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Abstract

The genomic diversity of the domestic dog is an invaluable resource for advancing under-

standing of mammalian biology, evolutionary biology, morphologic variation, and behavior.

There are approximately 350 recognized breeds in the world today, many established

through hybridization and selection followed by intense breeding programs aimed at retain-

ing or enhancing specific traits. As a result, many breeds suffer from an excess of particular

diseases, one of many factors leading to the recent trend of “designer breed” development,

i.e. crossing purebred dogs from existing breeds in the hope that offspring will be enriched

for desired traits and characteristics of the parental breeds. We used a dense panel of

150,106 SNPs to analyze the population structure of the Australian labradoodle (ALBD), to

understand how such breeds are developed. Haplotype and admixture analyses show that

breeds other than the poodle (POOD) and Labrador retriever (LAB) contributed to ALBD for-

mation, but that the breed is, at the genetic level, predominantly POOD, with all small and

large varieties contributing to its construction. Allele frequency analysis reveals that the

breed is enhanced for variants associated with a poodle-like coat, which is perceived by

breeders to have an association with hypoallergenicity. We observed little enhancement for

LAB-specific alleles. This study provides a blueprint for understanding how dog breeds are

formed, highlighting the limited scope of desired traits in defining new breeds.

Author summary

Due to the selective breeding practices used to create modern breeds, dogs suffer from an

unacceptable excess of disease, one of several reasons behind the recent trend of creating

“designer breeds.” Such populations result from crosses between established breeds, with
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a goal of producing dogs that lack or have a reduced incidence of unfavorable disorders or

phenotypes, yet retain desirable traits from parental breeds. One such example is the Aus-

tralian labradoodle which was initiated from Labrador retriever and standard poodle

crosses 31 years ago in order to produce dogs with a reduced tendency to elicit an allergic

reaction but that retained the desirable characteristics of a service dog. In this study we

have used nuclear DNA markers to determine the genetic history of the Australian labra-

doodle and develop an understanding of how breeds stabilize traits given particular breed-

ing strategies. Our data shows that despite the major contributions from poodle and

Labrador retriever, additional breeds contributed to the modern Australian labradoodle.

Today’s Australian labradoodle is largely poodle with an excess of poodle alleles related to

coat type. This study demonstrates that changes in very few genes can define a new breed

and demonstrates how breeds can form in a small number of generations.

Introduction

Approximately 350 domestic dog breeds are recognized by organizations such as the American

Kennel Club (AKC) [1] or the Fédération Cynologique Internationale (FCI) [2]. Many other

national registries exist to track regional breeds. Integral to the formation of breeds has been

the adoption of the breed barrier rule which states that, with rare exceptions, no dog may

become a registered member of a breed unless both its dam and sire are similarly registered.

Most breeds were established during Victorian times [1, 2], and many are derived from excep-

tionally small numbers of founders or reflect the use of popular sires, i.e. stud dogs whose gene

pools are overrepresented in the population, often followed by strong phenotypic selection [1–

3]. Thus, individual breeds are often characterized by restricted gene pools [4–6], permitting

identification of loci controlling breed-defining traits using a modest number of genetic mark-

ers rather than whole genome sequencing [7–11].

Breeding programs needed to generate and maintain specific traits often require crossing

closely related individuals, hence, some domestic breeds have an excess of specific diseases

[12], many of which bear striking similarity to those observed in humans [13–16]. In response

to these health issues and coupled with a desire to create new breeds with specific attributes,

there has been a recent explosion of designer breeds, developed by crossing breeds with spe-

cific traits. The resultant lineages are touted as unusually healthy, although for some designer

breeds this is a topic of debate [13].

One of the most popular of the designer breeds is the labradoodle, a cross between the Lab-

rador retriever (LAB) and standard poodle (SPOO) (Fig 1) (https://alaa-labradoodles.com).

Today, the name labradoodle describes two populations. The first are F1 hybrids (LBD), which

are simply the first-generation product of any LAB and SPOO cross. The Australian labradoo-

dle breed (ALBD), which originated in 1989, is distinct from such hybrids. While also starting

as a LAB and SPOO cross, it has since been propagated by planned crosses to establish a true-

breeding population, meeting an established set of standards. With an original goal of produc-

ing a low-shedding service dog, offspring of the planned crosses are known today as Australian

labradoodles, and fanciers seek to have it recognized by an international registry as a unique

breed.

In this study we sought to understand how the ALBD breed was created by doing a whole

genome analysis of multiple generations. We were specifically interested in determining how

breed-defining traits would appear and stabilize given the breeding programs employed. We

have used haplotype sharing and admixture analysis to identify constituent breeds. We identify
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parental breed-associated loci and variants that most strongly distinguish the ALBD from its

founder breeds. Finally, an examination of linkage disequilibrium (LD) decay in multi-genera-

tional ALBD versus LBD provides insight as to the stability of a quickly developed breed.

Results

Breed structure, admixture, and haplotype analyses

We initially examined the relationship of the ALBD and LBD to six putative parental breeds

using Principal Components Analysis (PCA) (Fig 2A). The first two PCs explain 6.49%, and

5.52% of the total genetic variance observed among breeds, respectively. PC1 provides major

separation of the LAB from all other breeds. The central positioning of the LBD between the

LAB and SPOO validates the reported background of these samples as F1 hybrids. The second

PC separates the POOD, including the SPOO and miniature (MPOO) and toy poodles

(TPOO) from a group that includes the English cocker spaniel (ECKR), American cocker

spaniel (ACKR), and Irish water spaniel (IWSP), all breeds reported to have been included at

least once in ALBD pedigrees (https://alaa-labradoodles.com). Of note, no IWSP was present

in the pedigrees of ALBD we tested. The three spaniel breeds clearly separate from the LAB in

PC1, as well as from the POOD and each other in PC2. There is overlap between the ALBD

and POOD varieties but not with the distantly positioned LAB. These results provide the first

Fig 1. Pictures of the breeds under consideration in this study. (A) Labrador retriever (LAB), (B) Australian labradoodle (ALBD), (C) standard

poodle (SPOO), (D) miniature poodle (MPOO), (E) English cocker spaniel (ECKR), (F) American cocker spaniel (ACKR) and (G) Irish water spaniel

(IWSP). When all poodle breeds were considered as one group the designation POOD was used.

https://doi.org/10.1371/journal.pgen.1008956.g001
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indication that the ALBD retains more POOD ancestry than LBD, and both the SPOO and

smaller POOD varieties contributed to the breed.

We next estimated admixture in the ALBD and related breeds using a cluster-based ances-

try method that applies different models of population structure to the data (Fig 2B). Dividing

the dataset into two populations, at K = 2 the LAB separates from the rest of the breeds, and at

K = 4 the 50% contribution of SPOO to LBD becomes clear. At K = 4–6 it becomes increas-

ingly evident that the MPOO/TPOO and SPOO are the major contributors to the existing

ALBD, as the breed retains only a small contribution from the LAB. There is <5% contribu-

tion from the MPOO/TPOO to the LBD, and that is likely to represent the close relationship

of the POOD varieties. As each column represents a single dog, the graph shows variation

between individual ALBDs, particularly in terms of which POOD variety contributed to each

individual, reflecting the still early generations of the population (all dogs <9 generations

since the last purebred outcross). The IWSP does not appear to make a contribution to the

ALBD based on this dataset. The ECKR and ACKR, which are themselves closely related [1,

17], contribute <5% to a subset of ALBD lineages and none to the rest.

To further understand the genetic makeup of the LBD and ALBD identity-by-descent

(IBD) haplotype sharing between 161 previously published breeds and nine wild canids versus

LBD and ALBD was calculated, and two plots were drawn by subsetting LBD (Fig 3A) and

ALBD (Fig 3B) [4]. The LAB and SPOO represent the most significant haplotype sharing with

the LBD, as expected. Analysis of the ALBD reveals greater haplotype sharing with all three

varieties of POOD and the ACKR (Fig 3B). Haplotype sharing with the Havanese, golden- and

flat-coated retrievers, and Portuguese water dog is noted for both the ALBD and LBD, poten-

tially reflecting the historical relatedness of those breeds to the LAB (golden and flat-coated

retrievers) and POOD (Havanese and Portuguese water dog) and not necessarily admixture

Fig 2. PCA and Admixture analyses. A) PCA analysis plot of the top two principal components (PC1 and PC2), showing the distribution of the eight breeds of interest

accounting for a genetic variance of 6.5% and 5.5%, respectively. (B). Admixture analysis representing data for K = 2–6 cluster-based ancestry models. Each bar represents

an individual dog, and the color length for each bar represents the proportion of genomic contribution from the founder population.

https://doi.org/10.1371/journal.pgen.1008956.g002
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with labradoodle populations [4]. Similar results were found in the second dataset, which com-

pared the LBD (Fig 4A) and ALBD (Fig 4B) to the subset of predicted parental breeds. We

note, however, that in this reduced dataset the contribution from the ACKR breed crosses the

significance threshold, while the contribution of neither of the other two spaniel breeds

approaches significance. The proportion of haplotype sharing representing the contribution of

LAB to ALBD (0.13) is approximately one-third that of LAB to the LBD (0.38).

As a complement to the above studies, we conducted a TreeMix analysis [18] (Fig 5). Tree-

Mix generates a maximum likelihood tree from a large number of SNPs, producing an esti-

mate of the historical relationships of a set of populations, accounting for both splits in the

population as well as migration events. We observe that the LBD and LAB are on the same

branch, while the ALBD is found on the POOD branch. Admixture from the SPOO to the

LBD is observed at 49%. The contribution of the smaller poodle varieties (combined MPOO

and TPOO) to the ALBD is substantial but undetected in the LBD.

To better understand the placement of LBD with LAB, we generated a separate tree using

the six established breeds but not the LBD or ALBD (Residual value = -1.4 to 1.4) (S1 Fig.). We

observe that the LAB is on a branch with the IWSP, and the SPOO is on a branch with the

MPOO, similar to the base tree in Fig 5. We also built a tree including the mixed population,

but did not allow for migration (Residual value = -21.9 to 21.9) (S2 Fig.). On this tree, the LAB

and SPOO all stem from one branch, suggesting that the LAB and SPOO are closely related,

which we know is not true based on the first tree and published phylogenetic studies. When

we consider the residuals from this model they show that the LAB and SPOO are positioned

too close for this data and the IWSP and LAB are too distant from each other. Thus, the best

arrangement for the LBD is on a branch with the LAB, placed distant from the POOD and its

relatives, but with migration from the SPOO as shown (Fig 5).

Fig 3. Haplotype sharing analyses of 161 dog breeds including the LBD and ALBD. Haplotype comparison analyses for both LBD (A) and ALBD (B) with 23 domestic

dog breed clades, colored separately, are shown. Analysis used a window size of 1900 SNPS with an overlap of 50 SNPs. Breeds are listed and colored on the x-axis. Colors

correspond to the 23 previously reported dog breed clades. The y-axis indicates combined haplotype sharing. Breed abbreviations can be found in S2 Table. A significance

level of 95% of all across breed sharing is indicated by the horizontal line. Pairs which did not share a haplotype were set at 250,000 bp for graphing.

https://doi.org/10.1371/journal.pgen.1008956.g003
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Inbreeding coefficient analysis

We next examined inbreeding in the ALBD and associated breeds (Table 1). Of the breeds

tested, the LBD and the ALBD have the lowest mean inbreeding coefficients (-0.06 and 0.05,

respectively), indicating relatively high genetic diversity within each population compared to

purebreds. There are multiple explanations for the diversity observed among ALBDs. First,

they are mixed breed dogs and the ALBDs included in this work are multigenerational, reflect-

ing a mixture of dogs and breeding schemes. In addition, the primary parental breeds are

themselves popular, with large memberships [1] who likely contribute to the overall increase

in genomic heterozygosity [19, 20]. Indeed, the potential component breeds present an

ordered slope with the SPOO having the lowest level of inbreeding and the ACKR, a breed that

diverged from the ECKR in the 20th century [1, 21], having the highest.

Allelic variation analysis

To compare allelic variation between the ALBD and its parental breeds we performed three

genome-wide comparisons using PLINK [22, 23] (Fig 6). For each comparison, we focused

our analyses only on the five most significant SNPs within independent regions. In each case,

haplotype blocks surrounding the lead SNP were defined using Haploview [24] by using the

solid spine block definition on the basis of LD score. All genes within each haplotype block are

reported (Table 2). In the first analysis we compared 20 POOD (10 SPOO, five MPOO, and

five TPOO) versus 28 LABs. We observed 6,181 SNPs crossing the Bonferroni threshold

(P = 3.33x10-7) with genome-wide significant differences in allele frequency distributed across

all chromosomes (Fig 6A). Peak SNPs were located in regions containing known genes associ-

ated with coat phenotypes, including r-spondin 2 (RSPO2), keratin 71 (KRT71), a lncRNA

upstream of adrenoceptro beta 1, ADRB1 (ADRB1-AU1), and c10orf118 [25–27]. The latter is

involved in atopic dermatitis in dogs with a dense undercoat [27–29]. Other genes identified

Fig 4. Haplotype sharing analyses of six dog breeds, including the LBD and ALBD. Haplotype sharing boxplot for LBD (A) and ALBD (B), and six component breeds

established using a window size of 1,400 SNPs and an overlap of 50 SNPs. The colors of six breeds correspond to the Fig 1. Y-axis indicates total haplotype sharing. Pairs

which did not share a haplotype were set at 250,000 bp for graphing.

https://doi.org/10.1371/journal.pgen.1008956.g004
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in this analysis with significant p-values include tudor domain containing 1 (TDRD1), which

plays a role in embryogenesis and gametogenesis [30] and rab11 family interacting protein 2
(RAB11FIP2), which encodes a GTP binding protein [31].

We next performed an allelic comparison of 21 ALBDs versus 28 LABs and observed 3,181

SNPs that crossed the Bonferroni threshold, demonstrating significant differences between the

ALBD and LAB allele frequencies (Fig 6B). The five most significant SNPs (range P = 10−16–10−18)

Fig 5. Maximum likelihood tree. Tree was constructed with TreeMix using four migration events, LD, and a bootstrapped over 1,000 bp windows. Breed

abbreviations correspond to S2 Table. X-axis indicates the amount of genetic drift. The arrows denote migration from origin to recipient breed, and the weight of

migration is scaled according to percentage mixture indicated by the heat map on the y-axis.

https://doi.org/10.1371/journal.pgen.1008956.g005
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are present in the regions containing RSPO2, ADRB1-AU1, c10orf118, TDRD1, RAB11FIP2, and

angiopoietin 1 (ANGPT1). The first five genes were also observed in the POOD vs. LAB compari-

son, while the last plays a role in vascular development and has been associated with hypoxia adap-

tation in grey wolves (Table 2). The third analysis compared ALBD to the POOD. In this case, we

observed only five SNPs in total passing the Bonferroni threshold, with p-values of 10−7–10−8 (Fig

6C). Haplotypes were again constructed around each peak, highlighting only three genes: calcium
voltage-gated channel auxillary subunit gamma 4 (CACNG4), TBD1 domain family member 5
(TBC1D5), and multiple PDZ domain crumbs cell polarity complex component (MPDZ). Among

these, CACNG4 is perhaps the most interesting because of its role in the oxytocin signaling

pathway.

The large number of significant SNPs observed when comparing POOD to LAB and ALBD

to LAB, versus the small number observed when comparing the ALBD and POOD, indicates a

much stronger contribution of POOD varieties than the LAB to the ALBD. When examining

haplotypes around the lead SNPs we were unable to identify common haplotypes between the

ALBD and either parent breed except in regions surrounding RSPO2 and ADRB1-AU1, where

the ALBD shared common haplotypes with POOD.

LD analysis

We next measured the extent of LD in ALBD in comparison to LAB, POOD, and LBD (Fig 7).

At one megabase (Mb), LD was most extensive in the SPOO (mean r2 = 0.25) and least in the

ALBD (mean r2 = 0.18). Among purebred dogs, the lowest LD at one Mb was observed in the

TPOO (mean r2 = 0.20), which is very similar to the LD decay observed by Boyko et al. in a

study of 59 domestic breeds [8]. The rapid pattern of decay in ALBD illustrates the high

genetic diversity of this breed, showing that LD does not extend very far in their genome.

Given the young status of this breed, this is presumably explained by the high degree of hybrid-

ization in the creation of the ALBD, which is also reflected in our other analyses. Thus, this

pattern of decay explains why we were unable to identify large shared haplotypes around the

most significant SNPs in the allele frequency analysis, with the exception of the RSPO2 and

ADRB1-AU1 regions. Unsurprisingly, LD in the LBD was higher than in the ALBD, as the for-

mer comprises the complete genomes of two distinct breeds while the latter reflects some gen-

erations of recombination.

Candidate gene analysis

Since haplotypes across genes associated with coat variation are primarily shared by the ALBD

and POOD, and absent in the LAB, we genotyped presumed functional variants in genes asso-

ciated with coat in the POOD, including coat length (fibroblast growth factor 5, FGF5), curl

Table 1. Mean inbreeding coefficient values for ALBD and LBD vs. established breeds.

Breed name Mean inbreeding coefficient Min. Max.

LBD -0.06 -0.08 -0.04

ALBD 0.05 -0.06 0.2

SPOO 0.12 0.01 0.2

LAB 0.19 0.08 0.26

MPOO 0.19 0.05 0.4

IWSP 0.25 0.17 0.35

ECKR 0.31 0.16 0.43

ACKR 0.37 0.3 0.47

https://doi.org/10.1371/journal.pgen.1008956.t001
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(KRT71), and furnishings, the latter of which describes the presence or absence of moustache

and eyebrows (RSPO2) [25, 32, 33]. In addition, we examined two previously reported SNPs

located in the intron of a lncRNA upstream of ADRB1 (ADRB1-AU1) that is associated with

the presence or absence of an undercoat [26] which were also significant in our allelic analysis.

As we have previously reported an association between a 167 bp indel in the 3’ untranslated

region of RSPO2 with furnishings [25], we directly genotyped the insertion in ALBDs

(Table 3). Fifteen of 21 ALBD were homozygous for the insertion and six were heterozygous.

All POOD were homozygous for the insertion while all LABs lack the insertion [25]. These

results are supported by observed alternate allele frequencies for the lead SNPs of 1.0 and 0.86

Fig 6. Genome-wide identification of variants with significant allele frequency differences between breeds. (A) Manhattan plot for the POOD vs. LAB allele frequency

comparison reveals allele frequency differences on chromosome 13 in a region containing RSPO2 (peak SNP chr13:8635445) and on chromosome 28 in the region

containing ADRB1-AU1 (peak SNP chr28:24866296). (B) Manhattan plot for ALBD vs. LAB, identifying loci on chromosomes 13 and 28. (C) Manhattan plot for ALBD

vs. POOD. Five significant SNPs are noted on chr 3, 8, 9, 11 and 23. The red line represents the Bonferroni corrected significance threshold (-log10 (P) = 6.48) and SNPs

passing this threshold are colored in red.

https://doi.org/10.1371/journal.pgen.1008956.g006

PLOS GENETICS Genetics of the Australian labradoodle

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008956 September 10, 2020 9 / 21

https://doi.org/10.1371/journal.pgen.1008956.g006
https://doi.org/10.1371/journal.pgen.1008956


for the POOD and ALBD, respectively, and zero for the LAB, the only one of the three breeds

which lacks furnishings (Table 3).

Fur length was examined by genotyping a strongly associated SNP (chr32.g.4509367G>T;

rs851828354) that is located in the first exon of FGF5. The variant causes a cysteine to phenyl-

alanine (ENSCAFP00000013040.3:p.Cys95Phe) change in a highly conserved region of the

gene [25, 34]. Nineteen of 21 ALBD and all seven POOD were homozygous for the derived

allele (long coat), while 23 of 24 LAB were homozygous for the ancestral allele (short coat).

We also genotyped two mutations in KRT71, a keratin gene which has been strongly associ-

ated with curly coat in many domestic breeds, including the POOD [25]. The first mutation,

chr27.g.2539211C>T; rs23373415, is a nonsynonymous (NP_001183958.1p.Arg151Trp) alter-

ation. Our dataset revealed that 24 of 30 POOD and eight of 21 ALBD were homozygous for

the derived (curl) allele, and all 24 LABs were homozygous for the ancestral (non-curl) allele.

We genotyped a second variant located in the seventh exon of the same gene

(chr.1266_1273delinsACA), which causes a frameshift/stop loss, changing the encoded KRT71
protein sequence (NP_001183958.1; p.Ser422ArgfsTer?) in curly coated retrievers [32, 33]. No

ALBD carried the mutation. Overall, this suggests that either curly coat is not a highly selected

trait in the ALBD, or that other genes or previously unreported mutations control the pheno-

type in this breed. Given the location of KRT71 within a cluster of keratin genes, and the long

LD observed across the dog genome, the latter is a formal possibility.

Finally, we genotyped two SNPs (chr28.g.24860187C>T and chr28.g.24870184G>A)

within ADRB1-AU1 [26]. While the first SNP was previously identified as most closely associ-

ated with having a single coat [26], we observe here that the derived allele at chr28:24870184 is

most common in the POOD and ALBD. No ALBD or POOD were homozygous for the ances-

tral allele at the latter SNP, although 21 of 24 LABs were. Conversely, 19 of 21 ALBD and nine

of 10 POOD were homozygous for the derived allele (Table 3) at the second SNP. LABs have a

double coat which is comprised of a dense undercoat of short hairs and a topcoat of longer

“guard” hairs. POOD are reported to have single coats [35], although this is not part of their

breed standard; therefore, they were not included in the initial study of single versus double-

coated breeds [26]. Double coats in the ALBD are considered a fault by the Australian Labra-

doodle Association of America, but it is not part of the standard. Thus, while this SNP appears

to be related to presence or absence of undercoat, we cannot formally eliminate the possibility

that it is a marker for another trait.

Table 2. Top five SNPs with significant allele frequency differences between ALBD and LAB or POODs and most proximal genes.

Breed

comparison

Lead SNP P-value Allele frequency

ALBD

Allele frequency

POOD

Allele frequency

LAB

Region defined by

Haploview

# of SNPs within

region

Genes within

region

ALBD x LAB chr13:8635446 3.03e-18 0.86 1 0 8472061–8718212 4 RSPO2
ALBD x LAB chr13:8637613 3.03e-18 0.86 1 0 8472061–8718212 4 RSPO2
ALBD x LAB chr28:24866296 2.22e-17 0.86 0.93 0.02 24814135–25035686 3 ADRB1-AU1

c10orf118
TDRD1

ALBD x LAB chr28:28503227 6.72e-17 0.89 0.95 0.03 28368822–28582831 10 RAB11FIP2
ALBD x LAB chr13:8357088 1.16e-16 0.83 0.90 0.01 8214281–8442632 11 ANGPT1
ALBD x POOD chr8:20741929 9.49e-08 0.64 0.93 0.28 20625037–20989649 17 N/A

ALBD x POOD chr9:13481554 1.14e-07 0.79 0.8 0.18 13461625–13512270 4 CACNG4
ALBD x POOD chr23:25770325 1.86e-07 0.9 0.65 0.3 25744912–25784450 2 TBC1D5
ALBD x POOD chr11:33845851 2.60e-07 0.62 0.93 0.13 33834431–33924682 4 MPDZ
ALBD x POOD chr3:78254614 3.08e-07 0.86 0.7 0.13 78230838–78274849 2 N/A

https://doi.org/10.1371/journal.pgen.1008956.t002
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To determine if genes affecting the coat are enriched in the SNPs showing significant allele

frequency differences between ALBD and LAB, we performed an intersection analysis between

the 3,181 SNPs with significant allele frequency differences between ALBD and LAB versus

146,925 SNPs with no significant difference. This revealed 24 SNPs within 250kbp of 11 genes

associated with coat color and 69 SNPs within the same distance of 11 coat growth and texture

genes. We compared this to 1,164 and 1,161 SNPs that appear in the coat color and growth/

texture regions, respectively, but show no significant allele frequency differences. The Fisher’s

Fig 7. LD decay curve of LBD and ALBD and component breeds. Multigenerational ALBD and LBD decay plots using six dogs per breed are shown in comparison to

parent breeds. Data are based on a mean r2 using a window size of one Mb.

https://doi.org/10.1371/journal.pgen.1008956.g007
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exact p-value for an enrichment of coat growth and texture genes was <0.00001, with an odds

ratio of 2.78 (95% CI 2.18–3.6). In contrast, the Fisher’s exact p-value for coat color genes was

>0.05 with an odds ratio of 0.95 (95% CI 0.63–1.4).

Discussion

Designer dogs have become popular in recent years reflecting increased owner demand for

pets that meet their wishes for specific traits, often related to personability, body size, or

hoped-for low allergenicity, while retaining favored traits from familiar breeds. Most designer

dogs represent first generation crosses, and there is generally little motivation to develop a

hybrid into a true breed as subsequent generations, often produced by crossing closely related

individuals, may reveal undesirable, recessively segregating traits. The exception is the ALBD,

which began with crosses between LAB and SPOO in the 1980s. The original goal was to create

a service dog with high biddability that was suitable for households with allergies or asthma,

although whether the breed is in fact hypoallergenic, itself a poorly defined word, is a topic of

debate. The resulting dogs are smart, friendly, and widely employed as assistance and therapy

dogs. The ALBD is not yet recognized by any international registry, but breeding programs

and breed standards are defined by the Australian Labradoodle Association of America

(https://alaa-labradoodles.com).

We examined the ALBD genome to understand the genetic origins of the breed, including

the reported introduction of at least five breeds in addition to the SPOO and LAB. We used

genome-wide SNP data to determine if the modern ALBD achieves the metrics that define a

distinct breed such as high inbreeding coefficients. By comparing breeds, we sought to under-

stand how the ALBD has changed since its inception, approximately 10 generations earlier,

and to identify traits preferred by breeders. Our data reveal that the modern ALBD is mostly

POOD, and the POOD alleles related to coat are present in high frequency in the ALBD.

Our dataset comprised seven populations: the LBD, which is a group of first-generation lab-

radoodle dogs; multigeneration ALBD; all three POOD varieties (miniature, toy, and stan-

dard); the LAB; ECKR and ACKR; and IWSP (Fig 1). Based on the limited pedigree data

available to us, we expect the ALBD to have retained more POOD than LAB in later genera-

tions. Our data unambiguously supported that hypothesis. PCA analysis (Fig 2A) shows that

Table 3. Genotyping results for coat variants in ALBD, POOD, and LAB.

Position Gene Ancestral/Derived Breed Hom. ancestral Het. Hom. derived Total

chr13:8610419 RSPO2 -/ins ALBD 0 6 15 21

POOD 0 0 7 7

LAB 24 0 0 24

chr27:2539211 KRT71 C/T ALBD 5 8 8 21

POOD 0 6 24 30

LAB 28 0 0 28

chr28:24860187 ADRB1-AU1 C/T ALBD 1 9 11 21

POOD 1 6 3 10

LAB 0 0 24 24

chr28:24870184 ADRB1-AU1 G/A ALBD 0 2 19 21

POOD 0 1 9 10

LAB 21 2 1 24

chr32:4509367 FGF5 G/T ALBD 0 2 19 21

POOD 0 0 7 7

LAB 23 1 0 24

https://doi.org/10.1371/journal.pgen.1008956.t003
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the ALBD is a population closely related to POOD. Also, admixture analysis demonstrates that

while the LBD are clearly a 50:50 mix of LAB and SPOO, the multigeneration ALBD dogs

tested are largely POOD, retaining little LAB contribution. In addition, unlike the LBD, multi-

ple POOD size varieties may contribute to a single ALBD lineage. We also noted minor contri-

butions from spaniels in some lineages, indicating that they were used infrequently, or that

their traits were not highly desired in breeding programs.

Finally, the above conclusions are supported by our haplotype analysis which utilized two

distinct datasets: the LBD hybrid versus 161 breeds which we described previously [4], and the

ALBD versus the same dataset. While strong contributions from the LAB and POOD are

noted, these data highlight a common problem in mixed breed dog analysis: separating histori-

cal contributions that lead to the creation of the founder breeds versus introduction of unex-

pected breeds in a particular pedigree. Specifically, we note haplotype sharing with Havanese

as well as golden and flat-coated retrievers for both the ALBD and LBD. However, as shown

previously, these breeds are from the same genetic clades as the LAB and POOD. Thus, these

events likely reflect breed relatedness within the clade [4].

The rapid LD decay observed in ALBD combined with the low inbreeding coefficients reflect

the high genetic diversity of their genome. This observation is also explained by the very young

nature of this “breed in formation,” which also provides an explanation for why no particular hap-

lotype structure is observed in genes associated with coat type. Allelic frequency analysis was used

to identify loci shared by POOD and ALBD versus LAB. Our control comparison of POOD ver-

sus LAB identified thousands of SNPs with significant differences in allele frequency. That the

LAB versus ALBD comparison also yielded thousands of significant SNPs, while the ALBD versus

POOD yielded only five indicates that ALBD are more similar to POOD than to LAB and likely

reflects breeding programs which favor reintroduction of POOD over multiple generations.

There are a wide range of body sizes in the ALBD which meet the breed standard. These are

assessed as height at the withers (shoulder) and weight. Miniature varieties are 14–16 inches in

height and weigh 15–25 lbs; medium ALBD are 17–20 inches and weigh 30–45 lbs; the stan-

dard size ALBD are 21–24 inches tall and weigh 50–65 lbs (https://alaa-labradoodles.com).

This variation could reflect the inclusion of all three POOD varieties into ALBD breeding pro-

grams, as demonstrated by our admixture and haplotype analyses. However, no SNPs associ-

ated with body size loci were among the top five most significant in this analysis. For instance,

the IGF1 locus, which accounts for about 15% of variation in body size in domestic breeds [11]

is ranked 2622nd in our allelic comparison study, suggesting that the smaller varieties of

POOD are not, at present, highly favored in breeding programs.

We also readily acknowledge that our data cannot distinguish between the putative contri-

butions MPOO and TPOO, but it is an interesting issue for breeders. A recent study of 14

behavior traits assayed in 166 labradoodles using the well-established C-BARQ on-line ques-

tionnaire [36, 37] revealed that MPOO had a higher score than the labradoodle for social-fear

and separation-related anxieties, both undesirable traits, while the SPOO, by comparison, had

a lower score than the MPOO for touch sensitivity, which is regarded as a desirable trait [38].

These differences are interesting and worth consideration in future development of ALBD

lines or other designer breeds.

We performed direct testing for variants in KRT71 that have been associated with curl in

many breeds, including the POOD [25]. While we observed the expected distribution of alleles

in the POOD and LAB, the genotypes were evenly distributed in the ALBD. This was surpris-

ing given our perception of how many ALBD have curly or wavy coats. However, the ALBD

breed standard permits coat curl to be anywhere on the continuum from straight to wavy to

tightly curled. Our data do not exclude the possibility of other genes with variable or weak

alleles playing a role in ALBD coat curl.
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Finally, we genotyped a mutation in FGF5 at chr32:4509367, which has been associated

with fur length [25, 34]. We observe small differences between the POOD, in which 100% of

dogs were homozygous for the derived allele (long hair), versus the ALBD, for which 90.5%

were homozygous and 9.5% were heterozygous. Finally, all but one LAB was homozygous for

the ancestral (short hair) allele (Table 3). While this again is supported by the ALBD breed

standard which calls for fur up to four inches in length, we did not observe a significant SNP at

this locus in the allele frequency analysis. We speculate that the result is due to a lack of tagging

SNPs on the array for this mutation in the breeds tested. As we did not have specific fur mea-

surements for each individual, we are unable to validate this. We similarly found no genes

associated with coat color among the five most significant SNPs. However, the tagging SNPs

for melanocortin 1 receptor (MC1R) and agouti signaling protein (ASIP) ranked 2,738th and

2,904th, respectively, in the allele frequency comparison, indicating some skewing of coat color

alleles in the ALBD versus parental breeds. This is consistent with the breed standard, as the

Australian Labradoodle Association of America accepts 14 coat colors including variants of

cream, apricot, silver, red, chalk, and black; it also reflects the degree of coat color variation

observed in the POOD but not the LAB.

Low shedding, tight coats, and lack of a double coat are perceived as key traits contributing

to the perceived “hypoallergenic” nature of established breeds like the Bichon Frisé, Portu-

guese water dog, and POOD. Indeed, POOD have been the breed of choice for the creation of

many designer crosses such as the yorkipoo, peekaboo, lhasapoo and pomapoo. The intellect

of the POOD combined with a desirable coat and ease of trainability are all traits which make

the POOD a desirable inclusion in a hybrid. Many people with dog allergies do not have an

allergic response when in proximity to breeds that share coat traits with the POOD, including

the Portuguese water dog and Bichon Frisé. We note, though, that while there is some anec-

dotal evidence, a rigorous survey regarding the allergenicity of designer breeds has not, to our

knowledge, been done. Our results, highlighting the coat and skin genes RSPO2, ADRB1-AU1,

FGF5, and c10orf118, do not exclude the possibility of other genes, such as those controlling

shedding and inherent immune factors, playing a role in the reduced allergic response to the

ALBD that has been reported.

Three additional loci which include the genes CACNG4, MPDZ, and TBC1D5 were evident

in our comparison of ALBD versus POOD (Table 2). None are obvious candidates contribut-

ing to known dog traits; rather, all play roles in basic cell biology. CACNG4, for instance, is a

calcium channel regulator with many roles, among the most interesting is its involvement in

the oxytocin signaling pathway, potentially suggesting a role in behavior [39]. Given the differ-

ent personalities of the POOD and LAB breeds it would be interesting to investigate this find-

ing in greater detail [39]. TBC1D5 regulates endosomal trafficking [40], and MPDZ is related

to eye and brain anomalies [41, 42]. We note, however, that the analysis here compared allele

frequency only and examined a window-size of 39–364 kb based on shared LD within breeds.

Thus, these genes may serve as markers of other adjacent genes outside of the window which

are minor contributors to the ALBD.

In a recent podcast with Australian NBC News, Wally Conron, a developer of the ALBD

stated publicly that he wished he had not created the breed, and that he had “opened a Pando-

ra’s box” and released “a Frankenstein monster,” a comment made in relation to health issues

associated with unscrupulous breeding practices [43]. He and others have argued that designer

breeding programs have the potential to reveal recessive traits which accentuate latent genetic

health issues [12, 15]. “Hybrid vigor” does not always prevail, particularly if parental breeds

share common disease causing alleles [44, 45]. Patellar luxation, Von Willebrand blood clot-

ting disease, progressive retinal atrophy, and hip and elbow dysplasia are common health

problems for the ALBD. Given the popularity of the breed, these issues should be addressed.
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Our study demonstrates the overwhelming POOD component of the ALBD, providing a

direction for the development of genetic tests to be incorporated into thoughtful breeding pro-

grams designed to enhance the attributes of this designer breed. This knowledge, in turn, will

contribute to the growing body of data from man’s best friend with the potential to enhance

our understanding of human health.

Materials and methods

Ethics

All protocols were approved by the National Human Genome Research Institute (NHGRI)

Animal Care and Use Committee as per protocol GFS-05-. Dog owners provide written con-

sent for sample collection.

Samples

Published genotype data from ten LAB; 10 each of MPOO, TPOO and SPOO; and 10 each of

ACKR, ECKR, and IWSP were used in these analyses [4]. Breeds were selected for inclusion

based on both known and reported historical contribution to the ALBD. In addition to the

above, 18 LABs were genotyped and added to the dataset. Of the 28 total LABs, 17 were female

and 11 were male. Fifteen of the 28 were from a range of geographically distant U.S. states and

13 were of unknown geographic origin. The POOD data included 10 SPOO: five males and

five females. Four MPOO were males, and six were females; all were collected from a variety of

U.S. geographic areas with the exception of one from Ontario, Canada. The 10 TPOO included

five males and five females, all of which were from distributed US geographic states. The 10

ACKR, ECKR and IWSP included five males and five females each. All DNA samples from

these breeds are from AKC registered dogs that were, to the best of our knowledge, unrelated

to at least the grandparent level.

DNA from 21 ALBD, nine females and 12 males, and eight LBD, the latter of which were

first generation LAB/POOD crosses, was provided by Optigen, LLC (Ithaca, NY). The pedi-

grees provided for the ALBD are sufficiently complex that naming generations is difficult.

Thus, for this ALBD analysis, generations were numbered back to the most recent purebred

individual in the pedigree, up to four generations. Dogs with more extensive pedigrees were

termed 4+. The “multigenerational” descriptor indicates the complex nature of the ALBD ped-

igrees. Three ALBD were of uncertain generation but were clearly�4 generations. To our

knowledge, 19 ALBD were unrelated at the grandparent level. Of the remaining, there was one

set of siblings and a second set of dogs who share one grandparent.

Genotyping

All DNA samples were genotyped on the Illumina CanineHD SNP chip (San Diego, CA). The

SNP dataset for LAB, SPOO, MPOO/TPOO, ACKR, IWSP and ECKR was previously

described [4], and had been genotyped for 150,112 SNPs. Genotype calls for the LBD, ALBD

and additional 18 LABs were performed using Illumina’s Genome Studio v.2 (Illumina, San

Diego, CA). Samples with a>90% SNP call rate were retained. SNPs with Gentrain scores

>0.4 and minor allele frequency>1% were retained. Both dataset were merged using PLINK

v.1.9 [23]. The final dataset includes 150,106 SNPs.

Statistical analysis

Principal components (PCs) were calculated using FlashPCA software from PLINK formatted

bed files containing 39 chromosomes [46]. We sought to determine the component breeds
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that went into the construction of the ALBD. While several are reported on web sites or by

breeders, these may not be necessarily true and minor breeds may have contributed to a subset

of ALBD lineages. While not establishing the relatedness of breeds, like a phylogenetic analysis,

admixture analysis can identify contributions from other breeds that happened several genera-

tions previously. We utilized ADMIXTURE v1.23, with two to ten adjusted cluster ancestry

models [47]. Results are shown for K = 2–6. The optimal K (K = 5) was determined using the

cross-validation procedure (S3 Fig.) meaning that based on allele distribution the optimal

number of populations in the dataset is five.

IBD haplotype sharing analysis and phasing was performed with BEAGLE v4.1 using variant

call format (VCF) files generated with PLINK v1.9 [23], which permitted dissection of ALBD

parental breeds [48, 49]. For these analyses, two distinct datasets were constructed. The first con-

tained SNP data from 1,346 domestic dogs representing 161 breeds and nine wild canids geno-

typed at 150,112 SNPs, as previously reported [4]. The second included data from only the seven

breeds outlined above, all of which are hypothesized to have contributed to the ALBD. Dataset

one utilized a window size of 1,900 SNPS with an overlapping value of 50 SNPs, while the second

set used a window size of 1,400 SNPs, also with an overlapping value of 50 SNPs. A threshold

value of 95% was calculated using the quantile function in R based on all possible pairs of dogs

from different breeds. This, in turn, was used to determine which breeds contributed to each lab-

radoodle population. Haplotype sharing was considered to be significant between the two popula-

tions if the upper quartile of the box is higher than the 95th percentile boundary calculated from

all haplotype pairs. The proportion of genomic contribution by the LAB to the ALBD and LBD

was calculated by extracting average haplotype sharing of all pairs of LBD or ALBD with LAB and

dividing that number by the combined average haplotype sharing of all pairs of LBD or ALBD

with ACKR and POOD. The inbreeding coefficient was calculated using the ‘—het’ function of

VCFtools v.0.14 [50]. R was used to construct graphs and plots for all analyses [51].

To further evaluate admixture, a maximum likelihood tree was constructed using TreeMix

v.1.12 [18]. The tree was constructed using the population-based allele frequencies of approxi-

mately 150,106 SNPs. The tree was bootstrapped by analyzing the data in windows of 1000

SNPs using the flags -bootstrap and -k 1000. We repeated the analysis with zero to four migra-

tion events allowed and found no further migrations beyond four. The residuals, which indi-

cate how well the data fits the model, showed the lowest range (-1.4 to 1.4) at four migrations.

Two additional trees (S1 and S2 Figs.) were constructed using established breeds (with and

without the LBD or ALBD) (S1 and S2 Figs.) and the same set of markers and parameters

defined above, but with no migration.

Allele frequency comparisons

Allele frequency comparison analyses were conducted using the—assoc function in PLINKv1.9.

Three comparisons were as follows: POOD versus LAB, ALBD versus LAB, and ALBD versus

POOD. Allele frequency comparisons were done using the 28 LABS described above. We utilize a

balanced population of 20 POOD, 10 SPOO and five each of MPOO and TPOO. This included

five female and five male SPOO, three female and two male MPOO, and two female and three

male TPOO. Haploview [24] was used to establish haplotype boundaries around the top five SNPs

from each comparison using the solid spine block definition on the basis of LD score, and exclud-

ing SNPs with a minor allele frequency<5%. Manhattan plots were generated using R.

LD decay analysis

Pairwise LD was summarized using the genotype correlation coefficient r2 and decay plots

were made using PopLDdecay [52]. For all autosomal SNPs a one Mb window was used. We
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calculated the r2 between all pairs of SNPs (unphased), using PopLDdecay, where both SNPs

had a MAF�15% and�10% missing data. We used a break point of 100,000 bp and -bin2 flag

of 10,000 bp to smooth the lines. To compare LD between breeds, a random set of six individu-

als from each breed were selected. For ALBD, six dogs, all representative of the multigenera-

tional nature of the designer breed, were selected.

Candidate gene analysis

All samples were analyzed for putative functional mutations in FGF5, RSPO2, KRT71, and

ADRB1-AU1 [25,32, 33, 26]. Mutations were genotyped using Sanger sequencing (FGF5,

KRT71, ADRB1-AU1) or gel band size discrimination (RSPO2). Using manufacturer protocols,

a touchdown polymerase chain reaction (PCR) protocol with AmpliTaq Gold (ThermoFisher

Scientific, Gaithersburg, MD) was used to amplify DNA fragments. The resultant PCR prod-

ucts were purified using Exosap (ThermoFisher Scientific, Gaithersburg, MD), Sanger

sequenced using BigDye Terminator v3.1 (Applied Biosystems, Foster City, CA), and analyzed

on an ABI 3730xl DNA analyzer (Applied Biosystems, Foster City, CA). Genome positions of

all primer sequences are provided in (S1 Table). With the exception of KRT71 and ADR-
B1-AU1 we used a previously published catalog of 722 WGS [11] to determine mutations in

the LAB and POOD. The sequence of each primer, name of the relevant gene, primer Tm, and

position of each variant is listed in S1 Table.

To determine if genes affecting the coat are enriched in SNPs showing significant allele fre-

quency differences between ALBD and LAB, we made a 2x2 contingency table from the two

sets of SNPSs; 3,181 with significant allele frequency differences and 146,925 showing no sig-

nificant differences. We first counted the number of SNPs that fell within known genes affect-

ing coat traits. The first set comprised coat color genes (ASIP, tyrosinase related protein 1
(TYRP1), melanophilin (MLPH), MC1R, defensin beta 103A (DEFB103/CBD103), silver locus
protein homolog (PMEL/SILV), MITF, solute carrier family 45 member 2 (SLC45A2), protea-
some subunit beta type-7 (PSMB7), solute carrier family 2 member 9 (SLC2A9), KIT ligand
(KITLG)) while the second comprised coat growth and texture genes (FGF5, RSPO2, KRT71,

melanocortin 5 receptor (MC5R), ADRB1-AU1, forkhead box I3 (FOXI3), serine/threonine-pro-
tein kinase 3 (SGK3), fibroblast growth factors 3 and 4 (FGF3 and FGF4, respectively) FGF5 and

oral cancer overexpressed 1 (ORAOV1)). To allow for LD, we increased the total length of each

gene by 250kb at both ends. Individual bedfiles were created for gene and SNP loci and the

overlapping positions were identified using the intersect function in bedtools v2.29.2. The

Fischer’s exact test p-value was calculated by online Fischer test calculator (https://www.

socscistatistics.com/tests/fisher/default2.aspx) and the odds ratio was calculated using the

online tool (https://www.medcalc.org/calc/odds_ratio.php).

Supporting information

S1 Fig. Maximum likelihood tree. Tree for six established breeds was constructed with Tree-

Mix using a bootstrap value of 1,000. Breed abbreviations correspond to S2 Table. The weight

of migration is scaled according to percentage mixture indicated by the heat map on the left.

(TIF)

S2 Fig. Maximum likelihood tree. Tree for six established breeds including ALBD and LBD

was constructed with TreeMix. Breed abbreviations correspond to S2 Table. The weight of

migration is scaled according to percentage mixture indicated by the heat map on the left.

(TIF)
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S3 Fig. Cross validation (CV) error plot for admixture analysis. Line graph of CV error val-

ues for each ancestry models denoted by K.

(TIF)

S1 Table. Primer sequences, Melting temperature (Tm), and PCR product size for each

genotyped variant.

(DOCX)

S2 Table. Breed abbreviations. Summary of breed abbreviations corresponding to Fig 3A and

3B.

(DOCX)
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