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Abstract
Background: A major obstacle in treatment of HIV is the ability of the virus to mutate rapidly into
drug-resistant variants. A method for predicting the susceptibility of mutated HIV strains to
antiviral agents would provide substantial clinical benefit as well as facilitate the development of new
candidate drugs. Therefore, we used proteochemometrics to model the susceptibility of HIV to
protease inhibitors in current use, utilizing descriptions of the physico-chemical properties of
mutated HIV proteases and 3D structural property descriptions for the protease inhibitors. The
descriptions were correlated to the susceptibility data of 828 unique HIV protease variants for
seven protease inhibitors in current use; the data set comprised 4792 protease-inhibitor
combinations.

Results: The model provided excellent predictability (R2 = 0.92, Q2 = 0.87) and identified general
and specific features of drug resistance. The model's predictive ability was verified by external
prediction in which the susceptibilities to each one of the seven inhibitors were omitted from the
data set, one inhibitor at a time, and the data for the six remaining compounds were used to create
new models. This analysis showed that the over all predictive ability for the omitted inhibitors was
Q2 

inhibitors = 0.72.

Conclusion: Our results show that a proteochemometric approach can provide generalized
susceptibility predictions for new inhibitors. Our proteochemometric model can directly analyze
inhibitor-protease interactions and facilitate treatment selection based on viral genotype. The
model is available for public use, and is located at HIV Drug Research Centre.

Background
Despite huge efforts to prevent the spread of HIV, its prev-
alence continues to increase. Currently over 40 million
persons are infected with HIV, and more than 4 million
become infected and almost 3 million die from AIDS
every year [1]. Intensive treatment with antiretroviral drug
combinations has substantially prolonged patient sur-
vival. However, the virus is prone to rapid mutation and
drug resistant strains emerge, particularly in patients in

whom the replication of the virus is only partially sup-
pressed by treatment. The high rate of HIV mutation
presents a challenging clinical problem, even a non-
treated patient can host many viral variants from which
drug resistant strains may evolve once therapy is insti-
tuted.

A major pharmacological target in HIV is its protease. The
HIV protease is a dimeric protein composed of two iden-
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tical 99-amino-acid monomers. The protease cleaves the
viral Gag-Pol polyprotein, which is a necessary step in the
generation of new virus particles. Thus, the HIV protease
is essential for the propagation of the virus; nine of the 28
anti-HIV drugs and combination regimens in current use
target the HIV protease. However, soon after the introduc-
tion of the HIV protease inhibitors it was found that the
virus accumulates mutations in the protease, permitting
eventual escape from anti-viral therapy. As protease inhib-
itors differ in their resistance profiles a proper selection of
the inhibitor can aid therapy in such cases of drug resist-
ance. The PhenoSense susceptibility test is a widely used
bioassay for measuring viral survival during specific drug
treatment [2,3], and this assay is used to develop a proper
treatment strategy for individual patients.

A more straightforward and cost-effective method for for-
mulating a therapeutic strategy would be to predict drug
susceptibility directly from the HIV genome sequence.
Several types of modeling approaches have been devel-
oped, variously based on neural networks [4], support
vector machines [5,6], and other methods [6-8]. A draw-
back with all of these approaches was that they treated
each anti-retroviral drug separately; each inhibitor
required a separate model. Accordingly, none of these
models can predict the effectiveness of a new drug for
mutated proteases. However, such predictions are possi-
ble using our proteochemometric approach [9,10]. Prote-
ochemometrics utilizes the physico-chemical and
structural properties of series of ligands and proteins to
predict their interaction [10]. Proteochemometrics has
been successfully used to model various classes of G-pro-
tein coupled receptors [9,11-17], antibodies [18], as well
as aspartate proteases' ability to cleave their substrates
[19]. Here, we show that proteochemometrics can be used
to model HIV protease resistance.

Results
Development of a proteochemometric model for drug 
susceptibility prediction
We described seven protease inhibitors using six orthogo-
nal descriptors derived from rotation- and superimposi-
tion-independent 3D structure descriptors (I block) while
the proteases were described by 240 z-scale descriptors
representing physico-chemical properties of 80 varied

sequence positions in the data-set (P block; see Methods
for details). We created several models from these descrip-
tions in order to find the one that provided the highest
predictive ability and interpretability. Model-1 used pro-
tease and inhibitor descriptors (P+I blocks, comprising
240 + 6 = 246 X variables); Model-2 used protease and
inhibitor descriptors and protease-inhibitor cross-terms
(P+I and P × I blocks, totaling 246 + 6 × 240 = 1,686 X var-
iables); Model-3 used an additional 28,680 intra-protease
cross-terms (i.e. P+P, P × I, and P × P blocks, totaling
1,686 + 28,680 = 30,366 X variables). Models were cre-
ated from these data by state-of-the-art proteochemomet-
ric partial least-squares projections to latent structures
(PLS) modeling using the log fold-decrease in susceptibil-
ity ("logFDS") compared to a drug-sensitive reference
virus as estimated using the PhenoSense assay as the Y var-
iable (see Methods for details); Table 1 summarizes the
performances of these models.

While all models were statistically valid, Model-2, which
included protease-inhibitor cross-terms, performed sub-
stantially better than Model-1, which contained only pro-
tease and inhibitor descriptors. Adding intra-protease
cross-terms (Model-3) provided further improvement.
Results from permutation testing also indicated the statis-
tical validity of the models. Thus, for none of the models
did the Q2 intercept show a positive value, ensuring that
the high original Q2 values were not obtained by pure
chance.

As seen in Table 1, adding new descriptor blocks resulted
in more positive values for the R2 intercepts (although
they remain below the desired level of 0.3), confirming
that an increase in the number of X variables often results
in better-fitted models in which part of the y data becomes
explained by accumulated chance-correlations. Still, the
models' predictive ability and interpretability improves
because Q2 values increase (in contrast to its intercept for
randomized data) and root mean squared errors of predic-
tion (RMSEP) values decrease (Table 1). Thus, according
to this analysis, Model-3 is the best performer. The good
performance of Model-3 was further demonstrated by its
true outer cross-validation; its external predictive ability
amounted to P2 = 0.85.

Table 1: Performance of proteochemometric models for HIV-1 protease drug susceptibility predictions.

Model Descriptor blocks Goodness of fit (R2) Predictive ability (Q2) RMSEP* Results of permutation test
R2 intercept Q2 intercept

Model-1 P+I 0.75 0.72 0.44 0.02 -0.08
Model-2 P+I, P × I 0.86 0.82 0.35 0.14 -0.19
Model-3 P+I, P × I, P × P 0.91 0.87 0.30 0.21 -0.27

* Root mean Squared Errors of Prediction
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External validation of the drug susceptibility model
In order to validate our approach further, we assessed
whether our model could predict susceptibility to inhibi-
tors excluded from the model building. We used Model-3
to create seven different models, but only used data for six
inhibitors (excluding one inhibitor at a time from the data
set), and used each model to predict the susceptibilities to
the respective excluded inhibitor for the 828 mutated pro-
tease variants (see Methods for details). Table 2 shows the
RMSEP computed from all predictions in this analysis; the
RMSEP of susceptibility predictions is below 0.5 logarith-
mic units for all inhibitors. Computing the predictive abil-
ity for "new" inhibitors from all the seven models from
this analysis gave the very high estimate for Q2 

inhibitors =
0.72.

Figure 1 shows the predicted versus measured susceptibil-
ity for the inhibitor with the smallest prediction error,
indinavir (RMSEP = 0.33; Panel A) and the inhibitor with
the largest prediction error, saquinavir (RMSEP = 0.49;
Panel B). The predictions for indinavir correlate excel-
lently with the measured susceptibilities. For saquinavir,
the susceptibilities are underestimated ten-fold for less
than 4% percent of all virus isolates, while only 1.3% per-
cent are overestimated more than ten-fold.

These data substantiate the validity of Model-3 and its
modeling approach; therefore, we used Model-3 for all
subsequent predictions and interpretations.

Use of the drug susceptibility model to analyze the role of 
individual amino acids in drug resistance
The PLS algorithm we used for model building derives a
linear regression equation in which the coefficients reveal
the direction and magnitude of the influence of X-varia-
bles on the response variable (i.e. protease inhibitor sus-
ceptibility). A large absolute value of a coefficient for a
protease descriptor (i.e. a coefficient for a z-scale encoding
the physico-chemical properties of amino acids at a partic-
ular position; see Methods for details) indicates that muta-
tions at this position could induce a large change in drug
susceptibility. Alternately, a large absolute value for a

coefficient of a cross-term of protease-protease inhibitor
descriptor reveals that mutations of the amino acid
included in the cross-term can induce large changes in the
susceptibilities for some particular inhibitors and not-so-
large changes in the susceptibilities for other inhibitors.
Finally, a large absolute value of a coefficient for an intra-
protease cross-term pinpoints mutations in the protease
that regulate drug resistance in a cooperative manner (for
a deeper discussion and mathematical derivations relating
to this discussion, see [20]).

However, there are problems associated with the use of
regression coefficients for model interpretation because
several descriptors represent each sequence residue (i.e.,
the three z-scales used herein) and each of these is used to
compute six protease-ligand cross terms, as well as a very
large number of intra-protease cross-terms. Therefore,
looking at the regression coefficient for one variable at a
time does not provide full insight about the influence of a
particular residue to the susceptibility of the protease to a
protease inhibitor. One simple approach to this complex
situation is to use the whole regression equation to predict
the susceptibility of in silico mutated variants of the pro-
tease. We used this approach to predict changes in suscep-
tibilities due to single point mutations in the wild-type
protease (HIV-1 subtype B consensus reference sequence;
Figure 2). The figure presents the 35 most frequent muta-
tions occurring in over 5% of viral isolates in the data set,
as well as six somewhat less common mutations that we
found to be important by the proteochemometric mode-
ling (namely 32I, 47V, 50V, 50L, 53L, and 73T). As seen
from the figure, many common mutations do not nega-
tively influence susceptibility to any of the inhibitors.
Many of these mutations are polymorphic, that is, they
occur in untreated patients and thus reflect natural varia-
tion in the protease, such as 10I and 20R [21]. In contrast,
the 10F and 20I mutations are non-polymorphic; they
occur only in response to drug treatment. As shown in Fig-
ure 2, these two mutations reduce protease susceptibility
to several inhibitors, and several other mutations impart
high resistance to particular drugs. For example, the 30N
mutation causes a large decrease in susceptibility to nelfi-
navir, while it has no effect on susceptibility to the other
inhibitors. Another example is the 48V mutation, which
substantially decreases susceptibility to saquinavir while
having only a minor effect on susceptibility to amprena-
vir. On the other hand, the 50V mutation confers major
resistance to amprenavir, and to a lesser extent, to lopina-
vir and ritonavir, while having essentially no influence on
susceptibility to the remaining four inhibitors. A large
number of other mutations have distinct effects on differ-
ent inhibitors; in some cases they even increased suscepti-
bility to some inhibitors (for example, 30N increases the
susceptibility to ritonavir and 32I to saquinavir). Another
interesting example is the 50L mutation, which occurs in

Table 2: External predictions by proteochemometric HIV-1 
protease susceptibility models.

Inhibitor RMSEP*

Amprenavir 0.48
Atazanavir 0.45
Indinavir 0.33
Lopinavir 0.39
Nelfinavir 0.49
Ritonavir 0.38
Saquinavir 0.49

* Root mean Squared Errors of Prediction
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Graphical illustration of the external predictive ability of proteochemometric models for HIV-1 protease drug susceptibilityFigure 1
Graphical illustration of the external predictive ability of proteochemometric models for HIV-1 protease drug susceptibility. 
Data for one inhibitor at a time were excluded from the dataset and predicted from proteochemometric models built on the 
remaining data. The predicted versus measured susceptibility values for indinavir (A) and saquinavir (B) are shown. Goodness-
of-fit of the models (i.e. model data) are shown as light gray symbols in panels A and B.
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response to treatment with atazanavir and increased sus-
ceptibility to the six other inhibitors used in the model.

Several different mutations (24I, 54V, 73T, 84V, and 90M)
reduce susceptibility to all seven inhibitors, although
there is variation in the extent of the reduction for specific
inhibitors. Moreover, our analysis revealed that the more
recently introduced inhibitors lopinavir and atazanavir do
not provide increased activity as compared to older pro-
tease inhibitors against protease variants bearing these
mutations. These findings indicate the need for novel,
more adaptive agents that can inhibit proteases harboring
these deleterious mutations.

Online prediction of susceptibility resulting from 
accumulated mutations
Highly resistant forms of HIV protease evolve by accumu-
lating multiple susceptibility-decreasing mutations. The
good predictive abilities of Models-1 and 2 indicate that
the logarithmically transformed susceptibility data is, to a
large extent, a function of the additive independent con-
tributions of each mutation. However, Model-3, which
also included intra-protease cross-terms, showed even

better predictive ability suggesting that mutations may
also interact cooperatively to modify drug resistance.

Complete analysis of the contributions of all possible
combinations of amino acid mutations and protease
inhibitors to drug resistance is an extensive task and could
not be presented easily in a written account such as this.
Therefore, we made our model available to the public in
form of a Web service, so that users can submit their pro-
tease sequence and receive a prediction of drug suscepti-
bility. The use of a Web service makes facilitates
integration in other applications and workflows. Access to
the Web service is available at HIV Drug Research Centre
[22].

Figure 3 shows a screenshot of output from the Web serv-
ice illustrating the predicted susceptibilities for a protease
containing mutations 24I, 46L, 54V, and 82A Separately,
these mutation convey moderate (up to three-fold) reduc-
tions in susceptibility to any of the seven protease inhibi-
tors (Figure 2). However, when combined these
mutations cause a sizable increase in resistance to several
of the inhibitors, the predicted decrease in susceptibility

Changes in the susceptibility to the seven inhibitors due to single point mutations in the wild-type HIV-1 proteaseFigure 2
Changes in the susceptibility to the seven inhibitors due to single point mutations in the wild-type HIV-1 protease. Shown are 
the decimal logarithms of the fold-decreases in susceptibility (FDS) calculated from the proteochemometric model.
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to ritonavir is almost 40-fold. For saquinavir and ampre-
navir, there is only about five- to six-fold decrease in sus-
ceptibility (Figure 3).

Discussion
We used proteochemometrics to model susceptibilities of
multiple HIV-1 protease variants to seven clinically used
protease inhibitors, yielding a model with very good pre-
dictability and interpretability. We thoroughly validated
the external predictive ability and the statistical signifi-
cance of the model estimates, and conclude that our
model can be reliably applied to the prediction and inter-
pretation of the mechanisms of drug resistance. In fact,
our model shows much better goodness-of-fit and pre-
dictability (in terms of R2, Q2 and RMSEP) than the hith-
erto best-performing models reported elsewhere, which,
to the best of our knowledge, were obtained by the use of

Support Vector Machines applied to each protease inhibi-
tor separately [6].

Our model uses physico-chemical property (z-scale)
descriptors of amino acids rather than encoding the muta-
tions by letter codes or binary indicator variables. This is
highly advantageous as many sequence residue positions
of the HIV protease are often mutated to amino acids that
share similar physico-chemical properties. Our model can
evaluate the contribution of each encoded property (e.g.
hydrophobicity, steric properties, charge, etc.) to drug sus-
ceptibility and perform predictions for mutations to any
amino acid, as long as the amino acid's properties fall
within the scope of the model. In other words, the infor-
mation gained from sequence positions with multiple
mutations provides for predictions for novel mutations at
the same position.

Screenshot from the Web service for the proteochemometric susceptibility model of HIV protease inhibitorsFigure 3
Screenshot from the Web service for the proteochemometric susceptibility model of HIV protease inhibitors. The publicly 
available prediction service takes an HIV protease sequence as input and predicts its susceptibility to seven protease inhibitors 
using the proteochemometric model. The output is graphical and indicates any anomalies in the submitted sequence with 
respect to the data in the model. Shown are results for a protease with the quadruple mutation 24I, 46L, 54V, and 82A. The 
Web service can be found at [22].
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The model allowed us to identify the mutations that con-
tribute most to resistance to current protease inhibitors
(see Figure 2). Most of these mutations (such as 47V, 48V,
82A, and 84V) are located in the active site of the protease
(Figure 4). Other deleterious mutations, such as 90M, are
located outside the binding site. The 90M mutation is
located in the dimerization region of the HIV protease.
Historically, such mutations have been regarded as "com-
pensatory", compensating for the negative effects of
active-site mutations on the conformation and dimeriza-
tion of the protease, and its ability to cleave substrates.
However, more-recent studies suggest that distantly
located mutations might diminish the ability of inhibitors
to bind the protease by indirectly altering the geometry of
the active site [23,24]. Proteochemometrics makes a pow-
erful impact on our ability to detect, analyze, and predict
the contributions of such indirect interactions to ligand
binding [20]. Effects arising from distant residues are
often overlooked in drug design because they are difficult
to account for using 3D docking or other methods.

Besides identifying mutations that contribute to general
resistance to protease inhibitors, the model also reveals
the susceptibilities of particular combinations of protease

inhibitors and protease mutants. Thus, the model identi-
fies specific relationships between a particular inhibitor
and a particular amino acid(s) in the protease, informa-
tion that could be useful for analyzing the mechanisms
behind inhibitor failure. Moreover, the predictive ability
of the model enables the development of targeted treat-
ment based on the genome of a particular viral variant.

It is here appropriate to mention that an alternative way
of resistance to protease inhibitors is mutations of the
Gag-Pol cleavage sites which lead to enhancement of the
processing efficiency of the substrate [25]. Unfortunately
the Stanford HIV Drug resistance database does not pro-
vide the full genomes of the HIV isolates, and this pre-
cludes us to linking the present data-set to complementary
mutations in the cleavage sites. However, it seems
unlikely that cleavage site mutations play any major role
in explaining drug susceptibility in the present case. This
is because our model, which was based on protease and
inhibitor chemical properties alone, explained over 90%
of the variation in the data, where the unexplained varia-
tion presumably essentially just represents measurement
errors.

Locations of 12 major drug susceptibility-reducing mutations in the HIV-1 protease identified by the proteochemometric model based on the analysis in Figure 2Figure 4
Locations of 12 major drug susceptibility-reducing mutations in the HIV-1 protease identified by the proteochemometric 
model based on the analysis in Figure 2.
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In this study we encoded the 3D structures of protease
inhibitors by so called GRIND descriptors. These descrip-
tors provide quantitative characterization of the ability of
a molecule to form H-bond donor/acceptor and hydro-
phobic interactions with pharmacophoric groups located
at various distance ranges around the molecule. Moreo-
ver, we also used a recently-developed GRIND descriptor
type (TIP) which describes differences in size and shape of
the molecules. These descriptions thus account for all
major types of interaction that may contribute to inhibi-
tor binding within the HIV protease, as well as those that
can destroy binding (e.g. by steric hindrances). PCA was
then applied to compress the descriptions into six orthog-
onal principal components, and in this case (obtaining six
components for seven inhibitors) the PCA did not discard
any of the information in the original descriptors. Accord-
ingly the PCAs used herein allow a complete back-tracing
to their origin in the original descriptors [13]. An advan-
tage of using GRINDs is that they do not require align-
ments of molecules and thus are not limited to narrow
series of congeneric compounds. On the other hand, dif-
ficulties may arise in model interpretations since struc-
tural modifications in the molecule often influence the
values of multiple GRIND descriptors. A practical
approach in the design of improved compounds in such a
situation is to predict changes of susceptibility patterns for
in-silico modified molecules. For example, such predic-
tions suggest that the loss of susceptibility of nelfinavir to
the D30N mutant should be possible to counteract by
modifying the 3-hydroxy-2-methylphenyl group of the
compound (data not shown). In other words, according
to these predictions the resistance to nelfinavir arises due
to less favorable interactions of the 3-hydroxy-2-methyl-
phenyl group with the mutated protease compared to its
interactions with the wild type protease. Thus our mode-
ling approach may find use to predict susceptibilities to
new inhibitors and could potentially be applied in design
of new inhibitors. Current susceptibility data is limited to
the few clinically used protease inhibitors but proteoche-
mometric modeling could be applied in a more general
fashion and aid in the design of new agents with
improved ability to withstand the development of resist-
ance.

Conclusion
In summary, proteochemometrics is well suited to the
study of HIV protease drug resistance. Our model predicts
that relatively few of the more common mutations con-
tribute substantially to a general loss of susceptibility, sug-
gesting that there are limits as to how the virus can escape
from the inhibitors. Whether the capacity of the protease
to mutate into drug resistant variants is restricted due to
inherent biological factors or whether new mutations
would appear in response to broader chemical diversity of
protease inhibitors remains to be determined. The appear-

ance of new mutations in response to new treatments
would require repeated agglomerative modeling of sus-
ceptibility data. Analysis of larger datasets (comprising
more chemical compounds and more viral variants)
would improve the resolution and predictive ability of the
proteochemometric model and consequently augment its
potential application to drug design and therapy optimi-
zation.

Methods
Data set
Susceptibility data for the seven clinically used HIV-1 pro-
tease inhibitors amprenavir, atazanavir, indinavir, lopina-
vir, nelfinavir, ritonavir, and saquinavir, measured by the
PhenoSense assay [2], were collected from the Stanford
HIV Drug Resistance Database [26]. In short, the Pheno-
Sense assay estimates the concentration of the anti-HIV
drug that causes 50% inhibition of an HIV isolate's repli-
cation in a cell-based assay. The fold-decrease in suscepti-
bility (here abbreviated as FDS) was determined by
dividing this concentration by the concentration of the
drug causing 50% inhibition of a drug-sensitive reference
virus (the wild-type strain NL4-3). Thus, FDS = 1 indicates
unchanged susceptibility to a drug, while FDS > 1 indi-
cates decreased susceptibility, that is, increased resistance
of the tested isolate as compared to the standard.

We retrieved susceptibility values for 4,794 unique pro-
tease-inhibitor pairs (comprising 828 unique protease
sequences) from the database. For five of the seven inhib-
itors, susceptibility data was available for 775 to 824 pro-
teases. For atazanavir and lopinavir, which are more
recently approved protease inhibitors, susceptibility data
was available for 319 and 513 proteases, respectively.

Numerical descriptions for proteochemometric modeling
Description of proteases
Of the 99 amino acid positions in each protease mono-
mer, 80 were found to be mutated in the data set. Mutated
positions were encoded by three z-scale descriptors, z1-z3,
of amino acids derived by Sandberg et al. [27]. The three
z-scales are based on 26 computed and measured physico-
chemical properties of amino acids, and represent hydro-
phobicity, steric properties, and electronic properties of
amino acids, yielding 80 × 3 = 240 protease descriptors.

Description of protease inhibitors
3D structures of organic compounds were generated using
Corina software (Molecular Networks GmbH, http://
www.molecular-networks.com), and were described by
grid independent descriptors (GRINDs) [28] calculated
using Almond 3.1 software (Multivariate Infometric Anal-
ysis S.r.l., http://miasrl.com). GRINDs are alignment-
independent descriptors that relate to the ability of a mol-
ecule to form favorable interactions with independent
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pharmacophoric groups. Three groups were used: DRY
(hydrophobic), O (H-bond acceptor), and N1 (H-bond
donor). The overall shape of the molecule was repre-
sented by a "TIP-field" using a recently described
approach in which the region with repulsion energy of 1
kcal/mol for the N1 group is used to outline the surface of
the molecule [29].

Generation of GRIND descriptors involves several steps:
(1) calculation of interaction energies of the molecule
with pharmacophoric groups located at grid points sur-
rounding the molecule; (2) calculation of distances
between grid points; (3) grid filtering (this is performed
by selecting a certain number of grid nodes showing most
favorable interactions with the molecule and concomi-
tantly being situated as far as possible from each other);
and, (4) computing the products of energy values for all
pairs of the selected grid nodes. Finally, the maxima of
products falling within specified distance ranges for node
pairs obtained using the same probe (DRY, O, N1, and
TIP auto-correlograms) and different probes (DRY-O,
DRY-N1, DRY-TIP, O-N1, O-TIP, and N1-TIP cross-corre-
lograms) are used as descriptors for the molecules [28].
Thus, the capabilities of the protease inhibitors for hydro-
phobic, H-bond donor, and H-bond acceptor interactions
and the differences in the molecular shapes of the pro-
tease inhibitors were encoded by 545 GRIND descriptors.
To reduce the number of descriptors and to eliminate
their mutual co-linearity, we applied principal compo-
nent analysis [30], which transformed all GRINDs into six
orthogonal principal components.

Protease-inhibitor and intra-protease cross-terms
Protein-ligand interactions are governed by complex proc-
esses that depend on the complementarity of the proper-
ties of the interacting entities. In proteochemometrics,
this is accounted for by computing protein-ligand cross-
terms [13]. In order to account for effects of particular
mutations on the susceptibility to particular inhibitors,
we computed cross-terms by multiplying mean-centered
z-scale descriptors with mean-centered principal compo-
nents of GRINDs. This yielded 1,440 (240 × 6) protease-
inhibitor cross-terms. To account for eventual co-opera-
tive coupling of mutations in the protease [31], we intro-
duced intra-protease cross-terms. These were computed
by multiplying mean-centered z-scale descriptors, which
gave 240 × 239/2 = 28,680 cross-terms.

Preprocessing of data
Since descriptors were of different origins, they were cen-
tered and scaled to unit variance prior to their use. More-
over, to account for differences in the number of
descriptors and their formed cross-terms, block scaling
was applied. The block scaling was applied onto three
descriptor blocks, namely, the block formed from ordi-

nary protease and inhibitor descriptors (P+I block), the
block composed of protease-inhibitor cross-terms (P × I
block), and the block composed of intra-protease cross-
terms (P × P block). Block scaling was performed by sys-
tematically varying the standard deviation of P+I block
descriptors in one standard deviation intervals and the
standard deviation of P × P block descriptors in 0.3 stand-
ard deviation intervals until an optimal model was
obtained.

The dependent variable (FDS) was logarithmically trans-
formed and mean centered prior to use in the computa-
tions.

Proteochemometric modeling
Correlation by partial least-squares projections to latent structures
The above-derived descriptors and cross-terms were corre-
lated to the susceptibility data by using the partial least-
squares projections to latent structures (PLS). In PLS, the
independent matrix of X variables (i.e., all descriptors and
cross-terms) and a matrix of one or several dependent var-
iables Y (in our case the logarithms of the FDS values
comprise a single y vector) are simultaneously projected
to latent variables (PLS components), with an additional
constraint to maximize the covariance between the projec-
tions of X and Y (for an in-depth review of the PLS see
[32]). PLS derives a regression equation for each response
y in which the regression coefficients reveal the direction
and magnitude of the influence of X-variables on the
response.

Validation of modeling
The goodness-of-fit of the PLS models was characterized
by the fraction of explained variation of the Y (R2). The
predictive ability was characterized by the fraction of the
predicted Y-variation (Q2), assessed by cross-validation
with seven randomly formed groups, as previously
described [33]. The R2 values vary between 0 and 1, where
a higher value means a better fit. The Q2 values normally
vary between 0 and R2; however, negative values may be
encountered, indicating non-predictive models. In PLS,
the R2 term increases with each extracted PLS component,
while the Q2 value usually reaches a plateau and declines
as the model becomes over-fitted. Hence, the predictive
ability and not the goodness-of-fit should be used when
assessing the optimal number of PLS components.

In addition to the conventional "inner" cross-validation,
we performed outer cross-validation in which the entire
modeling process (description, scaling, and PLS fit) was
performed independently from the excluded data; that is,
it corresponded to the modeling practice of the "training
set" and "test set" of the data but was performed seven
times on random selections of data [34]. The performance
of outer cross-validation was assessed by the P2 value,
Page 9 of 11
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which is calculated in the same way as Q2 of the inner
cross-validation.

To assess the statistical significance of the estimated Q2

and R2 values, we employed permutation testing [35,36].
The susceptibility data was randomly reordered 20 times,
and separate models were fitted, correlating X data to each
of the permuted y. The results of permutation testing can
be displayed by plotting the R2 and Q2 values of these
models of partially random data versus the correlation
coefficient between the original y and permuted y, and
drawing the regression line [36]. The intercepts of the
regression lines (that is, when the correlation coefficient is
zero) represent the R2 and Q2 of a purely random model.
To affirm full statistical significance of the original esti-
mates the desirable limits of intercepts should be R2 inter-
cept <0.3 and Q2 intercept <0.05 [36].

We also wanted to assess the ability of the proteochemo-
metric model to predict susceptibility to novel inhibitors
that were not present in the model in any combinations
with the mutated proteases. Therefore, we removed all
data for one inhibitor at a time and fitted the model for
the remaining six inhibitors. X variables were re-centered
and rescaled to unit variance and the y variable was re-
centered prior to PLS modeling. The predictions for the
excluded inhibitors were calculated from PLS models cre-
ated on the reduced datasets and assessed by the RMSEP
estimate.
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