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Abstract

Beta regressions are commonly used with responses that assume values in the standard

unit interval, such as rates, proportions and concentration indices. Hypothesis testing infer-

ences on the model parameters are typically performed using the likelihood ratio test. It

delivers accurate inferences when the sample size is large, but can otherwise lead to unreli-

able conclusions. It is thus important to develop alternative tests with superior finite sample

behavior. We derive the Bartlett correction to the likelihood ratio test under the more general

formulation of the beta regression model, i.e. under varying precision. The model contains

two submodels, one for the mean response and a separate one for the precision parameter.

Our interest lies in performing testing inferences on the parameters that index both submo-

dels. We use three Bartlett-corrected likelihood ratio test statistics that are expected to yield

superior performance when the sample size is small. We present Monte Carlo simulation

evidence on the finite sample behavior of the Bartlett-corrected tests relative to the standard

likelihood ratio test and to two improved tests that are based on an alternative approach.

The numerical evidence shows that one of the Bartlett-corrected typically delivers accurate

inferences even when the sample is quite small. An empirical application related to behav-

ioral biometrics is presented and discussed.

Introduction

Regression models are useful for gaining knowledge on how different variables (known as

regressors, covariates or independent variables) impact the mean behavior of a variable of

interest (known as dependent variable or response). The beta regression model is the most

commonly used model with responses that are double bounded, in particular with responses

that assume values in the standard unit interval, (0, 1). It was introduced by [1] who used an

alternative parameterization for the beta density, which is indexed by mean (μ) and precision

(ϕ) parameters. Let Y be a beta-distributed random variable. Its density is

bðy; m; �Þ ¼
Gð�Þ

Gðm�ÞGð�ð1 � mÞÞ
ym�� 1ð1 � yÞ�ð1� mÞ� 1

; 0 < y < 1; ð1Þ
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0< μ< 1, ϕ> 0, where Γ(�) is the gamma function. Such a law is quite flexible in the sense that

the density in (1) can assume different shapes depending on the parameter values. It was used

by [1] as the underlying foundation for a regression model in which y1, . . ., yn are independent

random variables such that yi is beta-distributed with mean μi (i.e. IE(yi) = μi) and precision

parameter ϕ, for i = 1, . . ., n. They showed that the variance of yi is μi(1 − μi)/(1 + ϕ) which, for

a given μi, is decreasing in ϕ. The model is thus heteroskedastic since the variance of yi changes

with μi. The response means are modeled using a set of covariates and ϕ is assumed constant

across observations. This model became known as the fixed precision beta regression model.

A more general beta regression formulation was considered by [2] and formally introduced

by [3] who allowed the precision parameter to vary across observations, i.e. yi is beta-distrib-

uted with mean μi and precision ϕi, i = 1, . . ., n. More flexibility can be achieved in some situa-

tions by allowing the precision parameter to be impacted by some covariate values. In such a

more general formulation, the variance of yi is no longer restricted to be a multiple of μi(1 −
μi). The model includes two separate regression submodels, one for the mean and another for

the precision, and became known as the variable precision beta regression model. The fixed

precision beta regression model is a particular case of the variable precision counterpart; it is

obtained by setting ϕ1 = � � � = ϕn = ϕ.

Fixed and varying precision beta regression modeling have been used in many different

fields. A beta regression analysis of the effects of sexual maturity on space use in Atlantic

salmon (Salmo salar) parr can be found in [4]. In [5] the beta regression model is used to seg-

ment and describe the container shipping market by analyzing the relationships between ser-

vice attributes and likelihood of customer retention for the container shipping industry. Some

applications of beta regression modeling in ecology can be found in [6]. In [7], a statistical

downscaling model is developed based on beta regression which allow precipitation state in

river basin to be calculated. The beta regression model is used by [8] to model global solar radi-

ation. For a beta regression analysis of ischemic stroke volume, see [9].

In both variants of the beta regression model (fixed and variable precision), parameter esti-

mation is carried out by maximum likelihood. It is common practice to perform testing infer-

ences via likelihood ratio and z-tests. The latter are Wald-type tests and are typically less

accurate than the former; see [10]. Point estimation and testing inferences are usually accurate

when the sample size (n) is large. In some applications, nonetheless, the number of data points

is small and it is recommended to make use of inferential tools that are expected to yield reli-

able inferences in small samples. For instance [11], obtained modified parameter estimates

that display smaller biases in fixed and variable precision linear beta regression models.

The likelihood ratio test, which is commonly used in beta regression empirical analyses,

employs an asymptotic approximation: the critical values used in the test are obtained from

the test statistic’s asymptotic null distribution, which is known to be w2
l , where l is the number

of restrictions under evaluation. An asymptotic approximation is used because the test statis-

tic’s exact null distribution is unknown. In large samples, the test typically delivers accurate

inferences since there is good control of the type I error frequency. In contrast, when the num-

ber of data points is small, size distortions can be large. In particular, the test tends to be liberal

(oversized): the effective null rejection rates tend to be considerably larger than the selected

significance level. When the sample size is quite small, the test’s effective null rejection can be

much larger than the nominal significance level, as shown by the numerical evidence we

report. A Bartlett correction to the likelihood ratio test was derived by [12]. A major shortcom-

ing of their result, however, is that it only holds for the fixed precision beta regression model.

In this paper, we overcome such a shortcoming by deriving the Bartlett correction for varying

precision beta regressions, which are more commonly used by practitioners. The derivation of

PLOS ONE Bartlett-corrected tests for varying precision beta regressions

PLOS ONE | https://doi.org/10.1371/journal.pone.0253349 June 28, 2021 2 / 26

the Federal University of Pernambuco. Aiming

dedicate herself exclusively to the doctorate

whitout to must work for her support, purchase of

books, rent of dormitories. The Conselho Nacional

de Desenvolvimento e pesquisa (CNPq) provides a

monthly financial aid to the student in the amount

of U$405.00. The student comes from the state of
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the correction becomes more challenging in the more general setting. That happens because

the parameters that index the two submodels are not orthogonal in the sense that Fisher’s

information matrix is not block diagonal, and that renders lengthier and more complex deriva-

tions of the quantities involved in the Bartlett correction. We considered three Bartlett-cor-

rected test statistics. It is noteworthy that the size distortions of such tests vanish faster than

those of the standard likelihood ratio test as the sample size increases and thus the new tests

are expected to outperform the likelihood ratio test in small samples. In particular, the likeli-

hood ratio test’s size distortions are O(n−1) whereas those of the Bartlett-corrected tests are

O(n−2).

To motivate our analysis, consider the following important issue in behavioral biometrics:

the impact of average intelligence on the prevalence of religious disbelievers. Suppose there is

interest in measuring such a net impact using data on n nations. The variable of interest

(response) is the proportion of atheists in each country and the covariates include average

intelligence and other control variables. [13] carried out varying precision beta regression

analyses and produced estimates of such an impact under different scenarios. Each scenario

corresponds to a particular choice of countries. We consider the scenario that uses data on 50

countries. We show that by using corrected likelihood ratio tests we arrive at a varying preci-

sion beta regression model different from that used by the authors. It is noteworthy that our

model yields a better fit than their model. We also note that the maximal estimated impact of

intelligence on religious disbelief obtained from our model is considerably larger than that

computed from the model in [13] in low income nations. Our results also reveal that, as coun-

tries become more developed, the maximal impact of intelligence on the prevalence of atheists

weakens and the impact becomes, in the plausible range of average intelligence values, more

symmetric. To the best of our knowledge, this is the first analysis of how the maximal impact

of average intelligence on the prevalence of atheists is affected by economic development. This

illustrates the importance of using tests with good small sample performance when performing

beta regression analyses with samples of small to moderate sizes.

The remainder of the paper is structured as follows. In first section that follows this intro-

duction, we present the variable precision beta regression model. In the second section, we

derive the Bartlett correction to the likelihood ratio test in varying precision beta regressions

and use it in three modified test statistics. Our main contribution is that we obtain closed-

form expressions for the quantities that allow improved testing inferences to be carried out in

varying precision beta regressions. Additionally, we briefly review an alternative small sample

correction that is already available in the literature. Unlike the correction we derive, however,

it does not yield an improvement in the rate at which size distortions vanish. In particular, the

size distortions of our corrected tests vanish at rate O(n−2) whereas those of the alternative

tests we consider do so at rate O(n−1). Monte Carlo simulation evidence is presented in the

third section. An empirical application that addresses an important issue in behavioral bio-

metrics is presented and discussed in the fourth section. The fifth section contains some con-

cluding remarks. Technical details related to the derivation of the quantities involved in the

Bartlett correction are presented in the Appendix.

The beta regression model

Let y = (y1, . . ., yn)> be a vector of independent random variables such that yi follows the beta

distribution with mean μi and precision ϕi, i = 1, . . ., n. Such parameters are modeled as

g1ðmiÞ ¼ Zi ¼
Xp

j¼1

bjxij and g2ð�iÞ ¼ zi ¼
Xq

j¼1

djhij;
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where β = (β1, . . ., βp)
> 2 IRp and δ = (δ1, . . ., δq)

> 2 IRq are unknown regression parameters

(p + q< n), ηi and zi are linear predictors, xi1� hi1� 18i, xi2, . . ., xip and hi2, . . ., hiq are mean

and precision covariates, respectively, and g1: (0, 1) 7! IR and g2: (0,1) 7! IR are strictly

monotonic and twice-differentiable link functions. Common choices for g1 are logit, probit,

loglog, cloglog and Cauchy, and common choices for g2 are log and square root; see [14].

Let θ = (β>, δ>)> be the vector containing all regression coefficients. The log-likelihood

function is

‘ðyÞ � ‘ðb; dÞ ¼
Xn

i¼1

‘iðmi; �iÞ; ð2Þ

where ‘iðmi; �iÞ ¼ logGð�iÞ � logGðmi�iÞ � logGðð1 � miÞ�iÞ þ ðmi�i � 1Þy�i þ ð�i � 2Þyyi ,
with y�i ¼ logðyi=1 � yiÞ and yyi ¼ logð1 � yiÞ. The maximum likelihood estimators of β and δ
solve U = @ℓ(β, δ)/@θ = (Uβ(β, δ)>, Uδ(β, δ)>)> = 0p+q, where 0p+q is a (p+ q)-vector of zeros.

They cannot be expressed in closed-form. Maximum likelihood estimates can be obtained by

numerically maximizing the model log-likelihood function using a Newton or quasi-Newton

optimization algorithm such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm; see

[15].

For a recent overview of the beta regression model, see [6]. Practitioners can perform beta

regression analyses using the betareg package developed for the R statistical computing

environment; see [14].

Improved likelihood ratio tests in beta regressions

At the outset, we consider a general setup. Suppose the interest lies in testing a null hypothesis

(H0) that imposes l restrictions on the k-dimensional parameter vector θ = (β>, δ>)>, where k
= p + q. To that end, we write θ = (ψ>, λ>)>, where ψ = (ψ1, . . ., ψl)> is the vector of parameters

of interest and λ = (λ1, . . ., λs)
> is the vector of nuisance parameters so that l + s = p + q. We

wish to test H0 : c ¼ c
ð0Þ

against H1 : c 6¼ c
ð0Þ

, where ψ(0) is a given l-vector. The likelihood

ratio test statistic is

o ¼ 2½‘ðĉ; l̂Þ � ‘ðc
0
; ~lÞ�;

where (ĉ>; l̂>) and (c
0>
; ~l>) are the unrestricted and restricted maximum likelihood estima-

tors of (ψ>, λ>), respectively. Under the null hypothesis, w is asymptotically distributed as w2
l .

The test is usually performed using critical values obtained from such an asymptotic null dis-

tribution, the approximation error being of order O(n−1). That is, under the null hypothesis,

Prðo > w2
l;1� aÞ ¼ aþ Oðn

� 1Þ, where α 2 (0, 1) is the test significance level and w2
l;1� a is the (1 −

α)th quantile from the w2
l distribution. The chi-squared approximation to the null distribution

of ωmay be poor when the sample size is small and, as a result, large size distortions may take

place.

A correction that became known as ‘the Bartlett correction’ was developed to improve the

likelihood ratio test’s small sample behavior. It uses the fact that, under H0, IE(ω) = l + b + O
(n−2), where b = b(θ) is O(n−1). Using such a result, it is possible to define the corrected test sta-

tistic

ob1 ¼
o

1þ b=l

whose expected value equals l when terms of order O(n−2) are neglected. The quantity c = 1 +

b/l became known as ‘the Bartlett correction factor’. A general approach for obtaining the
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Bartlett correction factor in statistical models was developed by [16]. His approach requires

the derivation of log-likelihood cumulants. The expected value of ω, under the null hypothesis,

can be expressed as

IEðoÞ ¼ l þ εk � εk� l þ Oðn� 2Þ;

where εk and εk−l are of order O(n−1). Here,

εk ¼
X

y

ðlrstu � lrstuvwÞ; ð3Þ

where

lrstu ¼ k
rsktu

krstu
4
� kðuÞrst þ k

ðsuÞ
rt

n o
andlrstuvw ¼ krsktukvw krtv

ksuw
6

�n

� kðuÞsw
�
þ krtu

ksvw
4
� kðvÞsw

� �
þ k

ðvÞ
rt k

ðuÞ
sw þ k

ðuÞ
rt k

ðvÞ
sw

o
:

The above cumulants (κ’s) are defined in the Appendix. The indices r, s, t, u, v and w vary over

all k parameters in the summation in (3). The Bartlett correction factor can then be written as

c ¼ 1þ
εk � εk� l

l
:

[16] also showed that all cumulants of the Bartlett-corrected test statistic agree with those of

the reference chi-squared distribution with error of order O(n−3/2) which indicates that its null

distribution is expected to be well approximated by the limiting chi-squared distribution. [17]

obtained an asymptotic expansion for the null distribution of ω; see also [18–20]. [21] showed

that size distortions of Bartlett-corrected tests are of order O(n−2), and not of order O(n−3/2), as

previously believed.

In what follows, we shall obtain the Bartlett correction factor for the class of varying preci-

sion beta regressions. We shall only present the main result. Details on the derivation can be

found in the Appendix. It is noteworthy that β and δ are not orthogonal (i.e., Fisher’s informa-

tion matrix is not block diagonal), unlike what happens in the class of generalized linear mod-

els. As a consequence, the derivation of the Bartlett correction factor becomes lengthier and

more challenging. We shall use the main result in [22], who wrote the general adjustment fac-

tor in matrix form. At the outset, we define some k × kmatrices whose (r, s) elements are

AðtuÞ ¼
krstu
4
� kðuÞrst þ k

ðsuÞ
rt

n o

; PðtÞ ¼ fkrstg; QðuÞ ¼ fkðrÞsu g;

t, u = 1, . . ., k. We derived the log-likelihood cumulants up to fourth order for the class of vary-

ing precision beta regression models. These cumulants are presented in the Appendix. Using

such results, we obtain matrices A(tu), P(t) and Q(u). It is then possible to write εk as

εk ¼ trðK � 1ðL � M � NÞÞ; ð4Þ
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where tr(�) is the trace operator and the (r, s) elements of L,M and N are

Lrs ¼ ftrðK � 1AðrsÞÞg;

Mrs ¼ �
1

6
ftrðK � 1PðrÞK � 1PðsÞÞg þ ftrðK � 1PðrÞK � 1QðsÞ

>

Þg

� ftrðK � 1QðrÞK � 1QðsÞÞg;

Nrs ¼ �
1

4
ftrðPðrÞK � 1ÞtrðPðsÞK � 1Þg þ ftrðPðrÞK � 1ÞtrðQðsÞK � 1Þg

� ftrðQðrÞK � 1ÞtrðQðsÞK � 1Þg;

r, s = 1, . . ., k. Also, εk−l is obtained from (4) by only considering the nuisance parameters.

The corrected statistic ωb1 is the standard Bartlett-corrected likelihood ratio test statistic. In

addition to it, we shall also consider two other Bartlett-corrected test statistics that are used in

[23]. The three test statistics are equivalent up to order O(n−1) and are given by

ob1 ¼
o

c
; ob2 ¼ o exp �

ðεk � εk� lÞ
l

� �

; ob3 ¼ o 1 �
ðεk � εk� lÞ

l

� �

:

We shall refer to the three corrected test statistics above as ‘ratio-like’, ‘exponentially adjusted’

and ‘multiplicative-like’, respectively. An advantage of ωb2 is that it is always positive-valued.

In order to use the above test statistics in a given class of models, it is necessary to obtain

closed-form expressions for εk and εk−l that are valid for such models. For varying precision

beta regressions, these quantities can be computed using Eq (4), which is our main result. For

details on Bartlett corrections, we refer readers to [24, 25].

An alternative correction to the likelihood ratio test statistic was proposed by [26] who gen-

eralized previous results in [27]. His main result relate to those in [28, 29]. The author in [26]

proposed using the following two modified test statistics: ωa1 = ω − 2 log ξ and ωa2 = ω(1 − ω−1

log ξ)2, the latter having the advantage of always being positive-valued. ξ is a function of several

model-based quantities (score function, expected information, observed information, etc.).

Closed-form expressions for ξ were derived by several authors considering different underly-

ing models. In particular, for models tailored for double limited responses, they were derived

by [30] for unit gamma regressions, by [31] for varying precision regression models, and by

[32] for beta regressions with parametric mean link function. The finite sample performances

of such corrected tests when used in beta regressions was numerically evaluated by [10].

It is noteworthy that the size distortions of the three Bartlett-corrected tests vanish at a

faster rate than those of ω, ωa1 and ωa2 as the sample size increases: O(n−2) versus O(n−1).

Finally, we note that there are alternative strategies for achieving accurate hypothesis testing

inferences in small samples. For instance [33], proposed a numerical approach for estimating

the Bartlett correction factor and [34] obtained the Bartlett correction for generalized linear

models using a modified version of the likelihood function that accounts for the impact of nui-

sance parameters on the inference made on the parameters of interest. We shall not pursue

these approaches since, as we shall see, the standard Bartlett corrected test is able to deliver

extremely accurate inference in small samples in varying precision beta regressions even when

the number of nuisance parameters is large.

Numerical evidence

In what follows we shall present Monte Carlo simulation results on the finite sample perfor-

mances of six tests in varying precision beta regressions, namely: ω, ωb1 (‘ratio-like’), ωb2

(‘exponentially adjusted’), ωb3 (‘multiplicative-like’), ωa1 and ωa2. All reported results are
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based on 10,000 replications and were obtained using the R statistical computing environment;

see [35]. Log-likelihood maximization was performed using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm with analytical first derivatives. Starting values for β and δ were

computed as described in Appendix A of [36] with minor tweaks. The computation of such

starting values entails the estimation of two linear regressions. We consider the varying preci-

sion beta regression model log(μi/(1 − μi) = β1 + β2 xi2 + β3 xi3 + β4 xi4 and log(ϕi) = δ1 + δ2 hi2
+ δ3 hi3, i = 1, . . ., n. All covariate values were obtained as Uð� 0:5; 0:5Þ random draws and

remained constant for all replications performed for a given sample size. We consider three

scenarios. In the first scenario, we test H0 : b4 ¼ 0, and hence l = 1 (one restriction). The true

parameter values are β1 = 1.0, β2 = 1.7, β3 = 3.5, β4 = 0, δ1 = 3.7, δ2 = 1.5 and δ3 = 0.9. In the sec-

ond scenario, the interest lies in testing H0: β3 = β4 = 0, thus l = 2 (two restrictions). The

parameter values in this case are β1 = 1.0, β2 = 1.7, β3 = β4 = 0, δ1 = 3.7, δ2 = 1.5 and δ3 = 0.9. In

the third and final scenario, the null hypothesis under evaluation is H0: δ2 = δ3 = 0, and hence

l = 2 (two restrictions). The parameter values are β1 = 1.0, β2 = 1.7, β3 = 2.5, β4 = −3.0, δ1 = 3.7

and δ2 = δ3 = 0. We computed the tests’ null rejection rates at the α = 10%, 5%, 1% significance

levels for different sample sizes (n 2 {15, 20, 30, 40}). They are presented in Table 1 (first sce-

nario), Table 2 (second scenario) and Table 3 (third scenario); all entries are percentages.

The tests’ null rejection rates for the first scenario are, as noted, displayed in Table 1. At the

outset, we note that the likelihood ratio test ω is considerably liberal, that is, it rejects the null

hypothesis too often when it is true. For instance, when n = 15 and α = 10%, its null rejection

rate exceeds 30%, i.e. it is over three time larger than the nominal significance level. When

n = 20, it equals 25.2%. The test is considerably oversized even when n = 40 (null rejection

rate> 15%). The corrected tests display much better control of the type I error frequency,

especially the third Bartlett-corrected test (i.e. that based on ωb3—‘multiplicative-like’). For

example, when n = 20 and α = 10%, its null rejection is 10.4% whereas those of ωb1, ωb2, ωa1

Table 1. Null rejection rates (%), H0: β4 = 0.

α = 10% α = 5% α = 1%

n n n
15 20 30 40 15 20 30 40 15 20 30 40

ω 30.1 25.2 19.2 15.7 21.8 17.6 12.1 9.0 10.7 7.4 4.0 2.9

ωb1 19.5 16.7 12.8 11.1 11.8 9.8 6.9 5.8 3.8 2.8 1.5 1.2

ωb2 16.6 14.6 11.6 10.6 9.5 8.2 6.0 5.4 2.4 1.8 1.1 1.1

ωb3 8.2 10.4 10.0 9.9 3.5 4.9 4.6 5.0 0.4 0.8 0.7 0.9

ωa1 16.0 14.7 10.6 10.0 10.2 9.3 5.3 5.2 4.0 3.0 1.2 1.1

ωa2 19.4 17.2 11.5 10.4 12.9 11.1 5.9 5.5 5.6 3.9 1.4 1.2

https://doi.org/10.1371/journal.pone.0253349.t001

Table 2. Null rejection rates (%), H0 : b3 ¼ b4 ¼ 0.

α = 10% α = 5% α = 1%

n n n
15 20 30 40 15 20 30 40 15 20 30 40

ω 39.6 31.1 21.2 16.6 29.9 22.0 12.9 9.5 16.5 9.6 4.2 2.8

ωb1 23.4 18.2 12.6 10.9 15.2 10.7 6.7 5.6 5.5 2.7 1.5 1.1

ωb2 19.1 15.7 11.5 10.5 11.4 8.6 5.9 5.2 3.3 1.8 1.2 1.0

ωb3 7.4 10.7 9.9 9.6 2.9 4.7 4.8 4.7 0.4 0.7 0.9 0.8

ωa1 16.7 14.9 10.5 9.8 10.8 8.8 5.3 4.8 4.1 2.7 1.1 0.9

ωa2 21.6 17.5 11.3 10.3 14.1 10.7 6.0 5.1 5.8 3.4 1.3 1.0

https://doi.org/10.1371/journal.pone.0253349.t002
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and ωa2, are, respectively, 16.7%, 14.6%, 14.7% and 17.2%. All modified tests display small size

distortions when n = 40; again, ωb3 (‘mutiplicative-like’) is the best performer. Interestingly,

ωb3 is the only conservative test when the sample size is very small (n = 15).

Fig 1 contains quantile-quantile (QQ) plots of three test statistics, namely: the likelihood

ratio test statistic, the best performing Bartlett-corrected test statistic (ωb3—‘mutiplicative-

like’) and the best performing test statistics obtained from the alternative finite sample correc-

tion (ωa1). We plot the exact quantiles of the three test statistics against their asymptotic coun-

terparts (obtained from the w2
1

distribution). The included 45˚ line indicates perfect agreement

between exact and asymptotic null distributions. The left and right panels are for n = 15 and

n = 20, respectively. In both plots, the line that corresponds to ω is considerably above the 45˚

line which indicates that the test statistic exact quantiles are much larger than the asymptotic

quantiles, and that translates into liberal test behavior, i.e., the test tends to overreject the null

hypothesis. The exact quantiles of ωa1 also exceed those from the chi-squared distribution, but

less dramatically. The null distribution of ωb3, the Bartlett-corrected test statistic

Table 3. Null rejection rates (%), H0 : d2 ¼ d3 ¼ 0.

α = 10% α = 5% α = 1%

n n n
15 20 30 40 15 20 30 40 15 20 30 40

ω 39.6 29.8 20.3 16.3 30.2 20.7 12.9 9.3 15.9 8.8 4.4 2.7

ωb1 23.6 17.1 12.9 11.0 14.7 9.7 6.8 5.3 4.8 2.4 1.6 1.1

ωb2 19.1 14.4 12.0 10.3 10.9 7.5 6.2 5.0 2.7 1.8 1.3 1.0

ωb3 7.7 9.5 10.1 9.7 3.3 4.1 5.0 4.7 0.4 0.7 0.8 0.8

ωa1 13.1 11.7 10.3 9.7 7.4 6.1 5.3 4.8 1.9 1.5 1.2 1.0

ωa2 18.0 14.1 11.3 10.2 10.8 7.7 5.9 5.0 3.3 2.0 1.4 1.0

https://doi.org/10.1371/journal.pone.0253349.t003

Fig 1. Quantile-quantile plots, H0 : b4 ¼ 0.

https://doi.org/10.1371/journal.pone.0253349.g001
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(‘mutiplicative-like’), is very well approximated by the limiting w2
1

distribution since the dashed

line is very close to the 45˚ line.

Table 2 contains simulation results for the second scenario, that is, it contains results rela-

tive to testing that β3 and β4 are jointly equal to zero. Here, l = 2. Again, the likelihood ratio

test is markedly oversized when the sample size is small, even more so than in the previous sce-

nario. For instance, when α = 10% and n = 20, the estimated size of the test equals 31.1%, i.e.

the test’s empirical size is over three times larger than the nominal significance level. The cor-

rected tests perform much more reliably. Again, overall, the best performing test is that based

on our third Bartlett-corrected test statistic (ωb3—‘mutiplicative-like’). For instance, when

n = 20 and α = 10%, its null rejection rate is 10.7%; the corresponding figures for ωa1 and ωa2

(the two alternative corrected tests) are 14.9% and 17.5%, respectively.

Fig 2 contains QQ plots for the second scenario. As in the previous scenario, the null distri-

bution of ω is poorly approximated by the limiting chi-squared distribution and the approxi-

mation works better for ωb3 (the Bartlett-corrected test statistic, ‘mutiplicative-like’) than for

ωa1.

We shall now consider to tests on the coefficients of the precision submodel. The null rejec-

tion rates for the third scenario are in Table 3. We test the null hypothesis of fixed precision,

i.e. we test H0 : d2 ¼ d3 ¼ 0 which is equivalent to testing H0 : �1 ¼ � � � ¼ �n ¼ � (the preci-

sion parameter is constant across observations). The figures in Table 3 indicate, once again,

that testing inferences based on ω can be quite unreliable when n is small. Overall, the third

Bartlett-corrected (‘multiplicative-like’) test outperforms all other corrected tests. For instance,

when n = 20 and α = 10%, its null rejection rate is 9.5% whereas those of ωb1 (‘ratio-like’), ωb2

(‘exponentially adjusted’), ωa1 and ωa2 are 17.1%, 14.4%, 11.7% and 14.1%. We do not present

QQ plots for brevity. We note, however, that they show that the null distribution of ωb3 (‘muti-

plicative-like’) is well approximated by the limiting χ2 distribution.

We also performed simulations using a data generating process that differs from the esti-

mated model, that is, we estimated the tests’ non-null rejection rates (powers). We restrict

Fig 2. Quantile-quantile plots, H0: β3 = β4 = 0.

https://doi.org/10.1371/journal.pone.0253349.g002
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attention to the likelihood ratio test (ω), the best performing Bartlett-corrected test

(ωb3—‘mutiplicative-like’) and the best performing test obtained using the alternative finite

sample correction (ωa1). We consider two sample sizes (n 2 {20, 40}) and two significance lev-

els (α = 10%, 5%). We test H0 : b4 ¼ 0 (first scenario), but the data are generated using using a

value of β4 that is different from zero; we denote such a value by γ. The null hypothesis is thus

false. Since some tests are oversized, all testing inferences are carried out using exact (estimated

from the size simulations) critical values. The tests’ estimated powers for different values of γ
are presented in Table 4. As expected, the tests become more powerful when the sample size is

larger and also as the value of γmoves away from zero. Overall, the three tests display similar

non-null rejection rates.

We shall now return to the evaluation of the tests’ null performances. First, we shall investi-

gate the impact of the number of nuisance parameters on the tests’ null behavior. We set the

sample size at n = 40 and consider the following model:

log
mi

1 � mi

� �

¼ b1 þ
Xp

j¼2

bjxij

logð�iÞ ¼ d1 þ d2xi2 þ d3xi3;

i = 1, . . ., 40. We test H0: β2 = 0 against H1: β2 6¼ 0. The covariate x2 is a dummy variable that

equals 1 for the first twenty observations and 0 otherwise. The values of all other covariates

were obtained as random Uð� 0:5; 0:5Þ draws. Table 5 contains the tests’ null rejection rates

for p = 3, 4, 5, 6. The results show that the likelihood ratio test tends to become progressively

more liberal as the number of nuisance parameters increases. In contrast, the corrected tests

are much less sensitive to the number of nuisance parameters, especially ωb3 (‘mutiplicative-

like’), which is the best performing test. Its null rejection rates for the different values of p at

the 10% significance level range from 9.9% to 10% whereas those of ω range between 14.1%

(p = 3) and 17.1% (p = 6).

Second, we shall evaluate the tests’ finite sample performances when the null hypothesis

includes restrictions on the parameters of both submodels simultaneously. The data generating

Table 4. Nonnull rejection rates (%), H0 : b4 ¼ 0.

γ n = 20 n = 40

α = 5% α = 10% α = 5% α = 10%

ω ωb3 ωa1 ω ωb3 ωa1 ω ωb3 ωa1 ω ωb3 ωa1

-1.5 99.1 96.9 99.1 99.7 98.4 99.8 100.0 100.0 100.0 100.0 100.0 100.0

-1.25 95.7 94.2 95.8 98.3 97.3 98.5 99.9 99.9 99.9 100.0 100.0 100.0

-1.0 83.7 83.9 82.8 92.0 91.4 91.8 98.6 98.7 98.9 99.4 99.5 99.5

-0.75 59.3 61.9 57.8 74.1 75.7 73.8 87.8 88.8 89.3 93.6 94.0 94.3

-0.5 31.0 32.2 29.6 45.5 47.2 44.4 54.3 56.1 56.7 68.0 68.8 69.5

0.5 30.5 33.8 30.2 45.1 47.7 45.2 55.6 56.8 56.6 69.6 70.2 70.1

0.75 58.7 62.9 58.1 73.6 76.0 73.2 87.7 88.6 88.5 93.8 94.0 93.9

1.0 83.0 85.0 82.6 91.6 92.6 92.1 98.3 98.4 98.4 99.4 99.4 99.4

1.25 94.9 94.7 94.8 98.0 97.5 98.3 99.8 99.9 99.9 100.0 100.0 100.0

1.5 98.8 97.6 98.8 99.6 98.8 99.7 100.0 100.0 100.0 100.0 100.0 100.0

https://doi.org/10.1371/journal.pone.0253349.t004
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process is

log
mi

1 � mi

� �

¼ b1 þ b2xi2 þ b3xi3

logð�iÞ ¼ d1 þ d2xi2 þ d3xi3:

We consider two different null hypotheses, namely: (i) H0: β2 = 0, δ3 = 0 (l = 2) and (ii) H0:

β2 = 0, δ2 = δ3 = 0 (l = 3). The corresponding parameter values are (i) β1 = 1.0, β2 = 0, β3 = 3.0,

δ1 = 1.7, δ2 = 0.7, δ3 = 0 and (ii) β1 = 1.5, β2 = 0, β3 = −1.4, δ1 = 1.5, δ2 = δ3 = 0. The covariate

values were obtained as random Uð� 0:5; 0:5Þ draws and n 2 {15, 20, 30, 40}. Table 6 contains

the tests’ null rejection rates. The test based on the Bartlett-corrected test statistic ωb3 (‘mutipli-

cative-like’) is the best performer in both cases. For instance, when l = 2 and n = 15, its null

rejection rate at the 10% significance level is 9.5% whereas those of the competing tests range

from 11.1% to 25.0%.

Table 5. Null rejection rates (%), H0 : b2 ¼ 0, varying number of nuisance parameters.

α = 10% α = 5% α = 1%

p p p
3 4 5 6 3 4 5 6 3 4 5 6

ω 14.1 14.6 16.1 17.1 7.9 8.4 9.8 10.1 2.2 2.3 2.9 3.1

ωb1 10.6 10.9 11.5 11.9 5.2 5.8 5.9 6.4 1.0 1.2 1.3 1.3

ωb2 10.3 10.5 11.0 11.1 5.0 5.4 5.4 5.8 0.9 1.1 1.1 1.1

ωb3 9.9 10.0 10.0 10.0 4.8 5.1 4.8 4.8 0.8 1.0 0.9 0.8

ωa1 10.1 10.3 10.4 10.6 5.0 5.3 5.3 5.4 0.9 1.1 1.1 1.1

ωa2 10.4 10.6 10.9 11.1 5.2 5.5 5.5 5.8 0.9 1.2 1.2 1.3

https://doi.org/10.1371/journal.pone.0253349.t005

Table 6. Null rejection rates (%), H0 : b2; d3 ¼ 0 (l = 2) and H0 : b2; d2; d3 ¼ 0 (l = 3).

α = 10% α = 5% α = 1%

n n n
15 20 30 40 15 20 30 40 15 20 30 40

l = 2 ω 25.0 20.4 15.3 12.4 16.4 12.6 9.0 6.7 6.8 4.5 2.4 1.6

ωb1 14.6 12.6 11.3 9.8 8.2 6.9 5.8 5.0 1.9 1.2 1.2 1.0

ωb2 12.8 11.5 10.9 9.6 6.9 6.1 5.6 4.8 1.3 0.9 1.1 0.9

ωb3 9.5 10.2 10.4 9.5 4.3 5.0 5.2 4.7 0.6 0.6 1.0 0.9

ωa1 11.1 11.6 10.8 9.5 6.0 6.2 5.5 4.8 1.2 1.1 1.2 1.0

ωa2 13.1 12.2 11.0 9.6 7.2 6.6 5.7 4.9 1.5 1.3 1.2 1.0

l = 3 ω 23.7 18.9 13.3 12.5 15.5 11.6 7.4 6.7 5.8 3.6 1.9 1.6

ωb1 13.4 11.9 9.8 9.8 7.2 6.2 5.0 4.7 1.9 1.4 1.1 1.1

ωb2 11.8 11.2 9.6 9.6 6.0 5.7 4.8 4.6 1.4 1.2 1.0 1.0

ωb3 9.4 10.2 9.3 9.5 4.4 5.0 4.7 4.6 0.8 1.0 0.9 1.0

ωa1 7.8 8.8 8.8 9.6 3.8 4.4 4.4 4.4 0.9 0.9 0.9 0.9

ωa2 9.2 9.6 9.1 9.7 4.7 4.8 4.6 4.5 1.3 1.0 0.9 1.0

https://doi.org/10.1371/journal.pone.0253349.t006
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Finally, we shall evaluate the impact of different levels of correlations between regressors on

the tests’ small sample performance. The model is

log
mi

1 � mi

� �

¼ b1 þ b2xi2 þ b3xi3

logð�iÞ ¼ d1 þ d2xi2:

The values of the two regressors are obtained as random draws from the bivariate normal dis-

tribution with mean (0, 0)> and covariance matrix S. The diagonal and off-diagonal elements

of S are, respectively, 1 and ρ. Hence, ρ is the correlation coefficient between x2 and x3. We

test H0: β2 = β3 = 0 (l = 2). Data generation was carried out using β1 = 1.0, β2 = β3 = 0, δ1 = 1.7

and δ2 = 0.1. Different correlation strengths were considered, ranging from very low to very

strong: ρ 2 (0.1, 0.5, 0.75, 0.95). The sample sizes are n 2 {15, 20, 30, 40}. Table 7 contains the

tests’ null rejection rates. Again, the likelihood ratio test ω is quite liberal when n is small,

slightly more so under very strong correlation between the two regressors. The Bartlett-cor-

rected tests perform very well for all correlation values, especially ωb3 (‘multiplicative-like’). Its

null rejection rates are once again very close to α. For instance, when ρ = 0.75, n = 15 and α =

10% (5%), the test’s null rejection rate is 9.7% (4.4%) whereas that of uncorrected test (ω) is

22.3% (14.0%) and those of alternative tests ωa1 and ωa2 are 18.4% (9.9%) and 20.5% (13.4%),

Table 7. Null rejection rates (%), H0 : b2 ¼ b3 ¼ 0 (l = 2); varying correlation between regressors.

α = 10% α = 5% α = 1%

n n n
15 20 30 40 15 20 30 40 15 20 30 40

ρ = 0.1 ω 21.5 16.3 15.2 13.1 13.7 9.6 8.5 7.2 4.7 2.9 2.2 1.6

ωb1 13.5 11.2 10.8 10.5 7.2 5.8 5.2 5.2 1.8 1.4 1.1 1.0

ωb2 12.2 10.6 10.4 10.3 6.4 5.5 5.1 5.1 1.4 1.2 1.0 1.0

ωb3 10.6 9.9 9.9 10.2 5.1 5.2 4.8 5.0 0.9 1.1 0.9 1.0

ωa1 16.9 10.4 10.3 10.5 9.8 5.7 4.9 5.3 2.9 1.2 1.0 1.0

ωa2 18.1 10.7 10.6 10.6 11.0 5.9 5.1 5.4 3.6 1.4 1.1 1.0

ρ = 0.5 ω 21.7 17.1 14.8 13.3 13.4 9.8 8.2 7.2 4.2 2.6 2.1 1.6

ωb1 13.3 11.4 10.6 10.6 6.8 5.7 5.3 5.5 1.2 1.2 1.2 1.1

ωb2 12.1 10.8 10.3 10.4 6.1 5.3 5.1 5.4 1.0 1.1 1.1 1.0

ωb3 10.5 10.1 9.8 10.3 4.8 4.9 4.8 5.3 0.8 0.9 1.0 1.0

ωa1 19.2 10.5 9.8 10.5 11.8 5.3 4.9 5.5 3.6 1.1 1.1 1.1

ωa2 21.3 10.9 10.1 10.6 13.6 5.5 5.1 5.5 4.9 1.2 1.1 1.1

ρ = 0.75 ω 22.3 17.0 14.7 12.8 14.0 9.8 8.3 6.8 4.4 2.6 2.3 1.8

ωb1 13.3 11.2 10.7 9.9 6.9 5.8 5.5 5.0 1.3 1.3 1.0 1.2

ωb2 11.9 10.7 10.3 9.8 5.9 5.4 5.3 4.9 1.0 1.2 1.0 1.1

ωb3 9.7 10.1 9.9 9.7 4.4 4.9 5.0 4.9 0.6 1.1 0.9 1.1

ωa1 18.4 10.2 10.0 10.9 9.9 5.3 5.2 5.1 3.3 1.3 1.0 1.1

ωa2 20.5 10.6 10.2 10.0 13.4 5.6 5.3 5.1 4.8 1.4 1.0 1.1

ρ = 0.95 ω 24.0 16.8 14.4 13.1 15.3 9.3 8.2 6.9 5.3 2.6 2.2 1.5

ωb1 13.8 11.0 10.4 10.5 7.1 5.4 5.3 5.1 1.7 1.2 1.2 0.9

ωb2 12.0 10.5 10.1 10.3 6.1 5.1 5.1 5.1 1.2 1.1 1.2 0.9

ωb3 9.4 9.8 9.8 10.1 4.3 4.7 4.8 5.0 0.8 0.9 1.0 0.9

ωa1 15.5 10.3 9.8 10.5 9.3 5.0 4.9 5.2 2.6 1.1 1.2 0.9

ωa2 17.9 10.7 10.0 10.9 10.6 5.2 5.1 5.3 3.7 1.1 1.3 0.9

https://doi.org/10.1371/journal.pone.0253349.t007
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respectively. It is noteworthy that the null rejection rates of the three Bartlett-corrected tests

are insensitive to the level of correlation between regressors. For example, when n = 15 and α
= 10%, the null rejection rates of ωb1 (‘ratio-like’), ωb2 (‘exponentially adjusted’) and ωb3 (‘mul-

tiplicative-like’) for ρ = (0.1, 0.5, 0.75, 0.95) are in [13.3%, 13.8%], [11.9%, 12.2%] and [9.4%,

10.6%], respectively.

Behavioral biometrics: Intelligence and atheism

We shall now address the behavioral biometrics issue briefly outlined in the Introduction. The

interest lies in modeling the impact of average intelligence on the prevalence of religious disbe-

lievers. General intelligence relates to the ability to reason deductively or inductively, think

abstractly, use analogies, synthesize information, and apply it to new domains. It is typically

measured by the intelligence quotient (IQ) which is a score obtained from standardized tests.

Average IQ scores have been computed for a large number of countries; see e.g. [37, 38]. There

is evidence that intelligence negatively correlates with religious belief at the individual level;

see e.g. [39]. The negative correlation holds even when religiosity and performance on analytic

thinking are measured in separate sessions; see [40]. It also holds when computed from a cross

section of nations and from the U.S. states; see [41, 42]. There are evolutionary reasons for the

inverse relationship between intelligence and religious belief. For instance, according to the

Savanna-IQ Interaction Hypothesis more intelligent individuals are more likely to acquire and

espouse evolutionarily novel values and preferences than less intelligent individuals; see [43].

One of such evolutionarily novel values is religious disbelief.

Several regression analysis were performed to measure the net impact of changes in intelli-

gence levels on the prevalence of atheists; see [44] for details. A beta regression analysis was

carried out by [13]. They used data on 124 nations and showed that the net impact of average

intelligence on the prevalence of religious disbelievers is always positive, gains strength up to a

certain level of average intelligence and then weakens. The same data set (n = 124) was ana-

lyzed by [32] using a beta regression model that includes a parametric mean link function and

by [30] using the unit gamma regression model. In what follows, we shall consider a different

data set. On page 487 of their paper [13], briefly mention a beta regression analysis that was

performed using data on the fifty countries with the largest prevalence of atheists (n = 50)

which they call ‘scenario 3’. Since our interest lies in small sample inferences, we shall pursue

that modeling. A novel feature of such data is that they do not include countries for which the

prevalence of atheists is very small (close to zero).

The response variable (y) is the proportion of atheists in each country and the covariates

are: average intelligence quotient (x2), average intelligence quotient squared (x3), life expec-

tancy in 2007 in years (x4), the logarithm of the ratio between trade volume (the sum of

imports and exports) and gross national product (x5), and per capita income adjusted for pur-

chasing power parity (x6). Additionally, the following interactions are used: x7 = x5 × x6 and x8

= x4 × x5; the latter was not considered by the original authors. Except for x8, these are the

same variables used by [13]. Average intelligence is the independent variable of main interest

and the remaining regressors are control variables. Also, n = 50 (fifty countries with the largest

prevalence of religious disbelievers). The data and computer code used in the empirical analy-

sis that follows can be obtained at https://github.com/acguedes/beta-Bartlett.

[13] fitted the following beta regression model to the data (Model M1):

log
mi

1 � mi

� �

¼ b1 þ b2xi2 þ b3xi3 þ b4xi4 þ b5xi5 þ b6xi6 þ b7xi7
ffiffiffiffi
�i

p
¼ d1 þ d2xi2 þ d3xi4 þ d4xi6:

PLOS ONE Bartlett-corrected tests for varying precision beta regressions

PLOS ONE | https://doi.org/10.1371/journal.pone.0253349 June 28, 2021 13 / 26

https://github.com/acguedes/beta-Bartlett
https://doi.org/10.1371/journal.pone.0253349


We noticed that an improved fit according to standard model selection criteria and pseudo-R2

(see below) can be achieved by adding x8 to the mean submodel and by only using x2 in the

precision submodel, since the x4 and x5 lose statistical significance when the mean submodel

includes the interaction between these two variables. Our model (Model M2) is then

log
mi

1 � mi

� �

¼ b1 þ b2xi2 þ b3xi3 þ b4xi4 þ b5xi5 þ b6xi6 þ b7xi7 þ b8xi8
ffiffiffiffi
�i

p
¼ d1 þ d2xi2:

All parameter estimates of the above model are statistically significant at the 5% significance

level according to the z test, and its pseudo-R2, as defined by [1], is superior to that of the

model fitted by [13]: 0.3719 vs 0.3216. Model M2 is also favored by the three most commonly

used model selection criteria when compared to Model M1, AIC (−61.0555 vs −55.3188),

AICC (−55.4144 vs −48.3714) and BIC (−41.9352 vs −34.2865). We shall investigate whether

x4 and x5 should be excluded from our model by testing whether β4 and β5 equal zero (individ-

ually and jointly). We shall use three tests, namely: the likelihood ratio test (ω), the best per-

forming Bartlett-corrected test (ωb3—‘mutiplicative-like’) and the best performing test based

on the alternative small sample correction (ωa1).

At the outset, we test the exclusion of x4 from Model M2, that is, we test H0 : b4 ¼ 0. The

p-values of the ω, ωb3 and ωa1 tests are 0.0258, 0.0443 and 0.0295, respectively. The first and

third tests clearly reject the null hypothesis at α = 5% whereas the p-value of the Bartlett-cor-

rected test is very close to 0.05 which renders uncertainty about the exclusion of x4 from the

model. Next, we test H0 : b5 ¼ 0. We obtain the following p-values for ω, ωb3 and ωa1: 0.0303,

0.0505 and 0.0332, respectively. The first and third tests clearly reject the removal of x5 from

the model at the 5% significance level; the null hypothesis is not rejected by the Bartlett-cor-

rected test. Finally, we test the joint exclusion of both covariates, i.e. we test H0 : b4 ¼ b5 ¼ 0,

and obtain the following p-values for ω, ωb3 and ωa1: 0.0726, 0.1121 and 0.0840, respectively.

The null hypothesis is not rejected by the three tests at the 5% nominal level, but only the Bart-

lett-corrected test maintains that inference at the 10% nominal level. That is, such a test pro-

vides more evidence in favor of the removal of x4 and x5 from the mean submodel.

Based on the above testing inference, we arrive at the following reduced model (Model

M2R), which is our final model:

log
mi

1 � mi

� �

¼ b1 þ b2xi2 þ b3xi3 þ b4xi6 þ b5xi7 þ b6xi8
ffiffiffiffi
�i

p
¼ d1 þ d2xi2:

The estimates of β1, . . ., β6 (standard errors in parenthesis) are, respectively, 22.9423 (7.6472),

−0.7583 (0.1942), 0.0044 (0.0011), 0.1866 (0.0545), −0.0483 (0.0136), 0.0265 (0.0055). For the

precision submodel, we obtain d̂1 ¼ 22:0333 (5.0312) and d̂2 ¼ � 0:1934 (0.0498). The model

pseudo-R2 is 0.3455; it is higher than that of the model estimated by [13]. Additionally, AIC =

−59.8094, AICC = −56.2972 and BIC = −44.5133. It is noteworthy that these criteria clearly

favor our reduced model relative to the model presented in [13]; recall that for that model,

AIC = −55.3188, AICC = −48.3714 and BIC = −34.2865. The difference in AIC (AICC) [BIC]

in favor of Model M2R is of nearly 5 points (nearly 8 points) [over 10 points]. When the differ-

ence in AIC values exceeds 4, one can conclude that there is considerably less support for the

model with larger AIC; see [45]. The evidence in favor of our reduced model is thus strong.

Asymptotic confidence intervals with nominal coverage (1 − α) × 100% for the parameters

of Model M2R can be obtained using the asymptotic normality of the corresponding
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maximum likelihood estimators. In particular, for j = 1, . . ., 6 and k = 1, 2, b̂ j þ z1� a=2 se ðb̂ jÞ

and d̂k þ z1� a=2 se ðd̂kÞ are asymptotic confidence intervals for βj and δk with nominal coverage

(1 − α) × 100%, respectively, the asymptotic standard errors, se, being obtained from Fisher’s

information matrix inverse evaluated at the maximum likelihood estimates. Here, z1−α/2

denotes the 1 − α/2 standard normal quantile. Table 8 contains the lower and upper limits

(LLCIa and ULCIa) of such intervals for the parameters that index Model M2R for 1 − α =

0.95. Following [46, Section 3], we also computed approximate confidence intervals based on

the test statistics ω, ωb3 and ωa1 which was done by finding the set of parameter values such

that the test statistic is smaller than w2
1;0:95

for each parameter and each test statistic. Such inter-

vals are also presented in Table 8. For instance, the confidence intervals for β5 constructed

using ωb3 and ωa1 are [−0.0796, −0.0169] and [−0.0781, −0.0145], respectively; the correspond-

ing asymptotic interval estimate is [−0.0749, −0.0216]. It is noteworthy that none of the

reported confidence intervals contains the value zero.

The model used by [13] (Model M1) and our reduced model (Model M2R) are non-nested.

In order to distinguish between them using a hypothesis test, we performed the J test as out-

lined by [47]. When the test is applied to two non-nested models, say Modelsm1 andm2, each

model is sequentially tested against the other, i.e. we test Modelm1 against Modelm2, and

then we test Modelm2 against Modelm1. It is thus possible to accept one model as the true

model and reject the alternative model, to accept both models (i.e. to conclude that the two

models are empirically indistinguishable) or to reject both models. Since the J testing inference

is reached using the likelihood ratio test, we have also performed the test using the two cor-

rected tests. We first test Model M1, i.e. the model fitted by [13], against our reduced model

(Model M2R). The p-values of the tests based on ω, ωb3 and ωa1 are, respectively, 0.0036,

0.0825, 0.0233. All tests reject Model M1 (i.e. the model used by the authors) at the 10% signif-

icance level; the test based on ωa1 (ω) yields rejection at α = 5% (1%). Next, Model M2R is

tested against Model M1. The p-values of the tests that use ω, ωb3 and ωa1 are 0.0364, 0.1100

and 0.2001, respectively. Interestingly, our model is rejected at the 5% significance level by the

likelihood ratio test whereas that inference is reversed when the small sample corrections are

applied: the two corrected tests do not yield rejection of the model, nor even at α = 10%. That

is, our model is not rejected by the two corrected tests.

It is noteworthy that if we consider the three sets of tests, i.e. the tests of H0 : b4 ¼ 0, H0 :

b5 ¼ 0 and H0 : b4 ¼ b5 ¼ 0, it is clear that the Bartlett-corrected test was the test that most

emphatically suggested the removal of both x4 and x5 from the mean submodel of Model M2.

Table 8. Lower (LLCI) and upper (ULCI) asymptotic confidence intervals limits for the parameters of Model M2R; standard asymptotic confidence interval and con-

fidence intervals constructed using the test statistics ω, ωb3 and ωa1.

LLCIa ULCIa LLCIω ULCIω LLCIob3
ULCIob3

LLCIoa1
ULCIoa1

β1 7.9538 37.9302 3.7532 39.1532 3.7532 40.3532 3.7532 41.5532

β2 -1.1389 -0.3776 -1.1985 -0.4794 -1.1985 -0.4182 -1.1985 -0.4794

β3 0.0022 0.0065 0.0011 0.0068 0.0011 0.0069 0.0014 0.0072

β4 0.0798 0.2935 0.0674 0.3066 0.0622 0.3144 0.0505 0.3066

β5 -0.0749 -0.0216 -0.0778 -0.0184 -0.0796 -0.0169 -0.0781 -0.0145

β6 0.0159 0.0371 0.0137 0.0393 0.0127 0.0403 0.0137 0.0396

δ1 12.1722 31.8941 8.7085 32.7085 8.7085 33.5085 8.7085 32.3085

δ2 -0.2910 -0.0957 -0.2926 -0.0566 -0.2926 -0.0566 -0.2926 -0.0566

https://doi.org/10.1371/journal.pone.0253349.t008
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We constructed a residual normal probability with simulated envelopes using the combined

residuals of [48] from our fitted model (Model M2R); see Fig 3. The envelope bands were con-

structed using 100 replications The plot shows that there is no evidence against the correct

specification of our model since all points lie inside the two envelope bands.

In [13], Fig 4, the authors plot an estimate of @μi/@xi2 against a sequence of values of average

intelligence by setting all other covariates at their median values. In Fig 4 we present a panel of

similar plots each containing two impact curves, namely: (i) that obtained from our reduced

model (‘new’) and (ii) that obtained using the model fitted by [13] (‘old’). That is, ‘new’ and

‘old’ in Fig 4 refer to Models M2R and M1, respectively. Instead of only fixing the covariates

other than average intelligence at their median values, we do so at four different quantiles:

0.10, 0.25, 0.50 (median) and 0.75. We note that the two impact curves become more similar

(more dissimilar) as the quantile at which the regressors values are set increases (decreases).

Such covariates tend to assume larger values for more developed nations since they relate to

per capita income, life expectancy and integration to international trade. In particular, the for-

mer two variables are highly correlated with economic development. It then follows that one

gets a somewhat different functional form of the impact of average intelligence on the preva-

lence of religious disbelievers in lower income countries when our reduced model is used rela-

tive to the model used by the original authors. At the lowest quantile (0.10), the maximal

impact computed from our model (Model M2R) is over 11% larger than that obtained using

the alternative model (Model M1). When the covariates values are set at their medians, the fig-

ure drops to nearly 4%. To the best of our knowledge, our analysis provides the first measure

Fig 3. Residual normal probability plot.

https://doi.org/10.1371/journal.pone.0253349.g003
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of the decline in the maximal impact of average intelligence on the prevalence of religious dis-

believers and also of the changes in the functional form of such an impact as nations become

more developed.

Concluding remarks

The beta regression model is widely used to model responses that assume values in (0, 1). In

the initial formulation of the model, the precision parameter was assumed constant for all

observations, i.e. all responses in the sample share the same precision. This model became

known as the fixed precision beta regression model. A more general and more flexible formu-

lation of the model was later proposed. It allows both distribution parameters to vary across

observations. Most empirical applications employ this version of the model, which is known as

the varying precision beta regression model. It contains two submodels, one for mean and

another for the precision.

In both variants of the regression model, testing inferences are usually performed using the

likelihood ratio test. Such a test employs an asymptotic approximation, and as a consequence

it can be quite size distorted when the sample size is small. In particular, it tends to be liberal

(oversized), i.e. it overrejects the null hypothesis when such a hypothesis is true. Since many

applications of the beta regression model are based on samples of small to moderate sizes, it is

important to develop alternative tests with superior finite sample behavior, i.e. tests that yield

better control of the type I error frequency. [12] derived a Bartlett correction to the likelihood

ratio test that can be used to achieve more accurate testing inferences. Their result, nonethe-

less, only applies to the more restrictive model formulation, namely: the fixed precision model.

Since many applications employ the varying precision formulation of the beta regression

model, their small sample correction cannot be used. In this paper we derived the Bartlett cor-

rection to the likelihood ratio test in full generality. Our correction can thus be used to con-

struct modified likelihood ratio tests to be used in varying precision beta regression analyses.

We considered three Bartlett-corrected tests. Monte Carlo simulation evidence revealed that

one of such tests typically delivers very accurate inferences even when the sample size is quite

small. Its small sample performance was numerically compared to those of two tests that are

based on an alternative correction. Overall, the results favor the test that employs the Bartlett

correction. A novel feature of our Bartlett-correction tests is that their size distortions are

guaranteed to vanish at a faster rate than that of the likelihood ratio test: O(n−2) vs O(n−1).

Fig 4. Impact curves.

https://doi.org/10.1371/journal.pone.0253349.g004
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We presented and discussed an empirical application that involved an important issue in

evolutionary biometrics, namely: the relationship between average intelligence and the preva-

lence of religious disbelievers. Using data on 50 countries, we showed that by using our Bart-

lett-corrected testing inferences we arrive at a beta regression model slightly different from

that previously used in the literature. It is noteworthy that our model displays superior fit and

yields a noticeably different functional form of the impact of intelligence on religious disbelief

in low income countries. This empirical application illustrates the usefulness of the Bartlett

correction derived in our paper.

A direction for future research is the extension of our analytical results for testing infer-

ences in inflated beta regression models introduced by [49] which include both continuous

and discrete components and thus allow for response values that are exactly equal to 0 or 1.

Appendix: Varying precision beta regression log-likelihood

cumulants

We shall now present the varying precision beta regression model log-likelihood cumulants up

to fourth order. We shall use lower and upper case case letters to index derivatives of (2) with

respect to the components of β and δ, respectively. We use tensor notation: κrs = IE(@2 ℓ(θ)/

@βr@βs), κrst = IE(@3 ℓ(θ)/@βr@βs@βt), κrstu = IE(@4 ℓ(θ)/@βr@βs@βt@βu), etc., r, s, t, u = 1, . . ., k.

Additionally, we use the following notation for derivatives of the above cumulants:

kðtÞrs ¼ @krs=@bt, k
ðtuÞ
rs ¼ @krs=@bt@bu, k

ðuÞ
rst ¼ @krst=@bu, etc.

It can be shown that

@mi
@Zi

¼
1

g 0
1
mið Þ

;
@

@mi

@mi
@Zi
¼
� g@

1
mið Þ

g 0
1
mið Þ

� �2
;

@

@mi

@mi
@Zi

� �2

¼
� 2g@

1
mið Þ

g 0
1
mið Þ

� �3
;

@

@mi

@mi
@Zi

� �3

¼
� 3g@

1
mið Þ

g 0
1
mið Þ

� �4
;

@
2

@m2
i

@mi
@Zi

� �

¼
� g@0

1
mið Þg 01 mið Þ þ 2 g@

1
mið Þ

� �2

g 0
1
mið Þ

� �3
;

@�i
@zi

¼
1

g 0
2
�ið Þ

;
@

@�i

@�i
@zi
¼
� g@

2
�ið Þ

g 0
2
�ið Þ

� �2
;

@

@�i

@�i
@zi

� �2

¼
� 2g@

2
�ið Þ

g 0
2
�ið Þ

� �3
;

@

@�i

@�i
@zi

� �3

¼
� 3g@

2
�ið Þ

g 0
2
�ið Þ

� �4
;

@
2

@�
2

i

@�i
@zi

� �

¼
� g@0

2
�ið Þg 02 �ið Þ þ 2 g@

2
�ið Þ

� �2

g 0
2
�ið Þ

� �3
:

Let wi = ψ0(μi ϕi) + ψ0((1 − μi)ϕi),mi = ψ@(μi ϕi) − ψ@((1 − μi)ϕi) and also

ai ¼ 3
@

@mi

@mi
@Zi

� �
@mi
@Zi

� �2

; ti ¼ 3
@

@�i

@�i
@zi

� �
@�i
@zi

� �2

;

ci ¼ �i½miwi � c
0

1 � mið Þ�ið Þ�; bi ¼
@mi
@Zi

@
2

@m2
i

@mi
@Zi

� �
@mi
@Zi
þ

@

@mi

@mi
@Zi

� �2
" #

;

vi ¼
@�i
@zi

@
2

@�
2

i

@�i
@zi

� �
@�i
@zi
þ

@

@�i

@�i
@zi

� �2
" #

;

di ¼ 1 � mið Þ
2
c
0

1 � mið Þ�ið Þ þ m2c
0
mi�ið Þ � c

0
�ið Þ; si ¼ 1 � mið Þ

3
c
@

1 � mið Þ�ið Þ

þm3
ic

@
mi�ið Þ � c

@
�ið Þ; ui ¼ � �i 2wi þ �

@wi
@�i

� �

; ri ¼ 2
@m�i
@�i
þ �

@
2
m�i

@�
2

i

� �
@mi
@Zi

;

where ψ0(�) and ψ@(�) is the trigamma and tetragamma functions, respectively. The following
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derivatives are needed for obtaining the log-likelihood cumulants:
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The log-likelihood derivatives with respect to the components of θ = (β>, δ>)> are given by
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Using the above results, we arrive, after long derivations, at the following expressions for

the relevant varying precision beta regression model cumulants:
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Also, we obtained the following expressions for the first order derivatives of the log-likeli-

hood cumulants:
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The second order derivatives of the log-likelihood cumulants can expressed as follows:
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