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Cystic fibrosis (CF) is the most common autosomal recessive disorder in Caucasian pop-
ulations. Individuals with CF have seen significant increases in life expectancy in the last 
60 years. As a result, previously rare complications are now coming to light. The most 
common of these is cystic fibrosis-related diabetes (CFRD), which affects 40–50% of CF 
adults. CFRD significantly impacts the pulmonary function and longevity of CF patients, 
yet a lack of consensus on the best methods to diagnose and treat CFRD remains. 
We begin by reviewing our understanding of the pathogenesis of CFRD, as emerging 
evidence shows the cystic fibrosis transmembrane conductance regulator (CFTR) also 
has important roles in the release of insulin and glucagon and in the protection of β cells 
from oxidative stress. We then discuss how current recommended methods of CFRD 
diagnosis are not appropriate, as continuous glucose monitoring becomes more effec-
tive, practical, and cost-effective. Finally, we evaluate emerging treatments which have 
narrowed the mortality gap within the CF patient group. In the future, pharmacological 
potentiators and correctors directly targeting CFTR show huge promise for both CFRD 
and the wider CF patient groups.

Keywords: diabetes, cystic fibrosis, cystic fibrosis transmembrane conductance regulator, pathophysiology, 
complications, treatment

CYSTiC FiBROSiS (CF)

Cystic fibrosis is the most common lethal autosomal recessive disorder, affecting approximately 1 
in 2,500 live births with a carrier frequency of 1/36 among northern Europeans (1). Almost 70,000 
people live with CF globally (2). CF arises from mutations in the cystic fibrosis transmembrane 
conductance regulator (CFTR) gene that causes sufferers to experience thick, sticky mucous secre-
tions in multiple mucin-producing organs. This gives rise to the characteristic lung pathology as well 
as problems in the gastrointestinal system, pancreas (exocrine and endocrine), reproductive system, 
and osteology (3). Since CFTR’s identification as the causative gene, extensive work has gone into 
understanding this gene and its roles in CF (4).

The CFTR gene is a cAMP-regulated chloride channel that is expressed in the apical membranes 
of various epithelial cells (5). The channel is part of the ATP-binding cassette transporter superfamily, 
meaning it hydrolyzes and conducts ATP. It also regulates vesicle trafficking and a number of apical 
membrane associated channels, including the epithelial sodium channel, the outwardly rectifying 
chloride channel, and the retinal outer medullary potassium channel (6, 7). Furthermore, CFTR has 
a role in regulating bicarbonate release, reducing the pH of secretions, especially in the pancreas, 
duodenum, ileum, and lung (8). Dysfunctional bicarbonate secretion is believed to be the major 
cause of CF pathology in these organs (9, 10).

Loss of CFTR function has been identified as disease causing. There are over 2000 mutations 
of the CFTR gene recorded in the Cystic Fibrosis Mutation Database (11). Of these, tests are 
available for 70, which will identify at least one mutant in most patients. However, in 18% of 
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patients, only one abnormal allele is identified. CF mutations 
can be grouped as severe or mild and further categorized as 
one of six classes. Severe mutations are classes I–III, while mild 
mutations are classes IV–VI. Ultimately, these mutations affect 
CFTR in reaching, remaining, and/or functioning at the cell 
surface, impacting on secretory processes involving this chan-
nel, giving rise to CF pathology. For a review on CF mutational 
classes, see Wang et al. (12).

CYSTiC FiBROSiS-ReLATeD DiABeTeS 
(CFRD)

In the 1950s, CF patients had a life expectancy of less than a year. 
By 1970, it was 8 years. This low life span was multifactorial, but 
mostly attributable to poor management of pulmonary infections 
and to a lack of understanding of the defect in CF. Improvements 
in both have dramatically improved CF life expectancy. The CF 
Foundation patient registry (13) shows that the median predicted 
survival age in 2013 was 40.7  years in the USA population, 
compared to 45.1 years currently in the UK (14). Furthermore, a 
recent population based cohort study found that the median age 
of survival in Canada (based on 2009–2013 data) was 10 years 
greater than in the United States (50.9 vs. 40.6 years, respectively) 
(15). The authors suggested that differential access to transplan-
tation related to the referral or donor lung allocation process; 
variable post-transplant survival; and differences in health care 
systems, including access to insurance, may in part explain the 
different rates in mortality.

However, this improvement in survival means patients are 
now experiencing complications in addition to lung disease and 
impaired nutrition. The most common of these is CFRD, with 
liver disease, bone disease, distal intestinal obstructive syndrome, 
gastroesophageal reflux disease, and depression also commonly 
observed (2). Two percent of CF patients have CFRD in childhood, 
increasing to 20% of adolescents, eventually reaching 40–50% of 
CF patients in adulthood (16). This expanding proportion sug-
gests a multifactorial, complex, and progressive pathogenesis of 
CFRD.

Survival is significantly impacted in CFRD patients, with 
fewer than 25% surviving to an age of 30, compared to 60% of 
CF patients with normal glucose tolerance (NGT) (17). CFRD 
had a disproportionate impact on females, who showed a 16.3-
year reduction in lifespan when compared to NGT female CF 
patients. By contrast, male CFRD patients only saw a 0.4-year 
reduction in longevity (18). Sims et  al. (2005) (19) observed 
a greater reduction in lung forced expiratory volume in 1  s 
(FEV1) in female CFRD patients compared to NGT CF patients. 
This gender imbalance in CFRD is exacerbated by the higher 
prevalence of CFRD in females (20, 21). Although the cause 
for this sex difference in CFRD mortality was unclear; in 2009, 
Moran et al. (16) reported “previously noted sex differences in 
mortality have disappeared, and the gap in mortality between CF 
patients with and without diabetes has considerably narrowed.” 
Early diagnosis, improved physician care, and aggressive treat-
ment have played a major role in addressing this imbalance and 
improving survival.

PATHOPHYSiOLOGY OF CFRD

Although both diabetes mellitus type 1 (DM1) and CFRD are 
associated with a reduction in insulin production, the autoim-
mune pathogenesis seen in DM1 is not observed in CFRD. There 
is no difference in the frequency of auto-antibodies between CF 
patients with CFRD or without CFRD (22, 23) Thus, the patho-
genesis of CFRD is distinct from DM1 and is rooted in cellular, 
endocrine, organ level, and system level dysfunction (Figure 1).

Changes in chloride conductance have definitively been 
shown to alter β cell function. Using patch clamp techniques, 
lowered intracellular chloride levels impaired depolarization in 
response to glucose levels (16 mM) that normally trigger insulin 
release (24). CFTR is expressed in rat pancreatic α and β cells 
and appears to control their resting potential (Figure 2) (25). In 
α cells, CFTR has a role in glucagon suppression, as α cells have 
a KCl co-transporter which maintains a low level of chloride 
in the cell. The opening of CFTR, thus, induces chloride entry, 
causing membrane hyperpolarization, hence inhibiting glucagon 
secretion. CFTR dysfunction, thus, results in impaired glucagon 
suppression, which is observed in CFRD patients (26). Huang 
et al. used a CFTR mutant mouse model to explore the role of 
CFTR in regulating glucagon secretion (27). Their results showed 
that CFTR negatively regulates glucagon secretion by potentiat-
ing adenosine triphosphate-sensitive K+ (KATP) channels.

Conversely, β cells retain a high chloride electrochemical 
potential. CFTR opening in the β cell, therefore, allows chloride 
efflux and sets the cell resting potential at a level that maintains 
optimal insulin levels. Guo et al. (28) showed functional CFTR 
was indeed essential for normal β cell function. Glucose elicited 
membrane depolarization, calcium oscillations, and insulin 
secretion were abolished or reduced by inhibition or knockdown 
of CFTR in primary mouse β cells and β cell lines. Insulin release 
was also significantly attenuated in F508del mice. VX-809, a 
corrector of the F508del mutation, successfully rescued defects 
in F508del β cell lines. Similarly, Ntimbane et  al. (29) showed 
the use of a pharmacological CFTR inhibitor gives impeded 
insulin release in a normal β cell line, but had little effect on 
CFTR knockout cells. CFTR, thus, plays an important role in β 
cell depolarization and insulin release. The ATP-sensitive potas-
sium channel has previously been shown to be insufficient to 
cause depolarization, and therefore insulin release, on its own 
(30). CFTR chloride conductance is altered by ATP and, thus, 
CFTR may play a role in glucose-sensitive depolarization. CFTR 
dysfunction, therefore, gives a more hyperpolarized potential and 
impaired depolarization, meaning greater glucose concentrations 
are required for depolarization. Furthermore, CFTR dysfunction 
impairs the trafficking of vesicles, reducing insulin release follow-
ing depolarization (7). These different experimental approaches 
show that hyperpolarization, impaired depolarization, and defec-
tive release of insulin vesicles by pancreatic β cells significantly 
contribute to the pathogenesis of CFRD. This is often overlooked 
by the field making it an important area for future investigation.

Cystic fibrosis-related diabetes is associated with decreased 
first phase insulin release (depolarization dependent), while sec-
ond phase insulin (depolarization independent) remains intact 
(26). Knockout voltage-gated calcium channel [Ca(V)2.3(−/−)] 
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FiGuRe 1 | Diagram demonstrating the complex pathogenesis associated with cystic fibrosis-related diabetes (CFRD).

FiGuRe 2 | Hypothesized model of normal (left) and cystic fibrosis (CF) (right) beta cells. The defect in CFTR in the CF beta cell impairs both chloride efflux and 
vesicle release, impairing insulin secretion, giving an insulinopenic state.
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islets have been shown to impair second phase insulin, with no 
impact on first phase insulin (31). The fact that second-phase 
insulin release is independent of depolarization and spared in 

CFRD is consistent with the hypothesis that CFTR is involved 
in β cell depolarization and first-phase insulin release. This may 
explain why hyperglycemia is only seen postprandially in CFRD.
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A further model of why B-cell function is altered in CF is the 
B-cell extrinsic hypothesis. The model proposes that CFTR func-
tions in non-cell-autonomous fashion to alter insulin secretion 
through paracrine or endocrine signaling and involves many dif-
ferent (non-B-cell) cell types. Sun X et al. used a CFTR KO model 
of neonatal ferret islets to show that these CFTR-expressing 
exocrine-derived cells affect islet insulin secretion by secreting 
pro-inflammatory factors such as interleukin (IL)-6 (32). This is 
supported by studies showing a proinflammatory state in the CF 
ferret pancreas at 1–2 months of age is associated with hypergly-
cemia and impaired β-cell function and mass (33).

These experiments demonstrate that CFTR dysfunction 
impairs the β cell, leading to insulinopenia. Because insulin from 
β cells can also exert an inhibitory effect on α cell glucagon release, 
this suggests a dual role of CFTR in regulating glucagon secretion; 
there is a direct action on α cells, and an indirect effect through 
insulin from β cells and both may contribute to the glucose 
intolerance in CF. This allows more directed management, but 
also highlights the importance of the future of pharmacological 
potentiators and correctors.

Mutations in CFTR can render β cells more susceptible to 
oxidative stress. β cell lines in which CFTR is silenced displayed 
higher levels of lipid peroxides, NF-κB signaling, and reduced 
antioxidant enzyme activity (SOD, catalase, and glutathione 
peroxidase), especially following incubation with iron/ascorbate. 
Decreased insulin secretion and a raised apoptosis rate in response 
to iron/ascorbate was also observed in CFTR silenced cells (29). 
Defects induced by iron/ascorbate were alleviated by the addi-
tion of Trolox, a potent inhibitor of damage by oxidative stress. 
However, rescue by Trolox was impaired in the CFTR silenced 
cell line. These in vitro experiments suggest that in addition to 
playing a role in insulin release, CFTR protects the β cells from 
oxidative stress.

There is evidence that oxidative stress occurs in  vivo in CF 
patients. Raised levels of peroxidized fats and oxysterols are 
present in CF plasma, indicating abnormal lipid metabolism 
and increased susceptibility to oxidation of lipoprotein lipids. 
In addition, pancreatic insufficiency and diminished bile acid 
cause malabsorption of important fat-soluble antioxidants, such 
as carotenoids, tocopherols, and coenzyme Q-10 (34). Thus, CF 
patients show raised susceptibility to oxidative stress, which may 
affect β cells in vivo in the same way demonstrated in vitro by 
Ntimbane et al. (2016) (29). These effects are likely to develop over 
time and are reflected in gradual decline seen in glucose tolerance 
in CF, evidenced by the multiple glucose tolerance categories CF 
patients can be categorized as the expanding proportion of CF 
patients with CFRD as age increases.

Furthermore, pancreatic insufficiency is a hallmark of CF. The 
term CF was first coined to describe the disease from the appear-
ance of the pancreas (35). Although this is not the first recorded 
description of CF, it placed the emphasis on the pancreas. 
Pancreatic insufficiency is present in 85% of CF adults, usually in 
those with severe mutations and plays an important role in CFRD 
pathogenesis (36, 37).

There is a correlation between pancreatic exocrine function 
and carbohydrate tolerance in CF (38, 39). Patients with pancre-
atic insufficiency have a low bicarbonate to chloride transport 

ratio (10). Bicarbonate is essential for the expansion of mucins. 
Impaired bicarbonate secretion, therefore, gives aggregated, 
poorly solubilized and less transportable mucins, which prevents 
fluid movement (9). CFTR dysfunction also reduces secretory 
volume, raising protein concentrations in the pancreatic duct, 
giving duct obstruction and interstitial edema (40, 41). Zymogens 
that fail to be secreted accumulate in the acini, where they digest 
pancreatic tissue (42–44). In porcine models of CF, connective 
tissue replaced degenerated pancreatic exocrine tissue (45). 
This phenomenon, where islet cells are obliterated in the midst 
of pancreatic exocrine tissue destruction, has been termed the 
“Bystander theory” (46).

Cystic fibrosis pancreatic damage begins in  utero and, by 
42 weeks post conception, pancreatic histology can distinguish 
between controls and CF patients (47). CF newborns have raised 
circulating immunoreactive trypsinogen (IRT), a CF pancreatic 
disease biomarker. In severe CF genotypes, this declines rapidly 
in the first years of life, as pancreatic damage occurs (48). Among 
those with severe CFTR genotypes, lowered IRT levels are associ-
ated with raised CFRD risk. The histology and immunostaining 
of human pancreatic islets at autopsy demonstrated changes in 
endocrine cell compartments (49). Whether fibrotic pancreatic 
damage or a pattern they termed lipoatrophic was present, the 
islet system was affected by a peri-insular and intra-insular scle-
rosis with an obvious decrease in beta cells relative to non-β cells. 
Together, these observations provide evidence to suggest that 
pancreatic exocrine insufficiency progressively causes damage to 
pancreatic islets, which can lead to CFRD.

Fat digestion regulates gastric emptying and postprandial 
glycemia via the entero–insular axis. Gastric emptying accounts 
for 34% of the variance in peak plasma glucose following a 75-g 
oral glucose load in normal subjects (50). CF patients suffer 
from impaired fat digestion (as exemplified by their steatorrhea). 
Pancreatic enzyme replacement therapy (PERT) improves this, 
but does not alter fat absorption in 20% of pancreatic insufficient 
CF patients (51). PERT efficiency is impaired in CF by the reduced 
bicarbonate levels in and amounts of pancreatic secretion, lower-
ing intestinal pH. This delays the disintegration of the enteric 
coat to the distal ileum, where fat absorption is less effective (52). 
CFRD patients generally have more rapid gastric emptying and 
lower gastric inhibitory polypeptide (GIP) and glucagon-like 
peptide-1 (GLP-1) (which prime and stimulate insulin release) 
levels than CF and control groups (53, 54). Following meals, 
this contributes to greater postprandial glycemic excursions, 
consistent with CFRD being primarily associated with impaired 
primary insulin release. PERT normalizes GLP-1 secretion and 
gastric emptying, also improving (but not restoring) GIP secre-
tion and blood glucose concentrations at 60 min (53). Thus, fat 
mal-digestion in CF patients contributes to the pathophysiology 
of CFRD and is exacerbated by any liver and gall-bladder pathol-
ogy present.

COMPLiCATiONS OF CFRD

In addition to CF complications, CFRD patients experience 
diabetic and additional complications, including compromised 
nutritional status, lung function, and susceptibility to respiratory 
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infections. Due to the late diagnosis of CFRD, unrecognized and 
untreated CFRD is observed prior to firm diagnosis. Retrospective 
studies show in the years preceding therapy for CFRD, reduc-
tions in FEV1, forced vital capacity (FVC), and body mass index 
(BMI) are observed (55, 56). Initiating insulin therapy improves 
respiratory function and BMI, suggesting that the health decline 
observed in CFRD patients prior to diagnosis is due to reduced 
insulin production (55). A 4-year prospective study of NGT, 
impaired glucose tolerance (IGT) and CFRD patients showed 
overall decreases in FEV1 and FVC (57). Decline in respiratory 
function was greatest in the CFRD group, and CFRD patients 
in the lowest quartile of insulin production showed the greatest 
clinical decline. This has also been observed in a NGT CF patient 
group, suggesting clinical decline is correlated with low insulin 
production (58).

COMPLiCATiONS uNiQue TO PATieNTS 
wiTH CFRD COMPAReD TO NGT CF

Excessive protein catabolism is problematic in CF lungs, which 
is associated with an imbalance between catabolic and anabolic 
enzymes (59, 60). Studies on infants (<6 months) and children 
(<18 years) have shown that this begins at an early age (61, 62). 
Adult studies have shown reduced insulin (a potent anabolic 
hormone) contributes to a shift toward an inflammatory cata-
bolic state, potentially compromising lung function. Intravenous 
isotopic leucine has demonstrated that CF patients have signifi-
cantly more systemic proteolysis than controls, that proteolysis 
rates correlate with glucose tolerance, and that insulin infusion 
suppresses systemic proteolysis (63). Despite the reduction in 
proteolysis and improvement seen in CFRD with insulin therapy, 
compared to their NGT counterparts, CFRD patients retain 
poorer lung function and higher mortality rates (16, 64).

The decline in pulmonary function observed in CFRD may 
be due to insulinopenia. The lung has recently been identified 
as a site of pathology in non-CF diabetic patients; however, the 
functional reserve in the lung means that this is not problematic 
for these patients. Human diabetic lungs display decreased 
pulmonary capillary blood volume, lung elastic recoil, FVC, and 
FEV1, while also showing a thickened basal lamina and increased 
collagen and elastin deposition. These effects compromise alveo-
lar space, diffusion, and breathing efforts (65–70). Mouse models 
of diabetes show that diabetic and control mice produce similar 
levels of collagen and elastin, but diabetic mice exhibit lower total 
protein production. The rate of breakdown of connective tissue is 
lower in diabetic mice (71). Cavan et al. (72) hypothesize that the 
non-enzymatic glycation and crosslinking of collagen by airway 
glucose in the lung reduces the rate of collagen breakdown. 
Pulmonary changes in DM1 and DM2 are likely to be seen in 
CFRD, contributing to reduced lung function. Supporting this 
hypothesis, CT scans of CF patients showed patients with CFRD 
have more structural lung disease compared to NGT CF patients, 
with more significant airway thickening and parenchymal 
changes (73).

Autonomic neuropathy is present in 52% of CFRD patients, 
frequently resulting in diminished cardiorespiratory reflexes 

(74). Neuropathy may also affect the phrenic nerve, reducing lung 
function by affecting inspiratory muscle innervation. In addition, 
there is a decline in inspiratory muscle strength in DM1 patients 
(75). Similar changes in the skeletal musculature also occur in 
DM2 (76). These are likely to occur in CFRD and, therefore, 
affect pulmonary function, though this has not been explicitly 
investigated in CFRD, which needs to be addressed.

Overall, studies of lung pathology in patients with DM1 and 
2 suggest distinct pathological changes may occur in the lungs 
of CFRD patients. These are superimposed on the pulmonary 
changes seen in NGT CF patients, which exacerbate pulmonary 
status.

As a consequence of elevated blood glucose levels (BGL), 
glucose can reach body compartments it is normally absent 
from—including the airways. Glucose becomes detectable in 
the airway secretions of healthy volunteers at BGLs between 6.7 
and 9.7 mmol/L (77), suggesting active processes are involved in 
preventing glucose from entering the airways. Above threshold, 
airway glucose rises in a linear fashion. It was found that in 
CFRD patients, glucose appears in airway secretions at a BGL 
of 8 mmol/L, and the study participants’ BGLs were above this 
level for 50% of the day (78). Glucose in bronchial aspirates in 
non-CF intubated patients raises the risk of respiratory infec-
tion by pathogenic bacteria, including MRSA (79). CFRD is a 
risk factor for infection by P. aeruginosa (PSA), the dominant 
pulmonary pathogen in CF patients (80). In vitro studies show 
that PSA encourages glucose to enter the airway apical space 
via the paracellular pathway (81). A murine model of CFRD 
demonstrated an exaggerated, but less effective, inflammatory 
cell response to intratracheal PSA challenge when compared to 
control, CF, or diabetic mice (82). The CF and diabetic mice did 
show a diminished ability to control infection, however, their 
responses were significantly better than that of the CFRD mice. 
Thus, airway glucose in CFRD favors pathogenic bacterial growth 
and blunts the response to infection, leaving CFRD patients more 
susceptible to pulmonary infection.

DiABeTiC COMPLiCATiONS iN CFRD

Macrovascular atherosclerotic disease is a common complica-
tion in non-CF diabetic patients but is rarely observed in CFRD 
(43, 83). Arterial stiffness in CF patients is increased in CFRD 
(43). Figueroa et  al. (84), however, demonstrated that there is 
little correlation between abnormal lipid concentrations and 
glucose tolerance; instead, they found that hypertriglyceridemia 
in CF is related to chronic low-grade inflammation. Whether 
hypertriglyceridemia increases the risk of cardiovascular disease 
in people with CF is unknown, but as CF patients live longer, 
in those with family histories of cardiovascular disease, this may 
arise. Hypertriglyceridemia could prove to be difficult to manage 
as CF patients are recommended to obtain 40% of their calorific 
intake from fats. There have only been case reports of CFRD 
patients with symptomatic single and multi-vessel coronary 
disease thus far (85, 86).

Microvascular complications have been observed in patients 
with CFRD for 10 years or more (74, 87–89). A well-controlled 
comparison study between CFRD and DM1 patients showed no 
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difference in the prevalence of peripheral neuropathy, nephropa-
thy, or microvascular complications, while microalbuminuria 
was more common in CFRD and retinopathy was less common 
(88).

The prevalence of acute kidney injury in CF individuals is well 
documented (90) but few studies have investigated the prevalence 
of chronic kidney disease (CKD). A cross-sectional study by 
Berg et al. showed a prevalence of moderate CKD of 2.7% (11% 
if transplanted individuals included) in CF individuals, which is 
higher than in the general population of similar age (91). This 
supports previous studies, including a large American cohort 
study of 11,912 CF adults where CKD prevalence was 2.3% (92) 
and a British retrospective 4-year study in which prevalence 
was 2% (93). Thus, these observations call for further studies to 
investigate predictors of CKD in CF individuals and find targets 
for therapeutic intervention.

DiAGNOSiS OF CFRD

The identification of CFRD is important for a number of reasons. 
In the 2–5 years prior to diagnosis, the pulmonary and nutritional 
status of CFRD patients deteriorates (55, 56). Untreated CFRD 
gives further decline. In addition to CF complications, CFRD also 
presents unique issues, such as airway glucose, which promotes 
bacterial lung infections. Diabetic complications also affect CFRD 
patients. These factors culminate in increased mortality in CFRD.

There are multiple methods available for the diagnosis of 
diabetes. Both fasting blood glucose and glycated hemoglobin 
(HbA1c) levels, which are used in diabetes mellitus (DM), are 
unsuitable for diagnosing CFRD. CFRD patients experience tran-
sient postprandial hyperglycemia, while fasting hyperglycemia 
never develops or only appears years following initial diagnosis. 
Solely testing fasting glycemia would have missed CFRD in 20% 
of patients (94).

HbA1c measures average glycemic status over 60–90 days, the 
lifespan of a red blood cell. CFRD patients experience transient 
postprandial hyperglycemia. This does not significantly affect the 
glycation status of red blood cells and HbA1c can be spuriously 
low in patients with CF, possibly due to increased red blood cell 
turnover due to inflammation (46). Indeed, the HbA1c test has a 
sensitivity of only 50% in detecting CFRD when compared to the 
oral glucose tolerance test (OGTT) (the gold standard) and does 
not correlate with mean plasma glucose levels (95, 96). For these 
reasons, neither fasting glucose levels nor the HbA1c test serves 
as effective means for diagnosing CFRD.

The American Diabetes Association recommends testing CF 
patients from 10 years of age using the OGTT (97). The conven-
tional OGTT, however, has been shown to have weak capacity to 
diagnose DM in CF individuals (98), as the inherent variability of 
the test and the variability observed in individual CF patients over 
time, means it does not accurately reflect glucose handling (99). 
The test itself is inconvenient and time consuming, thus adding 
to the patient’s already high burden of investigations, treatments, 
and hospital visits, causing low adherence to annual screenings 
(100). Moreover, when the OGTT values were established, the 
cut-offs defining CFRD were taken from Pima Native Americans 
with Type 2 Diabetes, in which they were used to forecast 

microvascular complications (e.g. retionapthy) and may not be 
appropriate to use in CF (101).

Furthermore, there is increasing evidence that early insulin 
deficiency in CF has a significant impact on clinical status, prior 
to the 120-min OGTT diagnosis of diabetes (102). Thus, a model 
that predicts early insulin deficiency glucose abnormalities should 
be sought, which will be a more proactive and cost-effective 
strategy. Hence, continuous glucose monitoring (CGM) systems 
are an emerging technology that allows frequent (every 5 min) 
glucose measurements to monitor glucose trends in real time. 
A RCT by Bolinder et al. investigated the use of one such flash 
glucose sensor system (103). This resulted in a significant reduc-
tion in time and incidence of hypoglycemia, demonstrating that 
the technology is a safe and effective replacement to conventional 
self-monitoring of blood glucose. As CGM systems become more 
affordable, they are already being used in clinical practice, so it is 
feasible that this technology can be used to diagnose DM in CF 
individuals. Recent studies have shown that, in adult patients with 
CF, CGM systems identified a greater degree of impaired glucose 
metabolism than the gold standard 2-h OGTT. The increased 
frequency of monitoring glucose changes during real-life settings 
for 3–5 days improves the chance to detect more glycemic abnor-
malities during basal and postprandial conditions compared to 
other short-timed methods (104). However promising, their use 
as a diagnostic tool is still in development. More work is needed 
to establish a consensus on screening parameters/thresholds [e.g. 
number of glucose elevations are not validated in CFRD (100)] 
and its correlation with clinical outcomes.

TReATMeNT OF CFRD

The treatment of CFRD must be considered with the desired out-
comes in mind. In non-CF diabetic patients, the major complica-
tions to be controlled are the immediate polydipsia and polyuria 
as well as the long-term need to reduce micro- and macrovascular 
complications. CFRD, however, is treated with the primary aim 
of reducing airway glucose as well as pulmonary and nutritional 
decline (43). This is achieved via the blood glucose lowering and 
anabolic effects of insulin, which improves calorie intake, body 
weight, airway glucose levels, and frequency of infection. Years 
before diagnosis, CFRD patients experience declining pulmonary 
and nutritional status (105). It may be advisable to begin insulin 
therapy early for people with or developing CFRD, as glucose 
tolerance declines, especially as CFRD is the result of progressive 
β cell dysfunction.

According to the clinical care guidelines, the only recom-
mended treatment for CFRD is insulin (97). As well as controlling 
hyperglycemic excursions, the anabolic effects of insulin have 
been shown to be extremely efficient in reversing the adverse 
effects associated with CFRD (55, 56, 63). CF patients experience 
gastrointestinal complications. For this reason, they are recom-
mended to consume three meals and three snacks a day, and 
have a recommended daily calorie intake of 120–150% of that of 
the general population (83, 106). Short acting insulin provides 
flexibility and can be adjusted for snacks, night feeds, and the 
carbohydrate content of meals, although a recent review on 
managing CFRD found no significant difference between using 
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long-acting insulins, short-acting insulins or oral hypoglycemic 
agents to control hyperglycemia in CF individuals (107). Insulin 
treatment carries the risk of hypoglycemia, which can occur dur-
ing daily prescribed physiotherapy in CFRD. The prevalence of 
hypoglycemia in CFRD is comparable to that in DM1; however, 
episodes in CFRD patients seem to be less severe (108). The use 
of insulin pumps provides an alternative approach to basal/bolus 
insulin in treating CFRD. This has been shown to further reduce 
protein catabolism and hypoglycemic events in patients (109). 
In addition, fasting and postprandial BGLs improve, as do body 
weight, lean mass and HbA1C. This study was limited, however, 
as only nine patients were involved and comparisons were made 
to baseline, before use of the pump, rather than a control group. 
Nevertheless, insulin therapy provides huge improvements in 
CFRD patients.

Incretins act to prime and stimulate β cells during digestion 
and maximize insulin release in response to postprandial hyper-
glycemia. Therapies based on incretins are used in diabetics (110). 
Current guidelines for DM2 recommend the use of exenatide and 
liraglutide. Shorter acting GLP-1 agonists may be better for the 
treatment of early stage CFRD; these improve insulin release and 
slow gastric emptying, ameliorating glycemia. GLP-1 has been 
shown to stimulate ERK signaling in β cells and GLP-1 receptor 
agonists could potentially promote β cell survival (111). However, 
GLP-1 agonists exhibit side effects including nausea and vomit-
ing which may require their withdrawal. Furthermore, PERT 
has already been shown to normalize GLP-1 production, slow 
gastric emptying, and improve post-prandial hyperglycemia in 
CF patients compared to control (46). Finally, as DPP-4 breaks 
down GLP-1 in the circulation, inhibitors of this enzyme have 
been suggested as an alternative to the use of GLP-1 agonists (44).

The use of PERT is also potentially beneficial in CFRD. 
Issues with fat mal-digestion exist in CFRD patients and PERT 
aims to improve this by slowing gastric emptying. Pancreatic 
insufficiency means that the pancreas is impaired in secreting 
of proteases, lipases and amylases, and nutrients are thus not 
properly digested nor absorbed. Unprotected enzymes cannot be 
orally administered, due to denaturation in the stomach. PERT 
encapsulates exogenous enzymes in an enteric coat made of a pH 
sensitive polyacryl acid layer, which dissolves at a pH greater than 
5.5. The enzymes are, thus, protected from the acidic stomach 
but are released in the alkaline duodenum, meaning pancreatic 
amylase, lipase, and protease can be exogenously delivered. 
Partially digested fats have an important role to play in triggering 
the enterogastric reflex, reducing gastric emptying by inhibiting 
the vagal stimulation of the stomach and activating sympathetic 
neurons, which stimulates the release of hormones such as CCK. 
Reinstating the proper digestion of fats also restores proper gas-
tric emptying and increases incretin production (53).

A difficulty in optimizing PERT is that dosing can vary 
depending on the constituents of a meal. A fat heavy meal may 
require more PERT capsules, to account for the greater lipid 
content. Furthermore, PERT depends on an alkaline duodenum, 
but pancreatic insufficiency and defective bicarbonate secretion 
may reduce pH. This means the enteric coat may not dissolve 
properly, reducing the efficacy of PERT. The use of proton pump 
inhibitors may alleviate this problem, reducing gastric acid 

secretion, increasing duodenal pH, and allowing the enteric coat 
to dissolve (106, 112). These issues demonstrate how difficult it 
can be for CFRD patients to manage even well targeted therapies 
such as PERT.

Diabetics are commonly advised to restrict their glycemic 
excursions by avoiding sugary foods and consuming high fiber, 
low fat diets (43). This conflicts with the high calorie intake and 
frequent snacks recommended for CF patients, who experience 
nutritional decline in CFRD. High-fat diets are recommended to 
compensate for the poor lipid absorption in this patient group. 
Nutritional status and weight are key determinants in predicting 
mortality, with good nutritional status being associated with posi-
tive outcomes (113). Providing dietary advice to CFRD patients 
in order to manage their diabetes and promote nutritional status 
will likely require a multidisciplinary team to uniquely advise 
each patient.

Repaglinide stimulates insulin secretion. A study involving 
seven CFRD patients suggested that repaglinide does have some 
insulinogenic effects and reduces post-prandial glucose levels, but 
injected insulin remained more effective than repaglinide. This 
may be a dosing effect and, if higher doses of repaglinide were 
used, this group may have shown more improvement. This drug 
may be especially appropriate for CFRD without fasting hyper-
glycemia as it has a very short half-life of roughly 1 h, making 
it useful in tackling short lived post-prandial excursions (114).

As mentioned above, there is a body of evidence suggesting 
that the lack of insulin production in CFRD patients may be 
directly related to defective CFTR in β cells. Lumacaftor is a 
CFTR corrector that rectifies folding, preventing the degradation 
of CFTR. This specifically targets class II mutations, including 
the prevalent F508del. In vitro, it has been shown to improve 
CFTR-mediated chloride transport. Ivacaftor is a potentiator, 
thus improving the open probability of gating (class III) or 
conduction defect (class IV) CFTR mutant channels. Clinical 
trials combining Lumacaftor and Ivacaftor have demonstrated 
a modest clinical benefit for F508del CF patients; but Ivacaftor 
alone did not provide significant improvement (44). In addition, 
concerns were also raised about the side effects of lumacaftor 
and ivacaftor combination therapy, including transient dyspnea, 
liver damage, and potential interactions of lumacaftor with other 
drugs. Two clinical trials recently reported their findings on a new 
corrector agent (Tezacaftor) in combination with Ivacaftor (115, 
116). The combination was efficacious in improving pulmonary 
function in patients 12 years of age or older who had CF and were 
homozygous for the CFTR Phe508del mutation, with only mild 
side effects. These results indicate that effective CFTR modulator 
therapy can be beneficial in this group of patients.

CONCLuDiNG ReMARKS

Cystic fibrosis-related diabetes adds to difficulties in maintaining 
weight, pulmonary function, and susceptibility to infection seen 
in all CF patients. The burden of managing a second complex 
condition with its own distinct complications, such as retinopathy 
and neuropathy, compounds the problems CFRD patients need 
to manage. Better understanding how altered gastric emptying 
and fat digestion contribute to CFRD pathogenesis has allowed 
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for the development of targeted therapies such as PERT. Existing 
therapies developed for diabetics, such as insulin, have been 
used to effect in CFRD. However, no trials have compared the 
efficacy of different insulin regimens, which should be addressed 
urgently.

Despite recent advances, our understanding of CFRD patho-
genesis, pathophysiology, and optimal treatment is incomplete. 
New evidence has highlighted the role of CFTR in regulating the 
function of β cells and protecting them from oxidative stress. 
Further work is required to understand how these effects of CFTR 
contribute to CFRD and produce more directed therapies such 
as glutathione to reduce oxidative stress. Second, appreciating 
that the pathogenesis of CFRD is most likely gradual and begins 
in  utero is essential to successfully avoiding the complications 
experienced in the years prior to diagnosis and may form the 
basis of starting therapy as glucose tolerance declines.

Our expanding understanding of CF more generally led to the 
successful development of Ivacaftor in 2012, which has already 
been shown to improve insulin production in CF patients. 
Ivacaftor and Lumacaftor are the first therapies to be used 
which target the defect in CF directly, rather than its symptoms. 
However, each quality of life adjusted year (QUALY) Ivacaftor 
provides costs between £335,000 and £1.2 million. NICE uses a 
limit of £30,000 per QALY, putting this drug out of reach for most 
patients (117, 118). Hence, novel pharmacological correctors, 

such as Tezacaftor, which is currently under FDA and EMA 
review, may provide huge benefit to CFRD patients, and may be 
more cost-effective for health systems and patients alike.

The previously poor outcomes for CFRD compared to NGT 
CF patients has significantly improved in recent years. This is 
largely due to earlier diagnosis, improved understanding of the 
condition and a broader range of management options, allowing 
for more intensive treatment. The future of CFRD, however, may 
prove to be less rosy. Age increases the likelihood of develop-
ing CFRD and as survival improves, the proportion of CF 
adults with CFRD may exceed the current 40–50% estimate. As 
wider CF treatment continues to improve, the gap in mortality 
between CFRD and NGT CF groups may widen again. Future 
research should focus on understanding how CFTR mutants 
alter β cell function directly, giving rise to CFRD and on how to 
pharmacologically correct this defect, rather than simply manage 
symptoms.
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