but
not to increased connectivity between these regions and right aPFC, or broadly increased connectivity between
other regions of FPCN to each other (outside of aPFC).

The strongest increase in functional connectivity in the frequent lucid dream group was observed between
left aPFC and IPL, which localized to a dorsal segment of the anterior subdivision of the angular gyrus (PGa)
bilaterally, as measured by overlap with cytoachitectonic probability maps. While many neuroimaging studies
have treated the regions that comprise IPL as a homogenous region, cytoarchitectonic mapping studies have
shown that these regions can be subdivided®"*?, and these subdivisions show distinct patterns of structural and
functional connectivity™. Specifically, PGa shows increased functional connectivity with the caudate, anterior
cingulate, and bilateral frontal poles compared to PGp, whereas PGp shows increased connectivity with regions
of the DMN, including precuneus, medial prefrontal cortex and parahippocampal and hippocampal gyri®.
Cognitive or clinical correlates of altered functional connectivity between the frontal pole and this specific sub-
division of AG (PGa) have to our knowledge not yet been identified, since much of the cognitive neuroscience
literature on this region lacks anatomical specificity. However, a meta-analysis of 120 neuroimaging studies of
language and semantic processes found that the left AG had the densest concentration of activation foci across
studies, with a significant clustering of activation foci also in MTG®. The authors also note that these regions are
greatly expanded in humans compared to non-human primates, suggesting a role in the development of language.
Moreover, PGa is more closely linked to the semantic system that PGp, and analysis of the connectivity and cog-
nitive functions associated with this region suggests that it is positioned at the top of a processing hierarchy for
concept retrieval and conceptual integration®.

In line with these observations, we would like to offer a speculative hypothesis regarding our findings, which
relates these results and the overlap with semantic/conceptual systems to the difference between lucid and
non-lucid dreaming in terms of consciousness. Specifically, non-lucid dreams exhibit reduced working memory
function, reduced ability to engage in behavioral control and planning, and reduced reflective consciousness™~>".
Thus, while dreams are rich in primary consciousness of perception and emotion, consciousness during dreams
typically lacks important aspects of what Edelman referred to as secondary or higher-order consciousness, which
enables a creature to escape the “remembered present” of primary consciousness and to be conscious of being
conscious®®. In contrast, gaining lucidity during dreaming sleep involves regaining cognitive abilities associ-
ated with higher-order consciousness, including the ability to be explicitly aware of oneself and on€’s state®. The
distinction between primary and higher-order consciousness is thought to depend on the linguistic abilities that
separate humans from other species®®. While language processes also occur during non-lucid dreams®®!, they
are nevertheless linked to the remembered present and apparently lack the conceptual structure that allows for
full self-awareness. We speculatively propose that the aPFC-AG-MTG network identified here may be part of the
neural circuitry enabling the integration between heteromodal metacognitive and linguistic/conceptual systems
(in particular, the availability of AG-MTG semantic/conceptual content to anterior prefrontal regions) that allows
one to be aware of oneself and one’s current state (i.e., “I am dreaming!”)>.

Limitations, methodological considerations and future directions. The measurement of individ-
ual differences in lucid dream frequency has been done in inconsistent ways and could be improved in future
research. In the current research we used a scale with a range of response categories, from “none” to “multiple
times per night”®* (see Supplementary Methods: Dream and lucid dream frequency questionnaire). While this ques-
tionnaire provides a straightforward coarse assessment of lucid dream frequency, a limitation of this measure is
that it does not measure variation in the length or “degree of awareness” of lucid dreams. Indeed, lucid dreams
can range from a realization about the fact that one is dreaming followed by a loss of lucidity shortly thereafter
to more extended lucid dreams in which an individual can maintain lucidity for prolonged periods of time®.
Likewise, lucid dreams can be characterized by varying degrees of clarity of thought. Evaluating the duration
of lucid dreams as well as the degree of awareness during lucid dreams will be valuable to relating brain struc-
tural and functional measures to lucid dream frequency in future studies. An extended discussion of this issue is
beyond the scope of the present article; however, overall these remarks emphasize the need for the development of
standardized measures that can be used to assess individual differences in frequency of lucid dreams that simul-
taneously measure the duration and degree of lucidity during dreams.

Another limitation of the current study is that our measurement of lucid dream frequency relied on ques-
tionnaire responses and participant interviews. There are established methods for the objective validation of
individual lucid dreams in a sleep laboratory setting using volitional eye-movement signals*, but there are no
protocols for physiologically validating the frequency of lucid dreams. While questionnaire measures of lucid
dream frequency have shown high test-retest reliability®*, one way to further validate participant questionnaire
responses would be to attempt to physiologically validate at least one lucid dream in the sleep laboratory for
each participant. We think that additional validations such as this would potentially be valuable to incorporate
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in future studies. Nevertheless, it is important to note that the estimated frequency of lucid dreaming would still
depend on questionnaire assessment. Thus, approaches such as this do not obviate the reliance on questionnaire
assessment as used in the current study. An intriguing, though ambitious, method for deriving a measure of lucid
dream frequency not dependent on questionnaire assessment would be to utilize home-based EEG recording
systems to collect longitudinal sleep polysomnography data, from which estimates of lucid dreaming frequency
could be derived from the frequency of signal-verified lucid dreams collected over many nights. However, this
approach would only measure the frequency of signal-verified lucid dreams, and instances in which participants
achieved lucidity but did not make the eye signal due to factors such as awakening or forgetting the intention
would be missed by this procedure.

In contrast to the observed differences in functional connectivity described above, in the current study we
did not observe any significant differences in brain structure (gray matter density) between groups. This result
contrasts with a study that found that two regions of aPFC had increased gray matter density in a “high-lucidity”
group compared to a “low-lucidity” group®. As noted in the introduction, a limitation of that study is that the
high-lucidity group was not a sample of frequent lucid dreamers, but rather individuals from a database that
scored above the group median on a composite measure of dreaming, which measured not only frequency of
lucid dreams but also different dimensions of dream content. While several of these content dimensions have
been found to be higher in lucid dreams®’, it is likely that several of these dimensions also co-vary more generally
with dream recall and/or cognitive content in dreams unrelated to lucidity. As a consequence, as the authors note,
some of the results could have been partly influenced by differences in dreaming “styles”, content or dream recall.
However, the fact that the study found that these aPFC regions also showed increased BOLD activity during
the monitoring component of a thought-monitoring task lends additional plausibility to the results. It is impor-
tant to note that issues of statistical power could also account for the discrepant findings of these two studies.
Unfortunately, no statistics or estimates of effect size have been reported for this effect and as a result we were
unable to perform a power analysis to determine the adequate sample size for testing this effect. However, a single
study that fails to reject the null hypothesis does not provide good evidence for the absence of an effect, especially
with relatively small sample sizes. Overall, therefore, more research addressing this question using larger sample
sizes will be needed before firm conclusions can be drawn.

Here we studied individuals who reported spontaneous lucid dreaming with high frequency without engag-
ing in training to have lucid dreams. In our questionnaire samples, the proportion of individuals who reported
spontaneous lucid dreams on close to a nightly basis constituted approximately 1 in 1,000 respondents. While
frequent spontaneous lucid dreams are uncommon, evidence indicates that lucid dreaming is a learnable skill that
can be developed by training in strategies such as metacognitive monitoring (i.e., “reality testing”) and, especially,
prospective memory®>®. While it is plausible that the neurophysiological correlates of spontaneous frequent lucid
dreaming are the same as frequent lucid dreaming that occurs as a result of training, this has not yet been stud-
ied. Future longitudinal training studies would be valuable in order to evaluate within-subject changes in brain
connectivity as a result of training to have lucid dreams and to compare how such changes relate to the functional
network associated with frequent lucid dreaming identified here.

No significant differences were observed between groups in working memory capacity, or questionnaire
assessments of prospective memory or trait mindfulness. It has been suggested that a sufficient level of working
memory is required in order to become lucid during dreaming sleep? and thus it might be predicted that frequent
lucid dreams could be associated with a higher baseline level of working memory capacity. Likewise, an effective
method of lucid dream induction, the Mnemonic Induction of Lucid Dreams (MILD) technique®, relies on the
use of prospective memory to become lucid, and thus it might be predicted that frequent lucid dreams could be
associated with increased prospective memory ability. While we did not find evidence in support of a relationship
between these variables and spontaneous frequent lucid dreams, it is worth noting that the relation between lucid
dreaming and working memory has been discussed primarily in the context of successfully being able to “acti-
vate the pre-sleep intention to recognize that one is dreaming” during a dream?, and the relation to prospective
memory is mostly considered in the context of learning to have lucid dreams by remembering to recognize that
one is dreaming. However, spontaneous frequent lucid dreamers neither necessarily need to activate a pre-sleep
intention nor use prospective memory to remember to recognize that they are dreaming; instead, their lucid
dreams tend to occur spontaneously without engaging in specific methods for inducing them. Thus, it remains
plausible that there could be a relationship between working memory and prospective memory and (successful)
training in lucid dreaming despite a lack of a relationship between these variables and spontaneous frequent
lucid dreams. In future work it would be interesting to explore whether individuals with higher baseline scores
on these measures show increased propensity in successfully training to have lucid dreams, as well as to quantify
the association between potential improvements in these skills and lucid dream frequency as a result of training.
Finally, the finding that there was no significant difference in mindfulness in frequent lucid dreamers is consist-
ent with other research, which has found that outside of meditators, there does not appear to be an association
between trait mindfulness and lucid dream frequency in the facets of mindfulness studied here (decentering and
curiosity)3467:68,

In future work it would be intriguing to build on these findings to evaluate whether high frequency lucid
dreamers show increased functional connectivity and/or higher metabolism or BOLD signal in these regions
during REM sleep. If so, this would suggest that it may be possible to bias these networks toward increased
metacognitive awareness of dreaming during REM sleep, for example through techniques to increase activa-
tion of these regions. Notably, a recent double blind, placebo-controlled study found that cholinergic enhance-
ment with galantamine, an acetylcholinesterease inhibitor (AChEI), increased the frequency of lucid dreams in
a dose-related manner when taken late in the sleep cycle and combined with training in the mental set for lucid
dream induction®. While the relationship between cholinergic modulation and frontoparietal activation is com-
plex and depends on the task context and population under study (see ref.*® for a review), pro-cholinergic drugs
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in general tend to increase frontoparietal activity in conditions in which these areas show low baseline activation,
which is thought to reflect increased attentional-executive functions®. Given that frontoparietal activity is typi-
cally suppressed during REM sleep, an intriguing follow-up to these findings based on the current results would
be to examine whether AChEIs, and galantamine in particular, may facilitate lucid dreaming through increasing
activation within the network of fronto-temporo-parietal areas observed here.

In line with the above ideas, several studies have attempted to induce lucid dreams through electrical stimu-
lation of the frontal cortex during REM sleep. One study tested whether transcranial direct current stimulation
(tDCS) applied to the frontal cortex would increase lucid dreaming”. While tDCS resulted in a small numerical
increase in self-ratings of the unreality of dream objects, it did not significantly increase the number of lucid
dreams as rated by judges or confirmed through the eye-signaling method. Another study tested whether apply-
ing transcranial alternating current stimulation (tACS) in the low gamma band (25 Hz and 40 Hz) to frontal
regions would induce lucid dreams”'. While it was reported that lucid dreams could be induced with a high
success rate (58% with 25 Hz stimulation and 77% with 40 Hz stimulation), there are concerns about how lucid
dreams were defined. Specifically, lucid dreams were not dreams that participants self-reported as lucid, nor
dreams that were objectively verified to be lucid through the eye-movement signaling method. Instead, dreams
were inferred to be lucid based on higher scores to questionnaire items measuring the amount of insight or
dissociation”. Given that dissociation (i.e. “seeing oneself from the outside” or a “3rd person perspective”) has
never been considered a defining feature of lucid dreams (e.g., refs L7273) it is controversial to classify dreams as
lucid based on higher ratings of dissociation. Furthermore, mean ratings in the insight subscale increased from
approximately 0.1-0.2 in the sham stimulation to 0.5-0.6 in the 25 Hz or 40 Hz stimulation conditions. However,
the scale anchors ranged from 0 (strongly disagree) to 5 (strongly agree), indicating that, on average, in the 25Hz
and 40 Hz stimulation conditions, participants disagreed that their dreams had increased insight. In summary, it
remains unclear whether electrical brain stimulation techniques could be effective for inducing lucid dreams (see
refs'*% for further discussion). Nevertheless, given the current findings, stimulation of aPFC and temporoparietal
association areas appears to be a worthwhile direction for future research attempting to induce lucid dreaming.
Future studies might consider testing a wider range of stimulation parameters, particularly applied to aPFC, as
well as combining stimulation with training in the appropriate attentional set for lucid dream induction.

Methods

Participants. In total, 28 right-handed participants (18 females, age =22.6 4- 5.4 (mean & SD), range 18-34)
participated in the study. Participants were recruited via mass emails sent to University of Wisconsin-Madison
faculty, staft and students. The study was described broadly as a study on brain structure and dreaming. Exclusion
criteria for all participants included pregnancy, severe mental illness or any contraindications for MRI (e.g., metal
implants or pacemakers). To determine study eligibility, participants completed a questionnaire that measured
their dream recall and lucid dreaming frequency (described below). For the frequent lucid dream group, we
recruited individuals who reported a minimum of 3-4 lucid dreams per week, or approximately one lucid dream
every other night without engaging in training to have lucid dreams. We recruited control participants who were
1-to-1 matched to participants in the frequent lucid dream group on age, gender and dream recall frequency
variables but who reported lucid dreams never or rarely. Specifically, for each participant in the frequent lucid
dream group, we recruited a matched control participant that was the same age (date of birth <12 months apart),
the same gender, a similar level of dream recall (see below) and lucid dream frequency of 1 per year or less. Signed
informed consent was obtained from all participants before the experiment, and ethical approval for the study
was obtained from the University of Wisconsin-Madison Institutional Review Board. The study protocol was
conducted in accordance with the Declaration of Helsinki.

Individual differences in lucid dreaming and dream recall frequency. Participants completed a
questionnaire that measured their dream recall and lucid dreaming frequency (Supplementary Methods: Dream
and lucid dream frequency questionnaire). Dream recall was measured with a 15-pt scale ranging from 0 (never) to
15 (more than one dream per night). Lucid dream frequency was measured with a 15-pt scale ranging from 0 (no
lucid dreams) to 15 (multiple lucid dreams per night). To help ensure clear understanding of the meaning of lucid
dreaming, participants were provided with a written definition along with the scale as follows: “Lucid dreaming is
a special sort of dream in which you know that you are dreaming while still in the dream. Typically, you tell your-
self Tm dreaming!” or “This is a dream!” (See Snyder & Gackenbach'? for the importance of providing a definition
in the assessment of individual differences in lucid dreaming frequency). Participants were also provided with a
short excerpt of a written report of a lucid dream (see Supplementary Methods for full text of the definition and
example of lucid dreaming provided on the questionnaire measure).

Several additional checks were made to ensure that participants had a clear understanding of the meaning of
lucid dreaming. First, participants were asked to provide a written example of one of their lucid dreams, including
how they knew they were dreaming. Second, participants were interviewed by the experimenters before being
enrolled in the study to ensure that they had a clear understanding of the meaning of lucid dreaming. During the
interview participants described several recent lucid dreams and confirmed the frequency with which they expe-
rienced lucid dreams through follow-up questions. Only participants who demonstrated unambiguous under-
standing of lucidity and met the frequency criteria as confirmed by both written and oral responses were enrolled
in the frequent lucid dream group. The frequent lucid dream group also reported several additional variables
related to their experiences with lucid dreaming, including the number of lucid dreams they had in the last six
months, the most lucid dreams they had ever had in a six-month period, whether they had engaged in training to
have lucid dreams and their general interest in the topic.

As noted above, we aimed to match dream recall between the frequent lucid dream group and control group
as closely as possible in order to control for this potentially confounding variable. However, it was not always
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possible to recruit a matched control participant that was exactly matched on age, gender and dream recall. For
each participant in the frequent lucid dream group, we therefore sought to recruit the closet matched pair control
participant of the same age and gender, with the constraint that dream recall had to be within at least 3 rank order
values on the questionnaire measure. In 7 cases, we were able to obtain an exact match between control partic-
ipants and frequent lucid dream participants on dream recall, in 5 cases within 1 rank value, in 1 case within 2
rank values and in 1 case within 3 rank values. In 4 out of the 5 cases that were within 1 rank value, the difference
in reported dream recall frequency was between 7 dreams recalled per week and 5-6 dreams recalled per week,
and in the remaining case the difference was between 3-4 dreams recalled per week and 5-6 dreams recalled per
week. Overall this method ensured that the frequent lucid dream group and control group were closely matched
on dream recall frequency.

Behavioral and questionnaire assessment. Participants completed several additional assessments that
measured cognitive variables which have been hypothesized to be associated with lucid dreaming and have been
linked to PFC function, including working memory capacity (WMC), trait mindfulness and prospective mem-
ory (e.g., refs>***!). To measure WMC, participants completed automated versions of the operation span task
(OSpan), rotation span task (RotSpan) and symmetry span task (SymSpan)”*. These tasks have been validated
to yield a reliable measure of WMC”>7%. In brief, each task presents to-be-remembered stimuli in alternation
with an unrelated processing task. In the OSpan the to-be-remembered stimuli are letters and the unrelated
task is verifying the accuracy of an equation; in the SymSpan the to-be-remembered stimuli are locations of
red squares in a 4 x 4 grid and the unrelated task is verifying the vertical symmetry of an image; in the RotSpan
the to-be-remembered stimuli are arrows pointing in one of eight different directions and the unrelated task is
whether a rotated letter is presented correctly. Participants completed two blocks of each task, which together
provide a reliable measure of an individual’s WMC”. Following standard scoring procedures, span scores were
calculated as the total number of items recalled in correct serial order across all trials’®.

Participants also completed a questionnaire battery that assessed several additional variables of interest: their
mind-wandering frequency, memory function in everyday life and trait mindfulness. Mind-wandering frequency
was assessed with the Daydreaming Frequency subscale of the Imaginal Process Inventory (IPI)””. Memory func-
tion was assessed with the Prospective and Retrospective Memory Questionnaire (PRMQ)’8, which measures
self-report scores of the frequency of both prospective and retrospective memory errors in everyday life (see ref.”
for normative data). Trait mindfulness was measured with the Toronto Mindfulness Scale (TMS)®. The TMS
measures two factor-analytically derived components of mindfulness: Curiosity and Decentering. The Curiosity
factor corresponds to an “an attitude of wanting to learn more about one’s experiences’, whereas the Decentering
factor corresponds to “awareness of one’s experience with some distance and dis-identification rather than being

carried away by one’s thoughts and feelings”®.

MRI acquisition. Resting-state functional MRI scans were collected on a 3.0 Tesla GE MRI scanner at
the Wisconsin Institute for Sleep and Consciousness/HealthEmotions Research Institute (Department of
Psychiatry) at the University of Wisconsin - Madison. A T2*-weighted echo-planar imaging (EPI) sequence
was used (TR =2000 ms; TE =25 ms; flip angle = 60°; acquisition matrix = 64 x 64; FOV =204 mm; acquisi-
tion voxel size =3.75 x 3.75 x 4.00 mm; 40 interleaved slices, number of volumes =300, duration = 10 minutes).
During the resting-state scan, participants were instructed to stay awake and relax, to hold as still as possible,
and to keep their eyes open. Before the functional scan, high-resolution T1-weighted anatomical scans were
acquired (BRAVO, TR =9180ms; TE = 3.68 ms; TI =600 ms; flip angle = 10°; FOV =256 mm; acquisition voxel
size=1x1x 1 mm).

Structural (T1) data processing. T1 anatomical scans were segmented into gray matter (GM), white mat-
ter (WM), and cerebrospinal fluid (CSF) using SPM12 (Statistical Parametric Mapping, Wellcome Trust Centre
for Neuroimaging, London). A diffeomorphic non-linear registration algorithm (diffeomorphic anatomical regis-
tration through exponentiated lie algebra; DARTEL)®! was used to iteratively register the images to their average.
The resulting flow fields were combined with an affine spatial transformation to generate Montreal Neurological
Institute (MNI) template spatially normalized and smoothed Jacobian-scaled gray matter images. Spatially nor-
malized images were smoothed using an 8 mm full width at half maximum (FWHM) Gaussian kernel. We addi-
tionally evaluated average gray matter density between groups in the two regions of prefrontal cortex and bilateral
hippocampus observed by ref.*® to show increases in a “high lucidity” group. We defined spherical ROIs of 4 mm
radius in MNI152 space centered on the peak voxels reported in ref.’: right prefrontal (MNI: 4, 57, 31), left pre-
frontal (MNI: —30, 51, 6), left hippocampus (MNI: —21, 31, 3) and right hippocampus (MNI: 21, 31, 3). Total
hippocampal volume was also extracted from an updated routine for automated segmentation of the hippocam-
pal subfields implemented in FreeSurfer version 6.0%%

Resting-state fMRI (EPI) data processing. Resting-state fMRI data were processed based on a workflow
described previously**. To remove potential scanner instability effects, the first four volumes of each EPI sequence
were removed. This was followed by slice timing and rigid-body motion correction to the mean EPI image in
AFNTI®. To compare head motion between groups, head motion was calculated by mean framewise displacement
(FD) using Jenkinson's relative root mean square (RMS) algorithm®. Affine transformation from mean EPI image
to T1 volume was calculated using BBRegister® and nonlinear transformation from T1 to the 2 mm MNI152 tem-
plate was calculated using Advanced Normalization Tools (ANTs)®. Brain mask, cerebrospinal fluid (CSF) mask
and white matter (WM) mask were parcellated using FreeSurfer®”-** and transformed into EPI space and eroded
by 2 voxels in each direction to reduce partial volume effects. Realigned timeseries were masked using the brain
mask. Differences in global mean intensity between functional sessions were removed by normalizing the mean
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of all voxels across each run to 100. Simultaneous surface and volume smoothing was applied using FreeSurfer:
Cortical voxels were sampled to the surface and smoothed in surface space with a 10 mm FWHM Gaussian
kernel while subcortical voxels were smoothed separately in volume space with a 5mm FWHM Gaussian ker-
nel. Outliers in the EPI sequence were discovered based on intensity and motion parameters using ArtDetect
(http://www.nitrc.org/projects/artifact_detect). This was followed by nuisance regression of motion-related arti-
facts using a GLM with six rigid-body motion registration parameters and outlier scans as regressors. Principal
components of physiological noise were estimated using the CompCor method®'. Joined WM and CSF mask and
voxels of highest variance were used to extract two sets of principal components (aCompCor and tCompCor).
Timeseries were then denoised using a GLM model with 10 CompCor components as simultaneous nuisance
regressors. Note that global signal regression was not performed because this processing step can induce nega-
tive correlations in group-level results®>. Finally, timeseries data were temporally filtered (high-pass=0.01 Hz,
low-pass =0.1Hz).

Seed-based whole-brain functional connectivity. To estimate connectivity, spherical regions of inter-
est (ROIs) of 6 mm radius were defined in the MNI152 space (Fig. 1a) based on the peak voxel (MNI: —26, 62, 10;
and homologous (x-flipped) coordinate) in aPFC reported in ref.’ to show increased BOLD signal during lucid
compared to non-lucid REM sleep. In order to ensure that the spheres were contained within the pial surface
of the cortex, spheres were shifted by two voxels in the x and y dimensions yielding a final MNI coordinate of
x= £ 24, y=64, z=10. Although aPFC functional connectivity was the main target of the current investigation,
we also performed supplementary seed-based functional connectivity analysis on other regions identified in ref.’
to increase BOLD signal during lucid REM sleep, based on the peak voxel coordinates in left inferior parietal
lobule (IPL) (MNI: —50, —52, 52), right IPL (MNI: 38, —62, 52), left inferior temporal gyrus/middle temporal
gyrus (ITG/MTG) (MNI: —54, —60, —16), right ITG/MTG (MNI: 64, —38, —14), left precuneus (MNI: —10,
—68, 42) and right precuneus (MNI: 8, —78, 48). ROI masks were transformed back to each subject EPI space
using inverse nonlinear MNI152 to T1 transform and affine T1 to EPI (thresholded after interpolation at 0.5).
Translated ROIs were restricted within the cortical ribbon mask. ROI timeseries were estimated by averaging
voxels within each ROI. Full brain connectivity (correlation) maps were calculated using AFNI®. Connectivity
maps were z-transformed using Fisher’s r-to-z transform and then spatially transformed into MNI152 space.
Group-level analysis was conducted using the general linear model (GLM) framework implemented in SPM12
(Wellcome Trust Department of Imaging Neuroscience, University College London, UK). Voxelwise independent
samples t-tests were performed between groups. Whole-brain analyses were conducted, correcting for multiple
comparisons using topological FDR*® at the cluster level. Cluster forming threshold was set at p < 0.0075 and
cluster size threshold was set at p < 0.05 (cluster corrected). Surface rendering was performed using FreeSurfer
and Surf Ice (https://www.nitrc.org/projects/surfice/).

Angular gyrus (AG)/intra-parietal sulcus (IPS) subdivision analysis. Cytoarchitectonic mapping
studies have shown that AG can be divided into anterior (PGa) and posterior (PGp) subdivisions and IPS can
be divided into three distinct subdivisions (hIP1 on the posterior lateral bank, hIP2 which is anterior to hIP1,
and hlP3 which is posterior and medial to both subdivisions)>!*2. The subdivisions of AG and IPS have been
shown to have distinct structural and functional connectivity patterns®>. We performed a follow-up analysis on
the functional clusters identified in our seed based functional connectivity analysis in order to characterize the
overlap between these clusters and the anatomical subdivisions of these regions. Five regions of interest (ROIs)
were constructed using maximum probability maps (MPM:s) with the atlas probability maps from the Anatomy
Toolbox v1.8 in SPM®%. MPM:s create non-overlapping regions of interest from the inherently overlapping cytoar-
chitectonic probability maps®*?>. The anatomical boundaries of these maps are described in detail in previous
publications®"*>*°. Mean connectivity values from each binarized mask were exacted using the MarsBar toolbox®°.

Large-scale networks (LSNs) analysis. In order to compare whether connectivity within and between
established large scale resting-state brain networks showed differences between groups, we extracted timecourses
from a set of 166 nodes from a meta-analysis by Power, et al.** corresponding to 7 different systems: the default
mode network (DMN; 58 nodes), the cingulo-opercular network (CO; 14 nodes), the frontoparietal control net-
work (FPCN; 25 nodes), the salience network (SN; 18 nodes), the ventral attention network (VAN; 9 nodes), the
dorsal attention network (DAN; 11 nodes) and the visual system (VIS; 31 nodes). For each network, we calculated
the mean correlation between all nodes within the network (within-network connectivity) as well as the mean
correlation between all nodes of a given network and all the nodes of each other network (between-network
connectivity). Correlation values were z-transformed using Fisher’s r-to-z transform. We also evaluated the
overlap between our seed-based functional connectivity results and a 17-network parcellation of human brain
connectivity networks®. The 17-network parcellation in MNI space was down-sampled from 1 mm isotropic to
2 mm isotropic to match the space of the functional connectivity results and the spatial overlap of all functional
connectivity clusters with each network was calculated as the percentage of significant (cluster corrected) voxels
within each network. We followed up this network overlap analysis by evaluating the connectivity between all
nodes within the frontoparietal control subsystem that showed the largest overlap with the functional connectiv-
ity results, based on a 400 node parcellation of the 17 functional networks®.

Graph-theoretic network analysis. To construct functional networks for graph-theoretic analysis, ana-
tomical scans were segmented using FreeSurfer and parcellated into 1015 regions according to the Lausanne 2008
atlas included in the connectome mapping toolkit*”*%. Parcellation masks were transformed back to each subject
EPI space using the BBRegister affine T1 to EPI transform. Voxel-level fMRI timeseries in each subject’s native
space within each mask were averaged and correlated to all other regions, yielding an adjacency matrix A whose

SCIENTIFICREPORTS|  (2018)8:17798 | DOI:10.1038/s41598-018-36190-w 11


http://www.nitrc.org/projects/artifact_detect
https://www.nitrc.org/projects/surfice/

www.nature.com/scientificreports/

entries A reflect the functional connectivity between region i and region j for each subject. Resting-state fMRI
data pre-processing was identical to the procedures described above (see Resting-state fMRI data processing) with
the exception that no spatial smoothing was applied, as spatial smoothing can distort network measures derived
from average timeseries within parcellated regions (e.g., ref.?”). All network metrics were computed in Matlab v
9.1 (The MathWorks Inc., Natick, MA, 2008) using the Brain Connectivity Toolbox®. For each node in the net-
work we analyzed the degree (k), strength (s), betweenness centrality (BC) and eigenvector centrality (EC). These
metrics are described in detail elsewhere (see refs*®*® for reviews). In brief, k quantifies the total number of con-
nections of a node, while s quantifies the sum of the weights of all connections to a node. BC and EC are different
measures of centrality of nodes: BC is the fraction of all shortest paths in the network that contain a given node
and EC quantifies nodes connected to other densely connected nodes as having high centrality.

In order to compare network and topological properties between groups it is important to ensure that graphs
contain the same number of edges®. This can be achieved by thresholding A by the connection density (6), also
known as cost factor, of the network, which is the number of existing connections over the total number of pos-
sible connections'®!°!. Following recommended practice®, rather than apply a single threshold to graphs, which
would limit any findings to a single arbitrary connection density, we thresholded graphs over a range of connec-
tion densities (0.05 <$ <0.35) in steps of 0.01. For all measures except node strength, for which we computed
undirected weighted matrices, network metrics were calculated on binarized thresholded matrices for each value
of § by setting all connections >6 to 1 and all connections < to 0. In order to compare groups over the range of
thresholds, we calculated the area under the curve (AUC) of the §-thresholded data by integrating the curve over
the specified density range for each graph metric, as has been applied in previous studies (e.g., refs'°»12). To test
the null hypothesis of no difference in AUC between groups, we used a nonparametric bootstrapping procedure
in which we randomly reassigned groups with replacement 10,000 times and computed a bootstrapped ¢-value
for each node. To correct for multiple comparisons, the maximum ¢-value across all nodes for each surrogate dis-
tribution was recorded to obtain a maximum t distribution and the level of statistical significance was set against
the maximum distribution at o= 0.05. This statistical approach has been used in previous studies and allows for
strong control over type I error'>1%4,

Data Availability
The data that support the findings of this study are available from the corresponding author on reasonable re-
quest.
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