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Abstract

Research Article

IntroductIon

While there is a global shift toward image processing and 
digitizing medical slides and images, there is a clear and 
definite obstacle: the limited depth of focus in optical 
microscopes and imaging systems. Due to this limitation, it 
is not possible to easily capture a singular image with high 
spatial resolution.

In general, low image pixel resolution is caused by extrinsic 
and intrinsic factors. The intrinsic factors are due to the 
interaction between wave particles of light and the substance.[1] 
Optical microscopes have the capability to only focus on one 
object plane in the field of view or a specific z‑level at a certain 
time, disregarding crucial cellular features at different planes. 
The design of the optical microscope, focal length, and distance 
to specimen limit the depth of field to a two‑dimensional plane 
of focus when viewing slides.

In imaging systems, changing the aperture and thus the 
f‑number allows for focusing of different distance from the 

capturing device. Conversely, with a microscope, slight 
alterations in the distance of the specimen allows for shifts 
in focus of separate layers of a slide. Hence, when examining 
tissue section slides under a magnification, a single plane is 
insufficient due to slight differences in the object plane focal 
lengths. Subsequently, we must take multiple images of a single 
field of view at different z‑levels to appropriately represent the 
entire information in that field of view on the slide.

The extrinsic factors include resolution enhancements on 
captured images.[2] Hence, with a set of images of different 
focal depths, super‑resolution (SR) techniques are necessary to 
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generate an accurate representation of the slide in one image. 
This allows for more efficient analysis of digital slides, expedites 
collaboration, and improves downstream computational analysis.

The high‑resolution medical images allow for reliable digital 
duplication of information for collaboration in accurate 
diagnoses. In addition, with the rapid development of 
computer‑assisted diagnostic models (i.e., computational 
algorithms that use digital image data to generate diagnoses), 
there is an increased focus on improving accuracy 
models.[3‑6] An overlooked aspect in the development of these 
computer‑assisted diagnostic models is the quality of the 
training data or the input images, thus providing an unrealized 
potential in improving accuracy of diagnostic models with 
super‑resolved images.

SR imaging refers to a set of techniques that improve and enhance 
resolution of images. Harris[7] introduced the mathematical 
foundation of SR algorithms with a theory on solving diffraction 
in 1964, then Tsai et al.[8] addressed the problem in the context of 
enhancing the spatial resolution using the spatial aliasing effect, 
and subsequently, many studies have been conducted using a 
frequency domain approach; all these approaches use multiple 
low‑resolution images to generate a single super‑resolved 
image.[9‑11] These techniques have a broad scale of applications, 
including security surveillance, astronomy, entomology, satellite 
photographs, and medical images. A commonly used approach to 
increase spatial resolution (i.e., the number of independent pixels 
values used to construct an image) is to use signal processing 
techniques.[2] This includes focus stacking, that is, an approach 
to produce SR images from a subset of low‑resolution images 
with varying focal depths.

Currently, the most common approaches for focus stacking, or 
more specifically multifocus image fusion, use either Fourier 
analysis (i.e., to decompose an image into its sinusoidal 
components in the frequency domain) or edge detection 
(i.e., a set of techniques used to identify “sharp” regions of 
an image).[1,9,12] While these approaches work well in certain 
cases, they do not perform well for feature‑oriented detection.
[13] In addition, we have considered using a weighted or 
enhanced map method, but these approaches are aimed to 
reduce noise and smooth the images, which can cause a loss of 
valuable data from images of tissue slides. We have proposed 
a method utilizing a scale‑normalized Laplacian operator 
on Gaussian smoothed images to generate the scale‑space 
representation. This approach will detect the highest resolution 
regions (strongest edges) through applying the Laplacian 
operator to produce a gradient map, which is used to generate 
an image with a greater depth of field (apparent plane of 
focus). When applied to bone marrow aspirate and cytology 
smears and tissue sections, this approach utilizes a Laplacian 
of Gaussian (LoG) feature detector, identifying individual cells, 
lymphocytes, monocytes, and neutrophils that are focused 
in the image and maintaining the entire composition of a 
specific geometric cellular feature in the final image to prevent 
distortion. The Laplacian operator is a kernel that is convolved 

on an image to generate a gradient map and highlight intensity 
changes. Creating a single super‑resolved image from a set 
of low‑resolution images is computationally cheaper for 
downstream analysis as it does not require the analysis of 
multiple images of the same scene at different z‑planes. In 
addition, having a single super‑resolved digital medical slide 
allows for easy sharing of data at a low cost.

MaterIals and Methods

Data
Images were taken using a SPOT Insight camera (SPOT 
Imaging, Sterling Heights, MI, USA), 4.0 megapixel, 
mounted to an Olympus BX41 (Olympus, Waltham, MA, 
02453) microscope using SPOT Basic (SPOT Imaging) image 
capture software. All codes were written in Python on Mac OS 
(Apple Inc.; Cupertino, CA, USA). In addition, the OpenCV 
library (from https://opencv.org/) version 3.5.5 was used for 
basic implementations of published algorithms.

Computational methods
Image alignment
When capturing images of the slides under an optical 
microscope, the microadjustments in the z‑plane may be 
accompanied with slight zoom or positioning variations. 
Appropriate compensation must be taken to alleviate the 
misalignment from these slight variations, and the images must 
be precisely aligned to allow for comparison.

We utilized a feature detection algorithm to locate the 
descriptors and key points. The Scale‑Invariant Feature 
Transform (SIFT)[14,15] approach was used to find key points 
and descriptors of an image. Lowe’s SIFT algorithm utilizes 
scale‑space filtering with the difference of Gaussian, an 
approximation of LoG to detect blobs (local extrema) for 
comparison. Figure 1 shows the detected key points in the 
image. The SIFT algorithm was selected for this task as it 
performed with the highest match rate for images that were 
rotated of variable intensity, sheared, and noisy.[16]

Given these key points, we chose to use a Brute‑Force matcher 
that accepts the descriptors of one feature and compares it with 
all descriptors of another image, using a set of proportional 
distance measurements to pinpoint a match [Figure 2]. Then, 
with a ratio test[14,15] set at a threshold of 80%, we determined 
the strong matches from the data. These strong matches were 
ordered from nearest to furthest.

Subsequently, the homography was calculated using the strong 
matches to describe the relation of the images in the same 
frame.[17] The homography matrix is a mathematical expression 
that outlines how to wrap and orient the images so that they can 
be expressed in one coordinate frame. Specifically, the Random 
Sample Consensus[18] algorithm was used to determine the 
transformational relationship of the images while filtering out 
the extraneous correlations.[18] The maximum reprojection error 
was set to 2.0 to ensure flexibility without losing precision. The 
images were then transformed using the homography matrix 
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with a linear interpolation method in order to align the images 
with features in the exact same position in every image.

Image convolution
A differential blob detector known as the LoG is initially 
convolved with a kernel represented by the following Gaussian 
function[19] where σ is the standard deviation.
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Moreover, the Laplacian filter, which is derived from 
discretization of the Laplace equation, is applied to the 
Gaussian scale‑space representation.[20]
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The operations of convolving an image with the LoG kernel is 
equivalent to calculating the Laplace of an image convolved 
with the Gaussian kernel. The expression below illustrates the 
equivalence of these two methods in two‑dimensional cases.
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Therefore, Gaussian smoothing was performed on the images 
using a kernel of size 3 × 3. Through a set of optimization 
experiments, we have determined that a 3 × 3 Gaussian kernel 
is ideal for this microscopy case.

1 2 1
2 4 2
1 2 1

The Gaussian smoothing is used to reduce the likelihood of 
false positives during feature detection. Gaussian smoothing 
occurs through convolving the above kernel above through 
each pixel of the image, resulting in a transformation of the 
image.

Feature detection and stacking
The Laplacian filter, as shown below, was applied on the 
Gaussian smoothed images. The Laplace is calculated through 
the addition of the x and y second derivatives.

0 1 0
1 −4 1
0 1 0

The LoG, in this case, is often mislabeled as an edge 
detector. In contrast with search‑based edge detection, 
which finds local extrema of the first order derivative, 
the Laplacian is a second‑order derivative operator. The 
zero‑crossings of the second derivative locate the extrema 
of the first‑order derivative function and are the inflection 
points of the function. Since the Laplacian is calculated as 
the sum of the second derivatives, the zero‑crossing will be 
localized along the gradient. When the second derivative in 
all directions is added, it will yield a negative response along 
a convex edge gradient transition and positive response 
on a concave edge gradient transition, thus resulting in 
zero‑crossing on curved edges. The addition of these 
values leads to the blob detection around distinct features 

Figure 1: Illustration of identified key points using scale‑invariant feature 
transforms. Key points are identified and noted with variably colored 
circles

Figure 2: Correlation map of strong matches between two images in 
different z‑levels. Two images of the same region of a digital slide, at 
different z‑levels, showing “key point” identification, represented by circles 
in each image and their correlation, illustrated by a gray horizontal line link

1
16
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Figure 3: Plot of Laplacian of Gaussian filter on three images at 
different z‑levels. Different z‑levels of the same region of interest (×400 
magnification) with the Laplacian of Gaussian filter applied. The Laplacian 
of Gaussian filter results are seen to the right of each image

Figure 4: MULTI‑Z workflow diagram

with a strong inflection.[20] Figure 3 illustrates the image 
representation after the Laplacian kernel is convolved on 
the Gaussian smoothed image.

After computing the Laplacian, the absolute magnitude of the 
values was calculated. The absolute value allows us to locate 
both the strong positive and negative responses. Then, through 
determining the maximum value for each pixel value from the 
set of images, we can create a final image with the strong in 
focus responses, in the shape of small blobs. Finally, using a 
Boolean mask, we determined which pixels and regions to 
use for the output.

Data analysis
Beyond professional subjective evaluation, we used six main 
quantification techniques to perform the analysis on whether 
our approach yielded high‑resolution images. We selected a 
series of objective comprehensive analysis methods to assess 
the performance of our approach.

The Structural Similarity Index Measure (SSIM) is a commonly 
used quality metric that quantifies the similarity of images 
through evaluating the correlation, luminance distortion, and 
contrast distortion.[21,22] This metric is known to mirror the 
human visual system to provide an intuitive measurement. We 
use it as an independent control test to illustrate the presence 
of difference between the images with the formula below.

( ) ( ) ( )SSIM , , ,  ( , )f g I f g c f g s f g=

The mean square error (MSE) is an error metric that can be 
used to assess image quality and quantify the average change in 
pixel value between two images.[23] First used by Carl Friedrich 
Gauss to quantify variance, MSE is a widely used technique 
for signal and wavelet strength analysis.[22] The MSE was 
calculated to elucidate the presence of a significant decrease 
in noise and shift in signal strength. The MSE between two 
images is calculated with the formula below, with M and N 
as the number of rows and columns in the images. Figure 4 
illustrates the complete workflow diagram for the MULTI‑Z 
approach.
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The peak signal‑to‑noise ratio (PSNR) is a logarithmic metric 
that is partially based off the MSE and is used as a comparative 
image quality measurement. PSNR provides a greater insight 
on images with several varying dynamic ranges. In general, a 
higher PSNR connotes a higher image quality and focus. The 
PSNR is represented with the logarithmic decibel scale and is 
computed on 8‑bit images using the equation below.

PSNR =
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Average gradient (AG) was calculated to illustrate the image 
contrast and the mean sharpness of the image. With this metric, 
the larger the value, the sharper the image. As a quantification 
of the clarity, the AG is given by the formula below.[24,25]
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The Shannon entropy is a universal measure of the amount of 
information contained in an image.[26] The higher the entropy 
of an image, the greater the amount of information contained 
within the image. In medical applications, the difference 
in entropy is generally restricted as the output should not 
contain manufactured or predicted information and must be 
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solely composed of the provided information. The entropy is 
calculated with the formula below.
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The final quantitative assessment used was the variance 
of Laplacian method.[27] The value was calculated through 
convolving the Laplacian kernel and subsequently calculating 
the variance. Images with a larger variance, more zero‑crossings 
of the second derivative, are more focused.

results

The aim of the described algorithm was to generate 
high‑resolution pathology images to present  the 
three‑dimensional cellular structures that are lost with the 
optical microscope’s two‑dimensional representation of a 
three‑dimensional surface as shown in Figure 5.

The algorithm was applied to a series of cases and the 
six quantitative values were calculated as shown below. 
Figure 6 contains a series of images at different z‑planes with 
respective regions of interest demarcated. The simulation and 
experimental results are shown in Table 1. The stacking for 
each set of images was repeated ten times to ensure consistent 
reproducibility of results. The average run time for the program 
for a set of three images is 8.21 s.

The program clearly yielded images with a greater depth 
of field. This new application of a blob detection algorithm 
minimizes any visual cellular discontinuities or reduction of 
information with smoothing while stacking the most focused 
regions. The quantitative analysis from this simulation is 
summarized in Table 1.

The results from Table 1 indicate that there is an increase in the 
amount of information carried by the one image in comparison 
with any of the other images. In addition, the PSNR and AG 
show a significant increase in sharpness and focus with a 

24% increase in AG. The stacking program clearly increases 
the sharpness of the image, providing vital three‑dimensional 
information analysis.

dIscussIon

Here, we describe a method for generating high‑resolution 
digital images from several stacked images in varying z‑planes. 
The underlying aim of this study was to be able to produce a 
technique to generate super‑resolved pathology slide images 
that contain all of the relevant in‑focus information in a 
three‑dimensional field of view and not to introduce artifacts. 
These digital “slides” can be used for downstream analysis and 
easy sharing of data for collaboration. While such algorithms 
have been developed previously,[1,11,24,28,29] ours differs in that 
we are using a multifocus blob detector for detecting focused 
cellular geometric structures and regions to compose a final 
image. Applying our algorithm to bone marrow aspirate and 
cytology smears and tissue sections allows for a significant 
improvement in information entropy and image sharpness.

Several studies have evaluated the diagnostic accuracy of 
current z‑plane stacking methods.[30‑34] The diagnostic accuracy 
of stacking 20 z‑plane levels was equivalent to glass slide 
microscopy as evaluated by 24 experienced cytologists.[32] 
Another impact evaluation found no statistically significant 

Figure 5: Optical microscope geometric ray model. Schematic diagram of 
an optical microscope that details the path of light and the plane of focus, 
illustrating the three‑dimensional aspect to a cell or tissue on a glass slide

Figure 6: Image result from super‑resolution processing on bone marrow 
aspirate smears using MULTI‑Z. Left: nonsuper‑resolved image; Right 
MULTI‑Z postprocessing super‑resolved image. Boxed areas highlight 
a small region which is magnified further to clearly, but subjectively, 
demonstrate the increased image data and resolution provided by 
processing images through MULTI‑Z

Table 1: Quantitative results of image improvement 
following processing by MULTI‑Z

Image 1 Image 2 Image 3 Super‑resolved 
Image

SSIM 0.87 0.86 0.78 1.00
Average gradient 4.70 4.51 3.68 5.49
Shannon entropy 6.88 6.85 6.81 6.92
Laplacian variance 50.20 45.93 37.88 150.13
MSE 46.32* 50.12* 78.64*
PSNR 31.47* 31.13* 29.17*
*These values are calculated in comparison of Image 1, 2 or 3 to the 
super‑resolved image. SSIM: Structural similarity index measure, 
MSE: Mean square error, PSNR: Peak signal to noise ratio
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difference in diagnostic accuracy between the quality 
assessment of a digital slide generated from stacking three to 
five z‑plane levels and a glass slide.[31] The study also revealed a 
greater average quality assessment for multiple z‑plane stacked 
images over a single z‑plane image.[31]

Our program increases the depth of field and allows for 
a dynamic range of information (i.e., focused material in 
front and behind the median focused plane of the image) to 
be provided, bypassing the intrinsic restrictions of optical 
microscopes and imaging devices. In addition, our program 
does not have restrictions on the number of images with 
varying focal planes that can be provided to the algorithm for 
processing. Our program is applicable to whole‑slide scanned 
images at ×100 magnification or higher.

An obvious extension of this work is combining frequency 
and spatial domain approaches for image reconstruction of 
the three‑dimensional object. Another important extension of 
this work could be in the use of wavelet transforms for image 
reconstruction.

Challenges in real‑world implementation remain, such 
as the speed of generating these super high‑resolution 
images after processing by MULTI‑Z. Super‑resolving 5 
digital images at varied z‑planes at a field of view of ×1000 
magnification may take on the order of 1–10 s to generate 
a final image (depending on the size of image, CPU speed, 
and RAM size). Generating a whole‑scanned slide at ×1000 
magnification would currently be magnitude folds greater in 
time. Further work is needed to address this barrier to efficient 
utilization of the algorithm and solutions could come in the 
form of down‑sampling of image data before alignment to 
increase processing capability further.

Yet questions remain such as whether the fusion of images 
causes introduction of microartifacts during the composition 
process, not distinguishable to the human visual system or 
metrics tested here, but significant enough to cause errors in 
downstream analysis. Although we did not include such data, 
subjective observation by three pathologists did not identify 
any artifacts in our analyzed and original image datasets; 
uniform subjective consensus was that there was a clear 
increase in resolution and clarity of images after SR processing 
by MULTI‑Z.

conclusIon
Here, we present a novel SR processing method: MULTI‑Z. 
This program generates SR images from multiple images at 
variable z‑planes and uniquely performs image alignment, 
image convolution, and image fusion producing a final image 
with an objective measured increase in “relevant data” by 24%. 
Work to capitalize on the increased morphologic data produced 
by this method is an important direction of future studies, both 
assessment of the application of this methodology for rapid 
pathologic diagnoses of bone marrow aspirate specimens 
and cytology smears and use of images produced by this 

technology for downstream machine learning programs to 
assess morphologic features of neoplastic cells.
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